
THE ORIGINAL
LOCKSMITH

USERS MANUAL

VERSION 5.0

http://www.cvxmelody.net/AppleUsersGroupSydneyAppleIIDiskCollection.htm

TABLE OF CONTENTS

Introduction 1
History of Locksmith and copy protection 5
Important Locksmith information 13
Getting started: backing up a disk . 1 7
[B] Backup/Copy disk 21
Error codes from backup/copy disk 25
[Q] Quickscan disk . 27
[P] Parameters 29
[C] Certify disk 33
[E] Erase disk 35
[S] Disk speed 37
[N] Nibble Editor 41
[TJ Text Editor menu 57

Using the text editor 59
Locksmith Programming Language (LPL) 61
Patching the Locksmith disk 65

[U] 16 sector utilities 67
16 sector VERIFY [VJ 67
16 sector FAST DISK BACKUP [BJ 69
16 sector FORMAT [F] 73
16 sector COMPARE [CJ 73
16 sector SYNC SIGNATURE [S] 75

[I] Inspector /Watson 79
[/J Clear status 81
[Ctrl-Z] Screen print 81
[X] Exit/Reboot 81

Appendices:

Status codes 83
DOS error codes . 85
Parameter keywords 87
Algorithm summary . 93
Nibble editor command summary 129
Address-field nibble encoding table 133
Data-field nibble encoding table 134
Physical/logical sector translation table · · 137
Track layouts (16 and 13 sector) · . · 139

NOTICE

Omega MicroWare, Inc. res�rves. the. right to make
improvements in the product described m this manual at any
time and without notice.

DISCLAIMER OF ALL WARRANTIES AND
LIABILITY

Omega Micro Ware, Inc .. and. the . author make �o
warranties, either express or implied, with respect �o th�s
manual or with respect to the software described m this
manual, its quality, performance, merchantability, or fitn:;ss
for any particular purpose. This. software is sold or h�ens.ed as
is" The entire risk as to its quahty and performance is with the
buyer. Should the programs prove defective following their
purchase, the buyer (and not .Omeg.a MicroWare, Inc., tJ1e
author, their distributors, or their retailers) assum.es the entire
cost of all necessary servicing, repair, or correct10� and any
incidental or consequential damage�. In no eve�t w1l� Omega
MicroWare, Inc., or the author be hable for �1rect, mdirect,
incidental, or consequential damages resultmg .from any
defect in the software, even if they have been advised of the
possibility of such damages. Some states _do not. al!�w the
exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation
or exclusion may not apply to you.

NOTICE OF COPYRIGHT

This manual is copyrighted. All rights are reserved. This
document may not, in whole or in part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from
Omega MicroWare, Inc.

This software is a fully copyrighted work and as such is
protected under the copyright laws of the United States of
America. According to these laws, consumers of copywritten
material may make copies for their personal use only.
Duplication for any other purposes whatsoever would
constitute infringement of copyright. Please note that this
software is supplied on diskettes which are uniquely coded
with an encrypted serial number.

Copyright 1980,1981,1982,1983 by:
Omega MicroWare, Inc.
222 South Riverside Plaza
Chicago, Illinois 60606
(312) 648-1715

The word LOCKSMITH and the Locksmith logo are
trademarks of Omega Micro Ware, Inc.

-

INTRODUCTION

THE OMEGA POLICY

THE COPYRIGHT LAW ALLOWS THE
CREATION OF ARCHIVAL COPIES OF COMPUTER
SOFTWARE WHICH IS OWNED BY THE
LOCKSMITH USER. LOCKSMITH 5.0 IS SOLD WITH
THE UNDERSTANDING THAT THE PURCHASER
WILL NOT USE THE PROGRAM TO GENERATE
DISKS OF COPYRIGHTED PROGRAMS FOR SALE
OR DISTRIBUTION. SHOULD THE PROGRAM BE
MISUSED, OMEGA MICROWARE WILL ASSIST IN
THE PROSECUTION OF VIOLATORS AT THE
COPYRIGHT HOLDER'S REQUEST.

If a program is sold with an archival (or back up)
disk, Omega Micro Ware will make no effort to permit
Locksmith to make an archival copy of that program.

THE HISTORY OF LOCKSMITH

In the early days of the Apple computer all programs
were copyable. In fact, each Apple Disk Operating
System (DOS) came (and comes) with a copy program
permitting the owner to copy programs quickly and
efficiently. DOS itself has facilities to save out a program
and information to diskettes. Most of the first
commercial programs for the Apple were copyable.
However some software manufacturers were concerned
over indiscriminate distribution of their product and
began to employ methods that would not allow copying of
their programs. Other manufacturers noticed that disks
had a tendency to wear out or get destroyed and began
charging for the privilege of getting a replacement. In
some cases the backup copies were almost as much as the
originals. Some manufacturers would not provide
backup copies, period! Finally, from the users'
standpoint, when they found out they needed a backup

l

<

copy and attempted to contact the manufacturer, they
sometimes found the manufacturer was out of business.

Any Apple disk can be copied! As software protection
was developed, as an intellectual exercise, computer
aficionados determined what was done and counteracted
it. These individuals were not necessarily interested in
copying the program, but in determining how the
protection was done. Today, as computer knowledge
grows, more and more people exist who can defeat copy
protection.

Unfortunately, there was (and is) another group of
people who only wish to make a copy of their program in
case their disk goes bad. They don't care how it's
duplicated, they have no ulterior motives, they only want
to use their program. Locksmith came about as a result of
this need.

In January 1981, Omega MicroWare offered a
program which would copy programs for the general
user.

EASE OF USE

In the original days of Locksmith, it copied virtually
all programs. In this, the seventh revision, it again copies
virtually everything. However it is to be expected that
new techniques will be developed to prevent the user to
make archival copies. As this happens, registered
Locksmith owners will be provided with the necessary
information to back up programs. As the state of art
changes, new revisions of Locksmith may be
necessary ... always at a reasonable price.

Through this manual, we will introduce you to the
way Locksmith works. If you're not interested, you need
not go beyond the first chapter. However, it is interesting
to note that classes and seminars are springing up

2

around the country dealing with the way Locksmith
works and modifications and changes which can be
made using it in conjunction with its companions,
Watson and The Inspector, programs also available
through Omega Micro Ware.

THE FUTURE

Imitation is the sincerest form of flattery, they say.
Locksmith is flattered by its imitators and it keeps us on
our toes. We promise our customers to stay in the
forefront of the duplication technology and provide them
with the information and assistance they need to keep us
number one.

SYSTEM REQUIREMENTS

You will need an Apple II, Apple II+, Apple Ile or
Apple /// in emulation mode. Locksmith 5.0 will also
work with all known computers running Apple software.
You must have at least one disk drive and disk controller
card. If you have two disk drives, both on the same disk
controller card, your copying will be much easier and
faster. If you have a controller card manufactured by
Apple, all features of Locksmith 5.0 will work as
described. Other, non-Apple manufactured controller
cards, may or may not allow all the features of Locksmith
5.0 to function properly. Apple built controller cards are
totally controlled by software which means that the disk
controller software is modifiable. Some controller cards
are controlled by firmware and are therefore not
modifiable. If you tell these to do some things, via
software, they aren't able to do it. Fortunately, most non­
Apple controller cards are also software controlled.

A printer can also be used but is not required.

3

THE HISTORY OF LOCKSMITH AND
COPY PROTECTION

For the past several years, there has been an intense
battle being fought between software manufacturers and
software users. The manufacturers, concerned about
their programs being pirated or stolen, started
'protecting' their software. They did this by making their
programs uncopyable. This means that normal copy
programs would no longer copy their software. Since it
could not be copied, it could not be passed around between
users. This was to insure that anyone who wished to use a
program would be required to purchase it, thereby
guaranteeing that the manufacturer would receive his
fair share of profits.

As in most issues, however, there are two sides.
Software users, upon purchasing a program, received a
disk which they could not copy. This means that they
could not even make back-ups of their disks, which is a
legitimate concern of everyone who has 'blown' a disk.
Since some businesses day to day operations rely very
heavily on their software investment, this becomes a
very critical situation. Some applications simply do not
allow for up to several weeks waiting time while the bad
disk is sent out to be replaced. In addition, some of the
manufacturers charge inflated prices to get these
replacements. It seems rather unfair to charge $35.00 for
a replacement of a $2.00 disk for which the user already
paid $100.00 or more.

Shortly after these 'protected' disks started
appearing on the market, Locksmith was made available
to copy these disks. Locksmith used a new type of
technology to copy protected software, known as nibble­
copying. In the several years since, the manufacturers
have introduced new, more sophisticated methods of
copy protection. As a result, Locksmith has been updated
several times to anticipate new methods of protection.

5

In this chapter, we will discuss the origin of
Locksmith, and some of the different methods that have
been used for protection over the past several years.

Locksmith was written by an Apple programmer
with 18 years of computer experience, including systems
programming on large IBM mainframes at several large
corporations. His interest in computers dates back to
grammar school, when he would spend his Saturdays
taking computer courses at the IIT computation center in
Chicago.

The first version of Locksmith, which was never
released, was a primitive nibble copy program known as
'NIBY'. It was written as an educational exercise -
"because it was a challenge". When it was shown to some
of his close friends from the local Apple users group, it
gathered much interest, and because no program like it
was available, several Apple users suggested that the
program might be marketable.

In January, 1981, Omega MicroWare (then called
Omega Software Products) released its first product.
Locksmith version 2.0 was the first program ever
introduced to allow the Apple user to backup his copy­
protected software.

Like any tool in the wrong hands, it was feared that
Locksmith might be used for tasks it was not intended to
perform. Because of this fear, each Locksmith was
uniquely serial numbered and registered, and every copy
of Locksmith also placed this unique serial number on
EVERY disk that copied. This fact, by the way, was
never made known until now. Encoding the Locksmith
serial number on the copied disk provided Omega with
the capability of identifying the owner of any Locksmith
used for pirating any manufacturers software, and
Omega offered to assist software manufacturers in the
prosecution of software pirates. No software

6

-
manufacturer however, has ever requested this
assistance from Omega. Placing the Locksmith serial
number in an inconspicuous place on every disk that is
copied is not an easy task. In fact, this practice has
caused several problems with copying some disks.
Because of this, the Locksmith version 5.0 no longer
encodes its serial number on the copy disk.

Locksmith has evolved from version 1.0 (the
unreleased 'NIBY'), to versions 2.0, 2.1, 2.2, 3.0, 3.1, 4.0,
4.1, 4.la, and now 5.0. No longer just a nibble-copier,
Locksmith is now a full-featured utility and diagnostic
tool for the Apple II computer. Always searching for
improvements, Omega welcomes suggestions,
comments, and any questions you may have about
Locksmith.

We will now discuss some of the different methods that
have been used for protection over the past several years.
Some of the descriptions are of a technical nature, and
are intended for the more advanced user.

The very first types of copy protection were very
simple in nature. The first protected disks used nothing
more complicated than erasing an unused track on the
disk. This was usually track 3. This method is not very
complicated, but initially it was quite effective. All of the
copy programs at that time copied the disk one track at a
time. When it tried to read the erased track, it would get
an l/0 error, causing the copy program to stop. By doing
this, none of the tracks beyond the erased track would
copy.

Some of the copy programs that came out a little later
would copy only those sectors that were marked on the
catalog track (track $11) as being used. This got past the
erased track problem. To combat those copy programs,
companies started to move the catalog to a different

7

track. When the copy program went out to track $11 to
read the information, the information would not be there.
This also prevented a normal Disk Operating System
(DOS) from reading and writing to the protected disk.

Shortly after that time, a new method was
introduced. It was a little known fact that while the disk
normally used only tracks $00-$22, it was actually
capable of reaching track $23. Some of the software
began using this track for program information. All copy
programs at that time were incapable of copying track
$23, so that when a copy was made, some information
was lost. This. meth_od proved to be very dangerous,
because some disk drives could not reliably read or write
to track $23. This means that you could not even use the
original protected disk on that drive, since it could not
read that track.

At this point, the protection methods started to
become more sophisticated. State of the art had
progressed to the point where the manufacturers were
actually changing the format of information on a disk. At
first, this was done by changing the checksum for the
address field on the disk. This would cause I/0 errors
which would halt the copy process. Disks which were
protected by changing the format of information
required their own Disk Operating System.

At approximately the same time, some
manufacturers started changing the format of the
address field on a disk sector. Normally, the format is to
have an address header, followed by information
concerning the volume, track, sector and checksum. This
was followed by an address trailer. The order of the
volume, track and sector was changed around or put in a
different format. For example, one company changed all
sector numbers to be even numbers. Instead of sectors O
l, 2, 3 etc., they used numbers of 0, 2, 4, 6 etc. Normal DOS
could not understand these formats.

8

The headers and trailers for both the address fields
and data fields were changed as the next type of
protection. Since DOS looks for a specific header or
trailer to read a sector, it will never find a sector on this
type of disk. On these disks, it would impossible to read
any information with a normal DOS.

Once again, an entirely new technology appeared for
protection. Up until this time, all information was stored
on a disk in Track/Sector format. Now, tracks started to
appear using pseudo-sectors. A pseudo-sector is a long
string of data, with only a data header of some type. Some
of these pseudo-sectors were an entire track in length.
None of the programs for reading Track/Sector format
could decode this type of track. With the advent of pseudo­
sectors, nibble copy programs became necessary. Until
this time, it was usually possible to modify normal DOS
to copy these disks. This was no longer possible. Shortly
after pseudo-sectors appeared, Locksmith was first
introduced. It was capable of copying tracks which were
in a non-standard format.

Synchronized tracks were the next method of disk
protection. Synchronized tracks are tracks that are
written in a specific timing relationship to each other.
For example, after reading track $00, the disk drive would
then seek to track $01. Upon arriving at track $01 data
would be read in from that track. The program that was
booting would look for specific data to be present when it
arrived at the new track. If this data was not at the
begim:iing of_the track it read, it would cause the program
to fail. This meant that copying tracks without
preserving this timing relationship would result in a bad
copy, even though all of the information was transfered.

Another type of protection which was concerned not
only with the actual data that was copied, was nibble
counting. After writing a track when generating a disk,
the track would be read back, and a count of the nibbles

9

on a track would be stored on the disk. Upon booting, the
disk would look for the track to be that specific length.
Since very few disk drives run at exactly the same speed,
the chances were very unlikely that the track length
would be the same on a copied disk.

Software manufacturers next started to take
advantage of a little known fact concerning the disk
drive. While disk drives were normally used on tracks $00
through $22, they were capable of reaching between
tracks. This area between tracks is known as a half-track.
Due to the width of the read/write head, it is not possible
to write data on adjacent tracks and half tracks without
experiencing cross-talk problems. However, it is possible
to write data on half-tracks, providing that the adjacent
tracks are not used. It then became necessary to use copy
programs that were capable of reaching these half­
tracks. One major problem with this type of protection
scheme is that not all disk drives are capable of reaching
half-tracks. Some very popular drives can only reach
integral tracks, and disks using this type of protection
can not boot on these drives. If you are using Mier-Sci
type A40 drives with your Apple, keep in mind that half­
tracks can not be accessed, although all other Locksmith
functions work as documented.

There was one type of protection which appeared and
shortly thereafter, disappeared from the market. This
type of protection actually physically damaged the disk.
A scratch was made on the disk with a sharp instrument.
When booting, the disk would attempt to write and then
re-read data on the track with the scratch. If the test
passed, it meant that the disk was not damaged, and
therefore, not an original disk. This was a very
undesireable method, since the damaged portion of the
disk would need to come in contact with the read/write
head on the disk drive. When the head was over the
damaged track, you could actually hear a 'tick-tick' as the
scratch hit the head. This could cause damage to the

10

head, and because of that, the method was quickly
abandoned.

The chief difficulty in copying protected disks was
identifying which nibbles on a track were normal, and
which nibbles were self-sync. Locksmith versions 2, 3,
and 4 attempted to identify self-sync nibbles by context,
that is by the surrounding nibble patterns. Up until this
time, disks used nibbles with a value of $FF for self-sync
nibbles. It was a fair assumption that a string of $FF
nibbles represented fields of self-sync. To combat this,
manufacturers started to use different values for self­
sync. This made identifying self-sync nibbles more
difficult. In some cases, multiple nibbles were used, for
example $D5 $AB $D5 $AB, etc. Because Locksmith
identified self-sync nibbles contextually, parameter
changes were required for copying disks of this type with
Locksmith versions 4.1 and earlier.

One very sophisticated method of protection
appeared on the market shortly thereafter. This method
required that specific nibbles in the middle of normal
data be special self-sync nibbles. By using timing
routines, it was possible to determine if this nibble was
normal, or special. This special nibble is called a data­
latched nibble. When reading a track of nibbles
normally, the data-latched nibble was indistinguishable
from a normal nibble. Copying these tracks was very
difficult, since it required actually breaking or
deciphering the code to determine which nibbles had to
be data-latched. This method was very effective, and has
been in use for quite a while. Locksmith 5.0 is capable of
determining self-sync nibbles while it is reading them
without regard to context nibbles, and it is able to detect
data-latched nibbles without any user-supplied
parameters.

As mentioned before, it is not possible to write
adjacent tracks and half-tracks. This is due to the fact

11

that the read/write head is wide enough to overlap onto
the adjacent track or half-track, effectively erasing
information. To alleviate this problem, the concept of
spiral tracks was invented. This is simply writi�g
approximately 1/3 of a track, jump out a half track, write
another 1/3 of a track, etc. By using this method,
adjacent tracks and half-tracks may be used without
actually writing any data closer than one full track apart.
The data on the disk actually seems to spiral in toward
the center of the disk, hence the name 'spiral track'.

The most recent type of protection is much the same
as half-tracks. It is the use of quarter tracks. While it is
true that the disk drive is not normally capable of
reaching quarter tracks, it is possible to drive the stepper
motor on the drive so that it will stop on the quarter track.
This requires some very special timing routines. It works
basically the same as half-tracks, and the same
restrictions about adjacent data apply.

Locksmith 5.0 is capable of handling all of these
types of protection methods, along with many others.
Due to its extreme flexibility, it will also support many
protection methods which have not yet appeared. In the
meantime, the conflict between software manufacturers
and software users will continue.

12

IMPORTANT LOCKSMITH
INFORMATION

This chapter includes general information
important to the Locksmith 5.0 user. This information
concerns many of the Locksmith functions.

The CTRL-Z key may be pressed at any time that you
wish the screen contents to be dumped to a printer. See
the chapter in this manual on the 'CTRL-Z' key.

The ESC key may be pressed at any time to abort a
function. Pressing this key will eventually bring you
back to the Locksmith main menu.

When the prompt 'PRESS SPACE TO CONTINUE'
appears in flashing characters at the bottom of the
screen, you may press the space bar to continue, or press
the ESC key to abort the function.

The status display at the top of the Locksmith screen
shows tracks from $00 to $23 (decimal Oto 35). Normally,
only tracks $00 to $22 are used, but Locksmith supports
track $23, in case it is used on the disk to be copied. The
status display has four rows of status information. The
top one is for integral tracks (00, 01, 02, etc.). The 3rd one
is for half-tracks. The 2nd and 4th rows are for 1/ 4 and
3/ 4 tracks, respectively. The status display is not cleared
by Locksmith functions, with the exception of the
'CLEAR STATUS' command. The status indicators that
may appear in the status display are discussed in the
individual chapters describing the Locksmith functions
and are summarized in the appendix.

The RESET key will cause Locksmith to reboot your
system. Do not use the RESET key unless you wish to
reboot.

13

The message that appears below indicates that the
function you have selected destroys data on the target
disk. Make sure that your Locksmith disk or any other
disk you wish to keep is out of the drive at the time the
function begins.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456?89ABCDEF0123

.00

.25

.50
.75

DISK SPEED

\./ARNING·

THIS LOCKSMITH FUNCTION DESTROYS DATA

ON THE TARGET DISK.

PRESS ESC TO ABORT

PRESS SPACE TO CONTINUE

The prompt 'INSERT DISK(S)' will appear
immediately before a Locksmith function is to start,
giving you a last chance to insure that the drives
contain the proper disks, before you press the space
bar to begin the function.

The prompt 'INSERT LOCKSMITH DISK' indicates
that to continue, Locksmith needs information that is on
the Locksmith disk. Place the Locksmith disk in the drive

14

requested by the prompt, and press the space bar. The slot
and drive requested will always be the one booted from,
regardless of which drives are used for Locksmith
functions. If you have more than two drives on your
system, you can boot Locksmith in one slot, use the
'PARAMETER CHANGES' function to change the
SLOT that Locksmith is to use, and keep the Locksmith
disk in the boot drive to eliminate the need to switch disks
when Locksmith needs information from the Locksmith
disk.

15

GETIING STARTED

A step by step example of how to copy a disk that
requires no parameter changes.

1. First insert your Locksmith disk in drive one.

2. Turn on the computer to load the Locksmith
program into memory.

3. When the Locksmith title page appears, press the
space bar.

4. You should now be at the main menu.

HEX 000000000000000011111111111111112222
TRK 0123q56789ABCDEF0123456789ABCDEF0123

.00

.25

.SO
.75
THE LOCKSMITH - VERSION 5.0 - SER#lOOOO

8 BACKUP/COPY DISK I INSPECTOR/WATSON

P PARAMETER CHANGES E ERASE DISKETTE

I CLEAR STATUS

T TEXT EDITOR

Q QUICK SCAN DISK

N NIBBLE EDITOR

S DISK SPEED

C CERTIFY DISK

U 16 SCTR UTILITIES X EXIT I REBOOT

CTRL-Z SCREEN PRINT ESC ABORT/RESTART

17

5. Press the letter 'B' for Backup/Copy disk.

6. You will see the following screen display.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123

.00

.25

.50
. 75

BACKUP/COPY DISK

PRESS ESC TO ABORT

DRIVE- ORIGINAL:1

7. NOW REMOVE YOUR LOCKSMITH DISK
FROM THE DRIVE.

8. When prompted for the drive of the ORIGINAL it
will show the default '1'. To accept the default press the
'RETURN' key.

9. When prompted for the drive of the COPY it will
show the default '2'. If you have two drives accept the
default by pressing the 'RETURN' key. If you only have
one drive enter a '1'.

12. Now you will be prompted for the INCREMENT.
It will show the default increment as '1'. Press the
'RETURN' key to accept the default.

13. Now you will be asked if you wish to
SYNCHRONIZE tracks. It will show the default as 'N'.
Press the 'RETURN' key to accept the default.

14. Now you will be asked if you wish to PRESERVE
TRACK LENGTH. It will show the default as 'N'.Press
the 'RETURN' key to accept the default.

JUST PRIOR TO YOUR PRESSING THE
'RETURN' KEY IN ANSWER TO THE AUTO ERROR
RETRY QUESTION, THE LOCKSMITH SCREEN
SHOULD LOOK LIKE THIS:

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123

.00

.25

.50

.75
BACKUP/COPY DISK

PRESS ESC TO ABORT

DRIVE- ORIGINAL:1 COPY:Z

10. Now you will be prompted for the starting
TRACK number. It will show the default starting track
as '00'. Press the 'RETURN' key to accept the default.

11. Now you will be prompted for the ending TRACK
number. It will show the default '22'. Press the
'RETURN' key to accept the default.

TRACK- START:00

SYNCHRONIZE CY/N) :N

END:22 INC:01

AUTO ERROR RETRY CY/N) :Y

PRESERVE TRACK LENGTH (N/A/M) :N

18 19

15. Finally, you will be asked if you wish AUTO
ERROR RETRY. It will show the default as 'Y'. Press the
'RETURN' key to accept the default.

16. After you have pressed the 'RETURN' key you
will be asked to INSERT DISK(S) and press the space bar
to continue.

17. Your Locksmith program will now attempt to
copy the disk using the default parameters built into the
program.

18. While copying the disk Locksmith will provide
you with a dynamic screen display showing the track it is
copying and certain information about the track. You
will be using this information as you become more
familiar with Locksmith.

19. When Locksmith is finished analyzing and
copying the disk it will display a flashing 'PRESS
SPACE TO CONTINUE' at the bottom of the screen.
When you press the space bar, the main menu will
reappear.

20

[B] BACKUP /COPY DISK

This command is used when you are ready to copy a
disk. All parameter changes should have been made
either through the parameter change mode, or loaded
into Locksmith from the Text Editor.

Locksmith will prompt you for the DRIVE of the
ORIGINAL disk. The default drive number is being
displayed on the screen. If this is the drive you wish to use
for the original, press RETURN. If you wish a different
drive for the original disk, enter the number of the drive
you wish to use. Locksmith will prompt for the drive
number for the COPY. Again the default drive is shown.
If you wish to use the default drive press RETURN, if not
enter the drive number you wish to use.

You will now be prompted for the starting track
number you wish to use to make this copy. Again a
default value is shown. If you wish to use the default
value, just press RETURN. If not, enter in the starting
track number you wish to use and press RETURN. After
you have made your selection for the starting track
number, Locksmith will prompt you for the ending track
number. Again the default value is shown. If you wish to
use the default value, press RETURN, otherwise enter
the value you wish to use and press RETURN. The next
prompt from Locksmith will be for the increment you
wish to use between tracks. The default value is shown. If
you wish to use the default press RETURN, otherwise
enter the increment you wish to use and press RETURN.

Now Locksmith has the information about what
drives you wish to use and the tracks you want to copy. It
now needs to know some other information about how
you wish to copy the disk.

21

You will now be asked whether you wish to
synchronize the tracks or not. The default value is No. If
you wish the default just press RETURN. If not enter in a
'Y' for yes. Some disks are protected by having the tracks
written to the disk in a certain time relationship to each
other. If you select synchronization, this time
relationship will be preserved.

You will now be asked whether you wish to preserve
the track length.
The prompt is:

PRESERVE TRACK LENGTH (NI A/M):N
This is a technique called nibble counting. Some
protection schemes count the number of nibbles on a
track when the disk is made. When you copy the disk the
odds are against you writing the same number of nibbles
on the track. This is due to the variations in drive speed
that occur all the time. If you require Locksmith to write
the same number of nibbles on the copy as it read from
the original, it could increase the copying time
significantly.

If you wish the default value press RETURN. If you do
not wish to use the default value you have two choices. If
you select 'A', Locksmith will attempt to adjust the track
length automatically for you.

If you choose 'M' then you must adjust the track
length yourself. There are two ways to do this. One way is
to adjust the drive speed, using the speed adjustment
screw inside the disk drive. The other way is with the'<'
and the '>' keys. While preserve track length is in effect
Locksmith will continuously print either a '<' or a '>'
followed by a four digit hex number. This number
represents the difference in count between the original
and copy disks. To adjust the track length with the'<' and
the '>' keys, you should press the key that is shown in
front of the four digit hex number. When you press this
key, your computer will start to beep. Pressing any other

22

key will stop the beeps and show the difference in track
length again. The object is to get this number to be '0000'.
When this occurs the track length is the same as the
original and Locksmith will move to the next track.

If you do adjust your drive speed with the set screw,
be sure and use the Locksmith disk speed test to reset
your drive to the proper speed before you leave
Locksmith.

If you have selected 'M' manual mode and have
gotten the track length fairly close, you may press' A' and
have Locksmith take over and finish the adjustments.

You will now be prompted for how you wish errors to
be handled. You have two options. The first is to let
Locksmith attempt to fix the error, and the second is to
have Locksmith ask you to fix the error.

The prompt is:

AUTO ERROR RETRY (Y /N):Y

The default is to let Locksmith do the work. If you
wish the default just press RETURN, if not enter 'N'.

Just prior to your answering the last prompt about
error retry the screen would look like this if you accepted
all the defaults to the prompts.

23

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123

. 00
.25
.50
. 75

BACKUP/COPY DISK
PRESS ESC TO ABORT

ERROR CODES FOR
BACKUP FUNCTION

'o' indicates that no error occured .

'1' nothing inteligible found on track - track ts
garbage .

'2' can't find the repeat of track start.

TRACK- START 00

SYNCHRONIZE CY/N) ·N

END:22 INC:01

'4' error cornpareing first and second track images.

'5' end of limit during automatic count preserve.

'8' verify field after write (perhaps track start
overwritten).

DRIVE- ORIGINAL:! COPY:2

PRESERVE TRACK LENGTH (N/A/M) .N

AUTO ERROR RETRY (YIN) :Y

After all the questions are answered you will be
prompted to INSERT DISK(S). After the disks are in the
appropriate drives, press the space bar to proceed with
the actual copying process. When Locksmith is done with
the copying process you will be prompted to PRESS
SPACE TO CONTINUE. Pressing the space bar will
return you to the main menu.

24

NOTE - Because of the flexibility of Locksmith
BACKUP function using LOCKSMITH PROGRAMM­
ING LANGUAGE, other error codes (ranging from Oto
$F) may appear on the status display, and other error
codes (ranging from O to $FF) may appear on the main
screen during a backup function. The cause of these error
codes can be determined by examining the current LPL
file in use during the backup function, as they are entirely
user-defined.

25

[Q] QUICKSCAN DISK

This utility will help you to determine what tracks
are in use on a disk you are trying to copy.

[Q]
Pressing 'Q' from the main menu will put you in to the

quickscan utility. This utility is used to determine what
tracks on a disk contain valid data. You will be prompted
for the drive number you wish to use and then for the
starting track, ending track and increment between
tracks.

The display is a hi-res graphic display of the sync
bytes on a disk. The graphic display of a track runs from
the bottom to the top of the screen. The first time you run
this utility you should do it on a normal DOS 3.:3 disk.
First try tracks Oto 22 in whole track increments. This
will show you what a good track will normally look like.
The series of dots you see on the screen above each track
number are the gaps of self sync bytes between each
sector. Normally on a 16 sector disk there will be 16 or 17
of these dots. This is because Locksmith always reads
long enough to read the whole track into memory and it
may have read more than the whole track. Similarly a 13
sector disk would have 13 or 14 of the little dots. On a 16
sector disk one of the dots will be a little longer than the
others, that is the self sync group in front of sector zero on
that track. If you look closely you can see a definite
pattern to the longer dots; they will either move up or
down as you move from track to track on the disk. This is
due to the time it takes to move the disk drive head from
track to track.

Now using the same disk try quickscanning from
track .5 to track 22.5 with an increment of 1. You will see
very long lines of white in no particular pattern. This
means there is no valid data on the track.

27

If the disk is using a protection scheme called spiral
tracking you will see the long band of white but there will
also be a pattern of black in between the white. The black
sections will not be right next to each other but will be
offset slightly as you move across the tracks. This is due
to the time it takes the disk drive to move from track to
track. The more that you use the quickscan feature the
more valuable you will find it. This is because you will
become more adept at interpreting the results it gives
you.

28

[P] PARAMETERS

[ESC]
Pressing the 'ESC' key will always abort the current

operation and return you to a menu.

[CTRL-Z]
This option is activated by pressing and holding the

key marked 'CTRL' and pressing the 'Z' key. This option
is a screen print. It will print whatever is showing on the
text screen at the time it is pressed. This is assuming that
you have a printer turned on and that Locksmith has
been told the correct slot for the printer interface card.

Now we will cover cursor movement within the
parameter buffer.

CURSOR MOVEMENT:

Locksmith supports the normal Apple II cursor
movement keys.

UP
[I]

LEFT [J] [K] RIGHT
[M]

DOWN
You may also move left or right with the left and

right arrow keys.

If you have an Apple //etheup and down arrow keys
are also operational.

If you move left past the beginning of the line, you
will be placed on the last character of the previous line.
Similarly, if you move past the end of the current line, you
will be placed at the beginning of the next line.

29

[<]
Pressing the'<' key will move backwards through the

parm buffer one screen page, unless you are already at
the beginning of the buffer.

r>J
This key moves forward through the parm buff er one

screen page, unless you are already at the beginning of
the buffer.

[,]
This key scrolls continuously backwards until

another key is pressed.

[.]
This key scrolls continuously forwards until another

key is pressed.

Pressing 'C' will allow you to change the parameter
you have the cursor on by typing in a 2 digit hex number.
After typing the number you may press either the
'RETURN' key or the space bar. If you press RETURN,
you will exit change mode. If you press the space bar you
will move to the next position within the buffer and can
continue to make changes.

[CTRL-P]
This command is used to change prameters from

within the Parameter Editor. It has the following options
available. After pressing 'CTRL-P' you will get the
prompt PARM:.

PARM:
Enter 'CTRL-R'and press the RETURN key.
This will restore all default parameters.

PARM:
Enter '?' and press RETURN. This will

display the valid parm names.

30

PARM:
Enter <name> and press RETURN. This

tells Locksmith you wish to change the named
parameter. You will be shown the parameter
number in parenthesis, and the current value of
the parameter. You may type in a new value and
press RETURN or simply press RETURN to
accept the current value. Valid parameter
names and their definitions can be found in the
appendix.

PARM:
Enter <hex value> (values [0-$1FF) are

valid) and press RETURN. This is an alternate
way to specify a parameter. The results and
options are the same as with <name> above.

PARM:
Enter '+' and press RETURN. This tells

Locksmith you wish to change the next
parameter in sequence. The current value will be
displayed. The options and results are the same
as the two previous commands.

PARM:
Press <return>. Exit parameter change

mode.

AFTER PARM HAS BEEN ENTERED
YOU HA VE THE FOLLOWING OPTIONS
FOR VALUE.

VALUE:
Enter <return>. Accepts displayed current

value.

VALUE:
Enter <hex> and press RETURN.

31

VALUE:
Enter <hex hex hex ... > and press RETURN.

This enters the hex values into memory starting
at PARM and continuing in sequence until the
RETURN is encountered.

VALUE:
Enter <track number with decimal point>

and press RETURN.

NOTE: NO CHECK IS MADE TO SEE IF THE
PARM ACTUALLY REPRESENTS A TRACKV ALUE.
SINCE THE TRACK VALUES ARE STORED
DIFFERENTLY THAN NORMAL PARM VALUES
USING A DECIMAL POINT WHEN ENTERING
NORMAL PARMS WILL STORE INCORRECT
VALUES.

32

-

[C] CERTIFY DISK

This is a utility you can use to check disks for flaws
prior to use. It may also tell you if there is something
wrong with your disk drive.

[CJ
Pressing 'C' from the main Locksmith menu will take

you to this utility. THIS UTILITY DESTROYS DATA
ON THE TARGET DISK.

You should place the blank disk you wish to check in
one of your drives. The program will prompt you for the
drive number, the starting and ending track numbers
and the increment you wish to use between them.

This program works by writing a specific pattern
onto every track you specified. It then reads this pattern
back to verify that it can read what was written. If
Locksmith is unable to read what it wrote, it will flag the
track as bad. There can be three different reasons for the
track being flagged as bad. First it may not have been
written correctly due to a disk drive malfunction. Second
it may not read correctly due to a disk drive malfunction.
Third and most likely the disk media may be flawed.

When Locksmith checks the disk it will write a period
'.' in the status area for every track that checks good. If a
track checks bad it will be flagged with an asterisk '*'.

When the program terminates it will take you back to
the Locksmith main menu. The status area will not be
cleared. The following print out is an example of a bad
disk.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF01234S6789ABCDEF0123
.00 ** ** **· ·*· *· ·** ... ·*·.
.25
50

.75
THE LOCKSMITH - VERSION 5.0 - SER#lOOOO

8 BACKUP/COPY DISK I INSPECTOR/WATSON

P PARAMETER CHANCES E ERASE DISKETTE

[E] ERASE DISK

This utility is used to erase all the data from the
tracks you specify on the target disk.

[El
Pressing 'E' from the Locksmith main menu will take

you to this utility. THIS UTILITY DESTROYS DATA
ON THE TARGET DISK.

I CLEAR STATUS

T TEXT EDITOR

O QUICK SCAN DISK

N NIBBLE EDITOR

S DISK SPEED

C CE RT I FY D I SK

You should place the disk you wish to erase in the
drive of your choice. Locksmith will prompt you for the
drive of the target disk, the starting track number and the
ending track number you wish erased, and the increment
between tracks.

U 16 SCTR UTILITIES X EXIT I REBOOT

CTRL-Z SCREEN PRINT ESC ABORT/RESTART

After you have specified the above information,
Locksmith will prompt you to insert the disk to be erased.
After pressing the spacebar, Locksmith will proceed to
erase the specified tracks on the disk.

When the program is finished erasing the specified
tracks, it will return you to the main menu. The status
area is not cleared. Every track that was erased will have
an 'E' in the status area.

Some disk protection schemes require that a track
never have been used. The only way to accomplish this is
to use either a new disk or erase the track on a used disk.

[S] DISK SPEED

This is a utility to allow you to set the speed of your
disk drive. Normally disk drive speed changes from the
optimum as it gets more use.

[SJ
Pressing 'S' from Locksmith's main menu will put

you into the set disk speed utility. Depending on which
overlay you have in memory at the time, you may be
asked to insert your Locksmith disk to load the program.
The first question will be which drive number. Then you
will be asked which of three types of speed check you
wish. The first is to calibrate your drive to 300 RPM. This
is the normal drive speed recommended by the
manufacturer. The second choice is to calibrate your
drive to the optimum drive speed. This speed is
recommended for copying disks, since it runs slightly
slower than normal. This helps to ensure that an entire
track can be written, regardless of the drive speed of the
original.

The third option is to calibrate your drive to the same
speed as the drive on which the original disk was written.
You will be prompted to insert your original disk in the
drive. This is to allow Locksmith to determine the
original drive speed. After inserting your Locksmith disk
to load an overlay, you will then be given three choices for
the graph scale. The screen you see is the one shown
below.

37

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123

00
25

.50
.75

DISK SPEED

SELECT GRAPH SCALE:
1. FINE ADJUST <2.5%=70 UNITS)
2 MEDIUM ADJUST (5%=140 UNITS)
3. COARSE ADJUST (10%=280 UNITS)

You should normally choose fine adjust. The other
two options are for disks that are so far out of adjustment
that they can't be seen on the fine scale. After you choose
the type of graph you wish, Locksmith will prompt for the
number of samples you wish per plot. The screen you see
below is the one you should now see.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123

.00

.25

.50
75

DISK SPEED

SELECT GRAPH SCALE:
1. FINE ADJUST (2. 5'fo=70 UNITS)
2. MEDIUM ADJUST (5%=140 UNITS)
3. COARSE ADJUST (10%=280 UNITS)
1

ENTER NUMBER OF SAMPLES PER LINE
< 1 - 3 >

38

The choices you have on the above menu are used by
Locksmith to determine how many times to check the
speed prior to plotting a point on the hi-res screen.
Normally you would select one sample per plot. This will
check the drive speed once for every point it plots on the
screen.

Next you will be asked to insert a blank disk in the
drive you selected for the speed test. After you press the
space bar Locksmith will write and read from track zero
of the blank disk. You must use a blank disk for this
test since the data on track zero will be destroyed.

39

[NJ NIBBLE EDITOR

[ESCJ
Pressing the 'ESC' key will always abort the current

operation and return you to a menu.

[CTRL-Z]
This option is activated by pressing and holding the

key marked 'CTRL' and pressing the 'Z' key. This option
is a screen print. It will print whatever is showing on the
text screen at the time it is pressed. This is assuming that
you have a printer turned on and that Locksmith has
been told the correct slot for the printer interface card.

CURSOR MOVEMENT:

Locksmith supports the normal Apple II cursor
movement keys.

UP
[I]

LEFT [J] [K] RIGHT
[M]

DOWN
You may also move left or right with the left and

right arrow keys.

If you have an Apple I le the up and down arrow keys are
also operational.

If you move left past the beginning of the line, you
will be placed on the last character of the previous line.
Similarly, if you move past the end of the current line, you
will be placed at the beginning of the next line.

[<)
Pressing the'<' key will move backwards through the

nibble buffer one screen page, unless you are already at
the beginning of the buffer.

41

[>]
Pressing the '>' key will move forward through the

nibble buffer one screen page, unless you are already at
the end of the buffer.

Pressing the ',' key will allow you to scroll
continously back through the buffer until either a key is
pressed or you reach the beginning of the buffer.

Pressing the '.' key will allow you to scroll
continously forward through the buffer until either a key
is pressed or you reach the end of the buffer.

CONTROL KEY COMMANDS:

[CTRL-R]
Pressing 'CTRL-R' will allow you to read a track into

the buffer. You will be prompted with TRACK:. If you
have previously read a track into the buffer, that track
number will also be displayed. The current default drive
for the track read will also be displayed. If you wish to
reread the same track just press the RETURN key. If not
then enter the number of the track you wish to examine.
You may enter a decimal point in the track number. The
track number you enter will be multiplied by four before it
is stored internally. This is necessary due to the way
Locksmith finds the tracks specified. After you have
entered the track number you wish, press the RETURN
key to tell Locksmith you are finished with the entry. The
cursor will move to the drive entry to allow you to change
the default if you wish. If you want the default drive,
press RETURN. The first time you read a track into the
nibble buffer Locksmith will recalibrate. If you wish to
recalibrate at any other time enter CTRL-R and when the
prompt TRACK: appears enter the track number,
followed by 'R' and press the return key. This will force

42

Locksmith to recalibrate. The following screen lS an
example of the display after reading a track.

HEX 0 0 0 0 0 0 0 0 00000000111111111111111122 2 2
TRK 0123456789ABCDEF0123456789ABCDEF0123

.00 N
.25
.50
.75

NIBBLE EDITOR

0000- < A 7 l AC AC 96 ED 09 BF BF
0008- BE CB 84 84 EE 85 88 88
0010- BE BE BO E7 F2 F9 E5 FC
0018- DC 96 09 9E EA ES E6 06
0020- 06 96 98 A6 F6 F9 AC 82
0028- EB 86 06 FA DA CB FC AF
0030- F9 86 9F F6 A7 FF FB DF
0038- 03 A6 CD .\D 96 DC AF 06
0040- 86 BF 06 E6 82 EC AF CD
0048- AC 09 E9 86 9A ED FA EF
0050- D9 DC E5 E7 DE F5 CD 07
0058- AF 86 DF EF E6 07 EB DE
0060- A7 89 F3 ES F? BE CE BF
0068- DA F5 86 9A 90 09 F4 06
0070- FS DD DD FD FS 06 D3 87
0078- E? 09 EB DC DD EC FD 03

[CTRL-A]
After you have a track in the buffer you will probably

wish to perform some analysis on the track. Entering
'CTRL-A' will allow you to perform analysis with one
algorithm at a time and see the results. See the chapter
ref ering to the Text Editor for an explanation of
algorithms. After you enter 'CTRL-A' you will be
prompted with ALG:. Enter the number of the algorithm
you wish to perform and press RETURN. Next you will be
prompted with PASS:. Locksmith needs to know the
value you wish the algorithm to use. The default value
will be displayed. If you wish to use the default value just

43

[,]

[.]

press the RETURN key. If you do not w�sh to use the
default value type in the hex value you wish to use and
press the RETURN key. If_the algorithm is �nsuccess�l,
Locksmith will beep and display an mverse FAILED at
the upper right corner of the nibble buf�er. You may
repeat this procedure for as many algorithms as you
wish.

[CTRL-S]
Entering a 'CTRL-S' tells Locksmith you wish to

perform the current set of analysis algorith1:1s on t�e
track in the nibble buffer. All the current algorithms will
be displayed as they are performed by Locksmith.

[CTRL-W]
Entering a 'CTRL-W' tells Locksmith to write the

current track back to disk. You will be prompted with
TRACK:. Enter the number of the track you wish to be
written to the disk followed by RETURN. Pressing return
will write the data to the current track that was read.
Next the cursor will be placed on the default drive number
for the write. If you wish to use the default drive just press
RETURN. If you wish to change the default, enter the
number of the drive you wish to write to.

WARNING! IF NO ANALYSIS HAS BEEN DONE ON
THE TRACK TO SET THE TRACK START AND
TRACK END, LOCKSMITH WILL ATTEMPT TO
WRITE THE ENTIRE BUFFER.

[CTRL-V]
This command is used to tell Locksmith where to

start verifying the track start after it writes the track to
the disk. The series of bytes that follow the verify start
are the ones that are checked when the track is written to
disk. This is done to make sure that the beginning of the
track was not overwritten and destroyed by the end of the
track. Normally, if the verify bytes are overwritten the
track will be shortened and rewritten until they are not
overwritten or until the track can no longer be shortened.

44

If the track can no longer be shortened you will get a
verify error. This error may possibly be corrected by
adjusting the copy drive to a slower speed prior to writing
the track.

To set verify start, place the cursor on the nibble you wish
to start verifying, and press CTRL-V. This will set the
verify start to this location. There will be a 'V' displayed
in front of the nibble you selected for verify start.

[CTRL-1)
This command is used to add nibbles to the current

buffer. When you enter 'CTRL-I' the nibble that is at the
current cursor location is duplicated and all the nibbles to
the right are moved one position to the right.

[CTRL-D]
This command is used to delete nibbles from the

current buffer. When you enter 'CTRL-D' the nibble that
is at the current cursor location is deleted from the buffer
and all the nibbles to the right of the cursor are moved one
position to the left.

[CTRL-F]
This command is used to find different patterns of

nibbles within the buffer. Enter CTRL-F, and you will see
the prompt FIND:. The Find Command has four options.

[DJ
Enter 'D' followed by a series of hex

numbers seperated by spaces and followed by
the RETURN key. Locksmith will start
searching forward through the buffer from the
current cursor position for this sequence of
nibbles. When the sequence is found the cursor
will be moved to the first nibble in the pattern
within the buffer. If the pattern is not found
Locksmith will print in inverse at the top right
of the buffer 'NOT FOUND' and beep. If the
pattern is found and you wish to repeat the

45

search then you would press 'CTRI.rF' followed
by the RETURN key. This tells Locksmith to
repeat the last 'CTRirF' search.

[L]
Entering 'L' will give you the prompt

LENGTH:. You may now enter in a length from
(1-F). This instruction tells Locksmith to start
looking forward through the buffer for a pattern
that matches the one that starts at the current
cursor position and is LENGTH nibbles long.
When the pattern is found, the cursor will be
moved forward in the buffer to the first nibble of
the matching pattern. If you wish to repeat the
search from your present cursor position, type
'CTRI.rF' and press the RETURN key. This
repeats the last search again. If Locksmith is
unsuccessful in its search for the pattern, the
cursor will not move and Locksmith will print in
inverse at the top right of the buffer 'NOT
FOUND' and beep.

[P]
After you press 'P' Locksmith will prompt

with PAT:. There are seven general purpose
patterns. When you enter a number between 1
and 7 in answer to the prompt, Locksmith will
take the appropiate pattern and use that as the
search pattern. The results are the same as
described for the two previous commands. The
'CTRI.rF' RETURN command to repeat the
search is not available.

[0]
Entering 'O' tells Locksmith to search for

the first nibble in the buffer that is different
from the one the cursor is presently on. When a
different nibble is found, the cursor will be
placed on it. This command would be used if you

46

had a track that was almost all the same value.
Instead of searching slowly through the buffer
for the different nibbles, you could use this
command to quickly locate them.

[CTRL-P]
This command is used to change

parameters from within the Nibble Editor. It
has the following options available. After
pressing 'CTRI.rP' you will get the prompt
PARM:.

PARM:
Enter 'CTRI.rR'and press the RETURN key.
This will restore all default parameters.

PARM:
Enter "t' and press RETURN. This will

display the valid parm names.

PARM:
Enter <name> and press RETURN. This

tells Locksmith you wish to change the named
parameter. You will be shown the current value
of the parameter. You may type in a new value
and press RETURN or simply press RETURN
to accept the current value.

PARM:
Enter <hex value>, values (0-$1FF) are

valid, and press RETURN. This is an alternate
way to specify a parameter. The results and
options are the same as with <name> above.

PARM:
Enter '+' and press RETURN. This tells

Locksmith you wish to change the next
parameter in sequence. The current value will be
displayed. The options and results are the same

47

as the two previous commands.

PARM:
Enter <return>. Exit parameter change

mode.

AFTER PARM HAS BEEN ENTERED
YOU HA VE THE FOLLOWING OPTIONS
FOR VALUE.

VALUE:
Enter <return>. Accepts displayed current

value.

VALUE:
Enter <hex> and press RETURN.

VALUE:
Enter <hex hex hex ... > and press RETU:E�N.

This enters the hex values into memory starting
at PARM and continuing in sequence until the
RETURN is encountered.

VALUE: .
Enter <track number with decimal point>

and press RETURN.

NOTE: NO CHECK IS MADE TO SEE IF
THE PARM ACTUALLY REPRESENTS A
TRACK VALUE. SINCE THE TRACK
VALUES ARE STORED DIFFERENTLY
THAN NORMAL PARM VALUES, USING A
DECIMAL POINT WHEN ENTERING
NORMAL PARMS WILL STORE INCOR­
RECT VALUES.

·18

MISCELLANEOUS COMMANDS:

[CTRL-BJ Moves the cursor to track start. If the cursor is
at track start, the cursor is moved to beginning of buffer.

[CTRL-EJ Moves the cursor to track end. If the cursor is
at track end, the cursor is moved to the end of buffer.

[(J
Sets track start to current cursor position.

[)]
Sets track end to current cursor position.

[SJ
Sets the nibble under the cursor to self sync.

[NJ
Sets the nibble under the cursor to normal.

[CJ
Change mode. Enter <hex hex ... > and RETURN to

exit change mode. Changes nibbles under the cursor to
the hex values entered. Pressing the space bar moves the
cursor to the next position. The commands 'S' and 'N'
also work in change mode.

[HJ
Entering 'H' will display the current buffer on the Hi­

Res screen.

[HG]
Entering a 'G' while in Hi-Res mode will print the Hi­

Res screen if you have a printer capable of Hi-Res
graphics and a graphics printer interface card. The
printer string required by your printer may be defined by
the parm 'GRCHARS'. The default is set to CTRL-I G
<CR> CTRL-Q <CR>. This string works for both Silentype

49

...............

#+ +
..•.............•.... +#+++.

........ +#+++•.....

. .

................

.

...................
.

. +#+++.

. +#+++.

........ +#+++

. . ++. ++ .

.#+ + .

. +#+++ .

............... ++ +.

. . . •. +#+++.

HEX 000000000000000011111111111111112222
TRK 0123q56789ABCDEF0123456789ABCDEF0123
00 N
25
so

.75

. ++. +. . .
. +#+++ .

. +# ++

. ++ + .

.............. ###########+.++ .

NIBBLE EDITOR

(DJ
This is a 16 sector address decode command. You will

see two columns displayed on the screen They are
decoded in the following manner. .

The first four numbers in inverse are the buffer
ad��ss. Next is the letter 'V' followed by a hex number.
This is the volume number of the disk. Next is a two digit
h�� number followed by a '/' followed by another two
digit hex number. This is the track number/sector
number. This field may be followed by any of these three
symbols '?''CS''**' "f hi · , · , , , or 1 not mg 1s wrong it will be
follo�ed by a blank space. They have the following
meanmgs:

The '?' means that either the check sum or the trailer
was incorrect in the address field.

The cursor may be moved within the screen area
using the I,J ,K,M keys or the arrow keys. The cursor may
be moved to the location on the screen corresponding to
the area in the nibble buffer that you wish to examine.
Pressing any other key at this point will return to the
nibble display with the cursor set to the area you selected.

and Epson printers with interfaces that support graphic
screen dumps.

HINT: The display starts at either buffer start or
track start and the display may not be centered. Move the
cursor to the center of the screen and press the RETURN
key. It will take you back into the Nibble Editor. Set track
start '(' and press 'G' again. The display will now be
centered. If the disk you are examining is a 16 sector disk,
you will see one pattern of '#'s that is larger than the
others. This is the field of self sync in front of sector zero.
Move the cursor to the first period '.' following the large
number of'#'s and press RETURN. You will now be back
in the Nibble Editor and the cursor should be near the
first nibble in the address header for sector zero. The
following is an example of the display you will see when
this command is used.

[G]
Entering a 'G' from the text mode of the Nibble

Editor will display a picture of the buffer using text
characters. Each location on the screen represents a
string of nibbles in the buffer. The length of the string
(sample interval) is defined by the parrn 'TSAMP', and
defaults to $0A. (Note: for 13 sector disks, a value of $0C
works well). On the graphic display the following
symbols are used. A period'.' means that all the nibbles
in the string are normal (non-self sync). An inverse'#'
means the nibbles are all self sync. The '+' means the
nibbles are a combination self sync and normal.

50 51

The 'CS' means the data field checksum is bad.

The '**' means there is something wrong with the
data field information. It is either a bad data field header
or trailer. If the disk is a 13 sector format,'**' will appear
for all sectors.

As mentioned above, '**' indicates that either the
data field header (D5 AA AD) or data field trailer (DE
AA) is incorrect. If they both appear correct, but are still
marked with '**', the trailer is probably in the wrong
location. Exactly 343 nibbles should occur between the
header and the trailer. (342 data nibbles and one
checksum nibble).

A simple way to test this is to perform the following.

Place the cursor on the D5 of the header field (D5 AA
AD). Now, press'>' (shifted) 3 times, 'I' 5 times, and 'K'
twice. The cursor is now where the trailer should start. If
the cursor is not on the DE of the trailer (DE AA), the
trailer is not in the correct location.

The address field nibbles occur in double-nibble
format after the address field header (D5 AA 96) and
represent the volume number, track number, sector
number and checksum. A chart to decode the address ' . field double-nibbles is located in the appendix.

The data field nibbles consist of 342 data nibbles
after the data field header (D5 AA AD) plus an additional
343rd nibble, which is used for the data field checksum.
This checksum is calculated by taking each of the 342
data nibbles translating them according to a chart
(which is supplied in the appendix), and exclusive-or'ing
them together to form a checksum. The resulting
checksum is then reverse translated using the same table
and becomes the 343rd nibble.Note that only 64 different
nibbles are present in this table. Data fields are validated

52

only by this 6-bit checksum, and data nibbles each
contain only 6-bits of information each.

If the disk is using a non standard address or data
header you will not receive this information unless you
set PARM:SECAF to the correct address field pattern
and PARM:SECDF to the correct data field pattern.

The following is an example of the display you
should see.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123
.00
.25
.50
.75

NIBBLE EDITOR
0 6 52 VFE 00/00 0 705 VFE 00/07
0958 VFE 00/0E OADB VFE 00/06
O CSE VFE 00/0D ODE1 VFE 00/05
OF64 VFE 00/0C 10E7 VFE 00/04
126A VFE 00/08 13ED VFE 00/03
1570 VFE 00/0A 16F3 VFE 00/02
1876 VFE 00/09 19F9 VFE 0 0 IO 1
1B7C VFE 00/08 lCFF VFE 00/0F
lEEA VFE 00/00 2060 VFE 00/07
21FO VFE 00/0E 2373 VFE 00/06
2 4 F6 VFE 00/0D 2679 VFE 00/05
27FC VFE 00/0C 297F VFE 00/04
2 B02 VFE 00/0B 2C85 VFE 00/03
2E08 VFE 00/0A 2F8B VFE 00/02
3 1 OE VFE 00/09 3291 VFE 00/01
3414 VFE 00/08 3597 VFE 00/0F

PRESS SPACE TO CONTINUE

If you look closely at the above display you will see
that the sector numbers 0-F are present. If that is not the
case on vour display, then there is a sector missing.

53

000000000
..J ..J -.J -.J -.J -.J -.J -.J -.J
O Ill > -0 CX> -.J 0.. UI A
000000000
I I I I I 1 I I

00000000000000000
-.J-.J-.J-.J0..0..0..0..0..0..0..0..0..0..0..0..0..
WN O.,.,MOOW>-<><X>-.JO..UIAW
00000000000000000
1 I I I I I I I I I 1 I 1 I I 1

,. ,. ,. ,.
111-00-0-0.,.,MnMOlll-O>OMW>>-o>>w.,.,.,.,.,.,.,., wo..>o..o..wo..1110..MU1-.JO>U1U10...,.,.,.,...,llllll.,.,.,.,.,.,.,., ,. ,. ,. ,. ,. ,. ,. ,.
-o-o.,.,>-oW"1>0"11l1-<>MOWMOW>-<>-<>ll1"1"1"1"1
>O..N-.J0.."10M>0AO..o.."1-0ll10W0..>>0.,.,"1"1"1 ,. ,. ,. ,.

,. < ,.
o-o-on-<>"1"11l1"100-<>n"1"10M>OM-<>n"10.,.,.,., M0..0"10..-ou,nw-onwM>OnU1Mnww.,.,.,.,u,.,.,.,.,

lit ,. lit
lit ,. ,.

>-<>WM-o>wow.,.,M-<>.,.,>W"10>-<>M>-<>.,.,>.,.,.,.,
>O..>U10..wwo...,.,nmo..o..MN00..n-.JOm-.J.,.,>.,.,.,., ,. ,. ,. ,. ,. ,.
M-OMW-<>.,.,OMnlllO-<>M.,.,>.,.,.,.,...,llln-<>-0.,.,-0"1.,.,
1110..o..>o..0111-o.,.,.,.,.,.,...,...,OlllU1W>>W.,.,>.,.,o.."1.,., ,. ,. ,.
• ,. ,. lit
.,.,...,>w-o-o.,.,o-oMM-OOMMMMW"1M-<>>.,.,.,.,.,.,.,.,
.,.,O..-.J"10..0...,.,.,.,>MO..O..ll1-.JO..ll10W-.JO..-.JM.,.,"1"1.,., ,. ,.

,. lit .,., .,., .,., .,.,
,. lit

.. ,. ,. ,.
.,.,-<>"1"1-<>-<>-o.,.,lll"1M-<>"10"1>"11l1M-<>ll1>"1"1
.,.,O..M-.JO..O..>n0Mo..1110..>n111u,N>ll1WM"1M ,. ,. ,. ,.
�-<>>"1-o-0"10M"1>-<>-oll1WMM>-om-o-o"1 "10..mNo..0..0..1110..-omo..mu,u,>.,.,nMN>o...,., ,. ,.

(#] Pressing the '#' key from within the Nibble Editor
prints the current track in the buffer from'(' tr�ck start �o
')' track end to your printer. The self sync nibbles will
have '*' on either side of them in the printout. The track
verify start will have the letter 'V' in front of the verify
start nibble sequence.

,. ,. ,.
.,.,-00-0-0-0"1M>ll1"1-0"11l101l1M>>>W>0>"1"1
.,.,O..M00..0..NMM-OW-.JA-O>-On-.JMO..W0Ul>"1.,.,
,. • lit ,. ,. ,.

.,.,...,lllll1-0-<>>"100W-<>WWM"10>-<>0-o>>>"1"1
"'"'O>o..o..wo..-0-0.,.,0..nwmo>nMnMn>>.,.,.,., ,. ,. . ,. ,. .
.,.,...,-oM-o-<>M-<>-o.,.,M-<>O.,.,.,.,llllll-<>>n-o-o>>.,.,"1 .,.,0..0..0..0..0..W>M-O�lll>lllnMO-.JM.,.,-.J>0>"1"1 ,. ,. ,. ,. ,. ,.
"1-<>-o>-o-o.,.,.,.,o.,.,.,.,-ow-o>O-o>-oM-o>w.,.,.,.,.,.,
"10..0..-.Jo..O..nA-OWWO..U10Mll10..ll1"1M.,.,ll10.."1"1"1
,. ,. ,.

.,.,-0-0"1-o-<>OM0.,.,"1-<>0.,.,"1.,.,-o>-0>111-00.,.,"1.,.,

.,.,0..0..MO..O..OM>lllm-.JlllOOOo..wwnw-.JlllM.,.,.,., ,. ,. ,. . ,. ,.
"1-<>-o>-o-oO>-<>lllll1-<>"1"1MO-<>ll1-<>>-<>ll100"1"1 .,.,0..0..ll10..0..-.Jll1-.J-0"11l10-0UI-.JO..>-.J-.JO..NOM"1"1 ,. ,. ,. ,. ,. ,.
.,.,...,...,lll-O-OlllWMO.,.,-o-o-omnm"1-oM>W"1>"1"1
.,.,"'"'>"'o..n>.,.,-on111>0-<>0AAlllU1nNA>"1.,., . . ,.
.,.,>-o-o-o-onMMOn>-<>"1"1.,.,M-OlllO>>.,.,M.,.,.,.,
.,.,"10..-.J0..0..0W.,.,M.,.,-.Jll1000"1-.JN-.JM0WW"1"1 . ,.

54 55

TEXT EDITOR MENU

The text editor is used to enter a series of Locksmith
Programming Language commands to allow custom
tailoring of the copy program for specific needs. The files
created by the text editor can be saved for later use in the
form of standard DOS text files. In addition, patches may
be applied to the Locksmith disk using the text editor.

The Locksmith text editor is not a general purpose
text editor and is not designed for word processing use.
Files used by the Locksmith text editor are limited to 39
characters per line, and 255 lines. If a file which was
created by another text editor is loaded which exceeds the
above limits, the lines or file will be truncated to 39
characters and 255 lines.

HEX 00000000000000001111111111111111ZZZZ
TRK 01Z3456789ABCDEF0123456789ABCDEF0123

.00

.25

.50

.75
TEXT EDITOR

L LOAD FILE A APPEND FILE

S SAVE FILE N NEW FILE

C CATALOG X SYNTAX CHECK

1 DRIVE 1 D DELETE FILE

2 DRIVE 2 E ENTER EDITOR

B BACKUP/COPY DISK P DISK PATCH

ESC RETURN TO MAIN MENU

57

\

The screen shown above is the text editor main menu.
The commands are:

'L' loads a file from the selected disk.

'S' saves a file from the selected disk.

'C' displays the catalog from the selected disk.

'1' selects drive 1.

'2' selects drive 2.

'A' appends a file from disk to the end of the current
file in the text editor memory.

'D' deletes a file from the selected disk.

'N' clears the text editor memory.

'E' enters the text editor. (see the chapter "Text
Editor")

'B' invokes the BACKUP/COPY function after
compiling the LPL commands in the text editor buffer.

'X' compiles and syntax checks the LPL commands
in the text editor buffer, but does not actually invoke the
BACKUP !COPY function.

58

[T) TEXT EDITOR

The Text Editor is used to enter a series of commands
to Locksmith that may be saved to disk and recalled from
disk for reuse. This will preclude having to reenter the
commands manually when you wish to make another
copy of a specific disk. You may also use any other text
editor that stores its files as standard DOS text files.
The Text Editor should normally be used because it will
not allow command lines to be longer than 39 characters.
The maximum number of lines allowed in the Text Editor
is 255.

TEXT EDITOR COMMANDS

[ESC]
Pressing the 'ESC' key at any time will take you back

to the Text Editor main menu. If you press the 'ESC' key
while on a line that has not been entered into memory by
your pressing the 'RETURN' key, the line will be lost.

[RETURN]
Pressing 'RETURN' enters the present line into

memory and moves the cursor to the beginning of the
next line. The 'RETURN' key may be pressed at any
position on the line. You do not need to be at the end of the
line, it will still be entered into memory.

[left arrow]-
Pressing the left arrow key will move the cursor one

character to the left without erasing the character it
passes over. If you are at the beginning of a line, the
cursor will move to the first character on the line directly
above the one you were on.

[right arrow]-
Pressing the right arrow will move the cursor one

character to the right without disturbing the characters it
passes over.

59

[up arrow (APPLE IIE only)]!
Pressing the up arrow will move the cursor up one

line. If you had not entered the line you were on by
pressing the 'RETURN' key, this will enter it into
memory.

[down arrow (APPLE IIE only)]!
Pressing the down arrow will move the cursor down

one line. If you had not entered the line you were on by
pressing the 'RETURN' key, this will enter it into
memory.

[CTRL-K]
Pressing and holding the key marked 'CTRL' and

pressing the 'K' key will move the cursor up one line. If
the line you were on had not been entered into memory by
pressing the 'RETURN' key, this will enter it.

[CTRL-J]
Pressing and holding the key marked 'CTRL' and

pressing the 'J' key will move the cursor down one line.
As above, the line you were on will be entered into
memory.

[CTRL-1)
Pressing and holding the key marked 'CTRL' and

pressing the 'I' key will allow you to insert a character or
a line. If the cursor is on the first character of a line this
will insert a line. If the cursor is on any character except
the first one, you will be allowed to insert one (1)
character.

[CTRL-D]
Pressing and holding the key marked 'CTRL' and

pressing the 'D' key will allow you to delete a character or
a line. If the cursor is on the first character of a line when
you do this, the line will be deleted. If the cursor is on any
character but the first one, the character will be deleted.

60

LOCKSMITH
PROGRAMMING LANGUAGE

Locksmith Programming Language (LPL) can be
used to write custom-tailored backup/copy procedures for
disks that are difficult to copy using the standard
Locksmith defaults. LPL provides commands to change
parameters by name, and to invoke named algorithms.
The algorithms perform buff er analysis functions, as
well as some miscellaneous functions, and provision is
made for error handling and looping.

LPL commands are entered in a normal text file.
Each line in the text file starts a new command but
multiple commands may be entered on the same line by
seperating them with a colon. The maximum line length
for a command line is 39 characters. A command may not
be continued on a second line.

The commands are of two types:

1. Parameter setting commands.
2. Algorithm or Processing commands.

Comments may be entered at any time. Comments
begin with '*'. They may be added to the end of a line by
preceding the comment with a'*'.

There exist within Locksmith, seven (7) general
purpose status registers for passing status from one
algorithm to another. The value of the status registers
can be set to indicate FAIL, SUCCEED, or CLEAR. If, on
an algorithm command line, the keyword 'STATUS' is
found followed by a number from 1 to 7, the specified
s�atus register will be set to the status of the algorithm,
either SUCCEED or FAIL, after the algorithm is
performed. The STATUS keyword and its associated
status register number must be the last non-comment

61

keywords in the statement. All status registers are
initially CLEAR (neither SUCCEED or FAIL), and can
be cleared with the CLEAR STATUS command.

Conditional execution of parameter setting or
algorithm processing can be done by starting the
statement with the keywords IF FAIL x, or IF SUCCEED
x, where 'x' is the status register to test. If neither
keyword is found, the statement is an unconditional one.

In addition to testing the status registers, you can
test the value of a parameter, and conditionally execute
the statement in that way.

As mentioned earlier, statements can be parameter
setting or algorithm processing. A parameter setting
statement always contains the keyword 'SET', followed
by the parameter name and one or more parameter
values. For example, the following are valid parameter
setting statements:

SET MINGAP 5
IF FAIL 3 THEN SET MINGAP 5
SET DISPL 0157

To allow for pattern matching within Locksmith,
seven (7) general purpose pattern parameters, each 16
bytes long, are provided. They are PATl through PAT?.
When setting these or any other 16 byte parameters,
several values may appear on the same statement. For
example:

SET PAT4 05 AA 96

The above example would change the first 3 bytes of
PAT4, and the remaining 13 bytes would remain
unchanged. To set the remaining values to zero ("don't
care" values in a pattern), follow the last value with a

62

slash' I' character. For example:

SET PAT4 05 AA 96 I

To indicate "don't care" values in the middle of a
pattern, code a question mark for each "don't care"
position. For example:

SET PAT 4 05 AA 96 ? ? ? ? AA AA I

To replicate the last value given in the statement
through the end of the pattern, code 3 periods. For
example:

SET PAT4 05 AA 96 AA ...

In the above example, the rest of the pattern would be
filled with AA's.

Some algorithms require that certain values in the
specified pattern be "flagged", to set them aside from
other values in the pattern. To "flag" a value of the
parameter, enclose the value in parentheses. For
example:

SET PATl 05 (AA) AD I

The above example "flags" the AA value. If this SET
command were to be used before the algorithm command

CHANGE PATl TO SS
the flagged value (AA) would be changed to self-sync.

When setting the value of parameters which
represent track values, code a decimal point with the
number. For example:

SET SYNCTRK 3.0

63

Note that the statement
SET SYNCTRK 3
is NOT equivalent!

To leave the start of a pattern unchanged, and begin
setting values in the middle of the pattern, code '+',
followed by a hex value from 1 to F. For example:

SET PAT4 + 2 B5

The above example would change the value of the 3rd
byte (displacement +2) in the pattern.

This technique may be necessary to change the
entire 16 bytes of a pattern to specific values, because the
statement can have a maximum length of 39 characters.
For example:

SET PAT7 D5 AA AD 97 AD 96 DD FF
SET PAT7 + 8 FD FE FF AD DD FF ED FF

Some parameters are 16-bit (2-byte) values. These
can be coded in two ways. For example, to set the 2 byte
parameter DISPL to the value 157 (hex), either of the
following statements would work:

SET DISPL 0157
SET DISPL 57 01

Note that in the second example, that the numbers
are reversed.

The format for algorithm commands is dependent
upon the individual algorithm being used. See the
chapter "Algorithms" for a complete description of each
algorithm.

64

+

.....

PATCHING THE LOCKSMITH DISK

Locksmith Programming Language makes
Locksmith very flexible. It is designed to have the
capability to copy virtually every protection technique in
current use and many that have not yet been introduced.
However new techniques may be developed which the
current v�rsion of Locksmith cannot handle. In addition,
software bugs not discovered during extensive testing
procedures, m�y appear. For these reasons, Locksmith
has a built-in routine to allow the user to apply patches to
the Locksmith program. These patches, if required, will
be distributed by Omega Micro Ware in one of the
following forms:

1. update diskette

2. printed material

3. modem files

In any case, to apply the distributed patch, the user
simply needs to LOAD the file containing the patc�es
into the text editor, and press 'P' from the text editor
menu to apply the patch to the Locksmith disk. The
patches are verified to make sure they are entered
correctly, and that the patches are not already applied.
Then the Locksmith master disk is updated to reflect the
patches. This means that small revisions can be provided
to the registered Locksmith user without the need for
returning the Locksmith diskette to Omega for updating.

No provision is made for Locksmith to download fil_es
from modem, but after using any popular modem file
download program, Locksmith can use the resulting te�t
file without the need for entering the data manually. It is
expected that all Locksmith patch files will be made
available on the Source information utility, and perhaps

65

other major systems.

After pressing 'P' from the text editor menu, if the
bell sounds and the editor is entered, an error was
encountered by the patcher. The cursor will be on the line
with the error. No patches are applied to disk until all of
the patcher commands are verified.

66

...

16 SECTOR UTILITIES

This option gives you access to five utilities designed
to work with normal 16 sector (generally unprotected)
disks.

[U]
Pressing 'U' from the main Locksmith menu takes

you to the 16 sector utility submenu. If the correct overlay
is not in memory, you will be asked to insert your
Locksmith disk and press the space bar to load the
utilities into memory.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123
.00
.25
.50
.75

16 SCTR UTILITIES

SELECT FUNCTION:

V 16 SECTOR FAST DISK VERIFY

B 16 SECTOR FAST DISK BACKUP

F 16 SECTOR FORMAT

C 16 SECTOR COMPARE

S 16 SECTOR SYNC SIGNATURE

[V] 16 SECTOR FAST DISK VERIFY

Pressing 'V' from this submenu will take you to the
FAST DISK VERIFY utility. You will be prompted for
the drive number of the disk you wish to verify.

67

Locksmith will then proceed to read the disk from track O
to track $22. You will see the following display.
rlEX O O O O O O O O O O O O O O O O 111111111111111122 2 Z
TRK 0123456789ABCDEF0123456789ABCDEF0123

.00
.25
. SO
.75

16 SECTOR FAST DISK VERIFY
0123456789ABCDEF0123456789ABCDEF0123 so

1 .
2
3
4 .
5
6 .
7
8 .
9
A .

tp

means there was something wrong with the data field.
Again, a number indicates that the sector was read
correctly, but that it took several rereads to read it
correctly.
riEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123

.00 .. ·*· .. 1 11 ··**·· ... 1 .. 1

.25

.SO

.75
16 SECTOR FAST DISK VERIFY

0123456789ABCDEF0123456789A8CDEF0123
SO 1 1 A 1 .

1 AA .
2 AA .
3•... AA .
4 A AA 1 .
5 . . A AA 1 .
6 A 1 •..... 1 A .
7 .0 1 A 1 .
8 AA .

B .
c .
D .

9 .
A .
B A ..

. AA .
. AA .
. AA .

E .
F

C A AA 1 .
D A DA .

, , On the status display at the top of the screen, a period
. means the track read correctly. An asterisk '*' means
the track did not read correctly. A number represents the
number of extra times the disk had to spin to read all
sectors correctly. A number '1' for example means the
track had to be reread once in order to read correctly.

Below the status display is the track/sector display.
On the track/sector display the symbols have the
following meaning.

A period '.' means the sector was read correctly on the
first disk revolution. An inverse character 'A' means
there was something wrong with the address field or the
address field was missing. An inverse .character 'D'

E A 1 1 A ..
F AA 1 .

[B] 16 SECTOR FAST DISK BACKUP

Locksmith will automatically search for and use any
combination of RAM cards in your Apple. The screen

Pressing a 'B' from this submenu will take you to the
16 SECTOR FAST DISK BACKUP. This utility is used to
copy standard disks very quickly. If you have two drives
and copy from one to the other, it takes approximately 19
seconds to copy the disk. This time can be be even shorter
if you have RAM boards (language cards) in your Apple.

68 69

display will show the slot and the amount of memory. in
each ram card it finds during its search. A complete disk
requires 140K of memory (4K per track). 40K of main
memory is used to allow storage for 10 ($0A) tracks. Each
16K card found will allow 4 additional tracks to be stored.
If lOOK or more in total RAM board space is found in
addition to the 40K used of main memory, the program
will allow one-pass disk copies. That is, the entire disk
will be read into memory and can be written many times
without reading the original disk again. This is very
useful for mass duplication of disks for clubs or software
manufacturers.

If an Apple I le is used, 16K RAM is built-in, in
addition to the 48K main memory. If the Apple I le
contains an 80-column auxiliary card with 64K RAM,
only 56K of the 64K auxiliary card will be used. If an
Apple I le is used with 64K auxiliary card, an additional
32K card in any other slot would allow the user to make
single-pass copies. (16K + 56K + 32K - 104K) Note that
ALL slots are searched for RAM cards, including SLOTS,
which is not normally available on an Apple I le with
auxiliary card installed. If a RAM card is installed in slot
3 on an Apple I le with auxiliary card, it will be used by
Locksmith FAST DISK BACKUP, even though other
software may not be able to access it.

Locksmith FAST DISK BACKUP is the FASTEST
Apple copy program with or without the use of RAM
boards.

Locksmith will read and write a disk without RAM
boards in 19 seconds, copying 10 tracks per pass. If
verifying after each write, the disk is copied in 26
seconds.

The following table summarizes timing tests done
with some popular copy programs without the use of
RAM boards:

70

....

time time to
trks/ to copy &

Program pass copy verify ------------- ------
Locksmith 5.0 10 19 26
Penulta Copy 5 38
Disk Muncher 7 26
Pack Rat 4 35
Apple COPY A 8 88

Also note that Disk Muncher and Pack Rat do NOT
validate checksums during read, and are thus extremely
unreliable.

If RAM boards are found to total at least lOOK (128K
RAM boards work fine), the disk can be read in 8seconds,
and a copy disk written in 8 seconds. If verify-after-write
is desired, the disk is written in 15 seconds.

The following table summarizes timing tests done
with some one-pass copy programs with the use of 128K
RAM boards:

time time time to
to to write &

Program read write verify ------------- -------
Locksmith 5.0 8 8 15
CopyWriter 24 16 23
Copy Cruiser 9 16 23

Note that CopyWriter also has a 'read-twice' mode
which takes 45 seconds to perform instead of 24 seconds,
but can be more reliable on original disks recorded on
questionable media.

When entering this routine, you will be prompted for
the original and copy drives. Enter a '1', a '2' or RETURN
(to accept default) in answer to these prompts. After

71

inserting your disks, you will enter the backup routine.
Once the FAST DISK BACKUP routine is entered, it will
be necessary to reboot if you wish other Locksmith
fun�t10ns, as the FAST DISK BACKUP function uses all
available memory for disk buffers.

From within the backup routine, the following
commands are available:

Function selection commands:

[F] 16 SECTOR FORMAT
Pressing 'F' will allow you to format a disk. This

utility will format a disk or a range of tracks with the
volume number you specify. This could be very useful if a
track had been destroyed accidently. In this case the disk
would normally be unusable. However with this utility
you could simply reformat the one track and use the disk.

NOTE: IT WILL NOT RECOVER DATA THAT WAS
ON THE DESTROYED TRACK.

[lZ]
[21]
[11]
[22]
[10]
(20]
[01]
[02]
(1]
[2]
[V]

Copy drive 1 to drive 2
Copy drive 2 to drive 1
Copy drive 1 to drive 1
Copy drive 2 to drive 2
Copy drive 1 to •eaory (if enouch RAK is available)
Copy drive 2 to memory (it enough RAN is available)
Copy memory to drive 1 (it memory previously loaded)
Copy memory to drive 2 (it memory previously loaded)
Verity drive 1
Verity drive 2
Toggles verity-after-write •ode

You will first be prompted for the disk drive you wish
to use. Press either '1' or '2', depending on which drive you
wish to use. You will then be prompted for track start, end
and increment. Specify the tracks you wish reformatted.
You will next be prompted for Volume Number. Specify
the volume number that you wish to format in the
Address Field. Following the Volume Number, you will
be asked which Track Numbers to use. Normally, the
defaults will be used. Since it is possible that you may at
some time wish to use a non-standard format, this is left
up to the user. For example, some disks currently on the
market use tracks $06.5 through $22.5. These tracks are
formatted with track numbers $06 through $22.

Other commands:

[ESC] exit FAST DISK BACKUP

. (*] Allows. a comment statement on screen (useful
with screen prmt)

[�ETURN] OR (SPACE) Start current copy or verify
function

While the copy operation is in progrss, you may press
[V� �o tog�le.the verify-after-write mode. Verifying after
�ntmg will mcrease the time it takes to write an entire
disk from 8 seconds to 15 seconds.

72

[C] 16 SECTOR COMPARE

Pressing a 'C' from this submenu will allow you to
compare two disks for differences. When you select this
option you will be asked for the drive number of the disk
you wish to compare. This routine stores a double-byte
(16-bit) checksum for each sector in memory and
compares it to the one already there. If they don't match
you will get a 'C' on the sector number display. When
reading the first disk to compare, it is normal to get many
'compare errors' because incorrect sector checksums are
initially in memory.

After the disk you wish to compare is read into

73

memory, take it out of the drive and replace it with the
disk you wish to compare to. Press the space bar to begin
compare, and any sector that matches will have a period
'.' on the sector display for that sector. If a sector doesn't
match there will be a letter 'C' on the sector display. The
checksums that were there from the original disk have
no� been replaced by those of the disk you just compared,
so if �ou. pressed the space bar again without removing
the disk Just compared you should get all periods'.' on the
sector display. In addition to the'.' and 'C', you may also
find inverse 'A' and inverse 'D'. These indicate address
field and data field errors, respectively.

The following is a display of two disks that were not
the same.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123

.00
? " • - .J

.50

.75
16 SECTOR COMPARE

0123456789ABCDEF0123456789ABCDEF0123 so cccccccccccccccccccccccccccccccc
1 cccccccccccccc.ccccccccccccccccc
2 cccccccccccccc.ccccccccccccccccc
3 .cccccccccccccc.ccccccccccccccccc
4 ... cccccccccccccc.ccccccccccccccccc
5 .. ccccccccccccccc.ccccccccccccccccc
6 .. ccccccccccccccc.ccccccccccccccccc
7 .. ccccccccccccccc.ccccccccccccccccc
8 .. ccccccccccccccc.ccccccccccccccccc
9 c.ccccccccccccccc.ccccccccccccccccc
A .. CCCCCCCCCCCCCCC. CCCCCCCCCCCCCCCCC
B .. CCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCC
c .. ccccccccccccccccccccccccccccccccc
D .. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
E .. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
F .CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

74

[S] 16 SECTOR SYNC SIGNATURE

This utility is used to obtain a signature of the sync
pattern on a normal 16 sector disk. This can be useful
when working on synchronized disks. You will be
prompted for the disk drive you wish to use. Enter either
'1' or '2'. This routine starts at track $00 sector $00. After
reading this sector, it moves to track 1, and displays the
first sector number that it encounters. This continues
until all $22 tracks have been checked.

The sync signature is displayed again and again. It
may be slightly different due to disk speed variations
from time to time. To terminate the sync signature
routine, press ESC.

In addition to checking synchronization, this routine
can be used to determine what copy program created a
given 16-sector diskette.

A sync signature on a 16-sector diskette will
normally show a progression of hex numbers, either
ascending or descending. For example, the following
progression shows hex numbers descending by one:

OFEDCBA987654321 OFEDCBA987654321 OFE

We will identify the above progression as (-1), to
indicate that each hex digit is one less than the one
before. The following table shows several copy programs,
and the progression identifier that identifies the sync
signature for a disk which was created by that specific
copy program. Note that simply writing data to a disk
will not change its sync signature- the disk must actually
be formatted or generated by a copy program that
formats the disk.

75

Program signature identifier

Program signature identifier

DOS !NIT ODA741EB85... (-3)
Locksmith

'U' 'F' 048C048C ... (+4)
Locksmith

'U' 'B' OFEDCBA987 ... (-1)
Penulta Copy OECAS ... (-2)
CopyWriter

(no verify) 0000000 (+O)
CopyWriter

(verify) OFEDCBA987 ... (-1)
Disk .Muncher OD852FC964 ... (* *)

Pack Rat OD85630DA5 ... { * *)

Note that the signatures will have the same
progression throughout the signature only if the disk was
recorded in a single pass without turning the drive off
between tracks. For example, the following signature
was generated by Locksmith FAST DISK BACKUP in a
single pass copy (with 128K RAM board):

OFEDCBA987654321 OFEDCBA987654321 OFE

Nate that each hex digit is one less than the previous
digit. This is in agreement with the table shown above.
Now compare the following signature:

OFEDCBA9873210FEDCBA6543210FED98765 A A A

76

Note that the progression is the same (-1), except that
at 3 places (identified by arrows below the signature),
where the progression is instead (-4). This is because this
signature is from a disk that was created by Locksmith
FAST DISK BACKUP running without RAM cards.
Notice that every 10 tracks, a break in the progression
occurs. This is because without RAM cards, FAST DISK
BACKUP copies 10 tracks at a time, and then reads the
original disk again. So only groups of 10 tracks remain in
sync with each other. Incidentally, the break in the
progression was (-4). If the disk was created by
Locksmith FAST DISK COPY with verify after write, the
break in the progression would have been (-3). As you can
see, a lot can be determined about a disk using sync
signature.

77

[I] INSPECTOR/WATSON

[I)
If you have previously booted with a DOS disk that

loads the Inspector /Watson onto a ram card or if you
have a firmware card with these programs on it then
pressing 'I' from the main Locksmith menu will place you
in either the Inspector or Watson.

The Inspector/Watson program works exactly as
documented in the respective manuals, with the
following exception. When Inspector/Watson is given
control from Locksmith, the default buffer address will be
$4000 instead of $0800. This is because $0800 is reserved
for Locksmith use.

If you only have the Inspector, control will be passed
to the Inspector. If you have both the Inspector and
Watson then control will be passed to Watson. All the
normal program commands are useable. To exit
Inspector /Watson press 'CTRL-C' and you will be back
in Locksmith.

If your Inspector/Watson resides on a RAM board in
slot 0, the ESC key will also return you to Locksmith. If
your Inspector/Watson is in ROM, you must use 'CTRL­
C' to exit.

For instructions on how to use Inspector and Watson
refer to their respective documentation. These programs
are available from Omega Microware, Inc.

Some notes you might find useful, while using
INSPECTOR/WATSON from within Locksmith follow.

When reading a disk with many soft errors (errors
which are temporary, and if read again, may succeed), it
may be desirable to inhibit the recalibration of the seek

79

mechanism. This will eliminate the constant 'burping'
sound the disk drive makes before an I/0 error occurs.
Inhibiting the recalibration prevents the read operation
from terminating with an I/0 error. The following patch
can be applied while in INSPECTOR, and should be
removed before exiting INSPECTOR. Note that after
applying this patch, that a read operation to a sector with
a permanent I/0 error (hard error), will never terminate.
For this reason, this patch should only be applied if soft
errors occur while reading a disk using INSPECTOR. If a
read operation fails to terminate because of a hard error
on the disk, the operation can be terminated by removing
the disk and inserting a known good disk in the drive.

Also note, that unlike 'patches' applied to the
Locksmith disk using the patcher function of the TEXT
EDITOR, the patch given here is not applied to the
Locksmith disk, and will automatically be removed upon
reboot.

To apply the patch, first read a sector using
INSPECTOR. Any sector will do. The purpose of this is to
insure that the seek mechanism is on the correct track.
Then, change the buffer to $BDOO using the 'B'
command. (press 'B','B','D',RETURN) Then, change
data within the buffer using the following keystrokes:

E C C space 4 C space C 1 space B D return

Then change the buffer back to $4000 (press
'B',' 4','0',RETURN)

To remove the patch, set the buffer to $BDOO again
and restore the data using the following keystrokes:

E C C space 1 0 space F 3 space A D return

If you are not sure that you did this correctly, simply
press CTRL-RESET, and reboot Locksmith.

80

[/] CLEAR STATUS

[/]
The status display at the top of the screen is not

cleared after each Locksmith function, so that the user
can use the status display with other functions. To clear
the status display, press the'/' key from the main menu.

[CTRLZ]

[CTRLZ]
Pressing 'CTRL-Z' at any time will print the text

screen to a printer. The printer should be turned on and
enabled. Locksmith assumes that the printer interface is
installed in Slot 1, but may be changed to any slot by
changing the parm 'PRSLOT'. The parm 'PAUTOCR' is
used to select whether or not Locksmith will send a
carriage return at the end of each line. The default is $00.
Any other value will cause a carriage return to be sent.

[X] EXIT /REBOOT

[X]
Pressing the 'X' key from the main menu will exit

Locksmith.

You will be prompted to insert the disk you wish to boot
and to press the space bar. Pressing the spacebar will exit
Locksmith and perform a normal boot.

81

STATUS DISPLAY CODES

Codes which may appear on the 4-line status display
at the top of the screen are of two types: inverse
characters, which represent activity codes, and normal
characters, which represent status codes. Inverse
characters are displayed to indicate that a Locksmith
function is active on the track displayed with the activity
code. Normal characters are displayed to indicate that a
Locksmith function has processed that track, and the
status code indicates the status of the last Locksmith
function that processed that track.

STATUS CODES

Status codes (normal characters) which you may see
in the status display are:

'.' indicates normal completion of a Locksmith
function on a track. This means that the certify function,
verify function, or compare function found no errors on
the track.

'*' indicates that an error occurred on the track. The
certify function was unable to certify the track, or the
verify or compare function found one or more unreadable
sectors on the track.

'1' to '9', when displayed during a verify function,
indicate that the track read correctly, but only after the
indicated number of rereads.

'1' to 'F', when displayed during the backup function,
indicate that the displayed error code was generated
while processing the track. See chapter concerning error
codes.

83

'O' indicates that the track was copied with no errors
during a backup function.

'E', when displayed during the erase disk function,
indicates that the track was successfully erased.

'F', when displayed during the 16-sector utility
format function, indicates that the track was
successfully formatted.

ACTIVITY CODES

Activity codes (inverse characters) which you may
see in the status display are:

'R' indicates the track is being read.

'W' indicates the track is being written.

'V' indicates the track is being verified or compared.

'S' indicates the track is currently being
synchronized before read or write.

'F' indicates the track is being formatted, or during
copy, nibbles are being fixed to shorten the track or
lengthen the track.

'A' indicates the track is being analyzed after read.

'E' indicates the track is being erased.

'C' indicates the track is being certified or, during
copy, nibbles are being counted.

'O' indicates that FAST DISK BACKUP is waiting
for the motor to come up to speed.

'N' indicates the nibble editor is processing the track.

DOS ERROR CODES

The following DOS error codes may appear during
use of the TEXT EDITOR file management functions.
They are described in detail in the DOS manual.

'04' indicates that the disk is write-protected.
'06' indicates that the specified filename was not

found.
'08' indicates that a DISK 1/0 error occurred. The disk

drive door may have been left open.
'09' indicates that the disk is full.
'OA' indicates that the file specified is locked. Save

with a diffeent filename, or unlock the file using
standard DOS.

85

PARM KEYWORDS AND THEIR
DEFAULT VALUES

The valid parameter keywords and their meaning
are described in this section of the manual. Note that
parameters may be changed in 3 ways:

1. Nibble editor

2. Parameter editor

3. Locksmith Programming Language

Parm numbers, because they may change in the future,
are not listed here, but can be determined by using the
parameter modifier or nibble editor, and selecting a
parameter by name. The associated parameter number
will be displayed.

Because future versions of Locksmith may have different
default parameter values, the defaults will not be listed
here, but may be determined by using the parameter
modifier or nibble editor.

Some parameters may be defined within Locksmith and
are not described in this manual. These are parameters
which are used for test purposes, or ones which are not
fully operational. Use these at your own risk.

PATl
PAT2
PAT3
PAT4
PAT5
PAT6
PAT7 are 7 general purpose pattern parameters. Each is
16 bytes in length. These are used by pattern-matching
algorithms.

87

BITI'AB is a If-byte parameter which is used by
algorithm 18 (bit lookup). For more information, see the
section discussing algorithms in detail.

INVTAB is a parameter which consists of a 128-byte
lookup table to determine invalid nibbles. If the
corresponding value in this table is $00, the nibble is
'invalid'.

MAXERR is a If-byte parameter which contains the
maximum error counts for error codes Oto F.

GRCHARS is a 7-byte parameter which contains the
character string sent to the printer when it is desired to
print the graphics screen.

SECAF is a �byte parameter which contains standard
sector address field header and trailer nibble values. This
parameter is used by the nibble editor 'D' command.

SECDF is a &byte parameter which contains standard
sector data field header and trailer nibble values. This
parameter is used by the nibble editor 'D' command.

PATMBK is a parameter which is used by the track
image compare algorithm. See the description in the
section of this manual describing algorithms.

SSLAHD is a parameter which contains the number of
nibbles ahead of the current nibble being compared for
which self-sync is searched. '

DSPCMP can be set to 00 if compare failures are not to be
displayed.

MAX CO R is the number of 3rd image corrections allowed
per track.

88

BIGTRK is the high-order byte of the maximum track
size, in nibbles. Track sizes greater than this value are
assumed to be in error.

TSIZMIH is the high-order byte of the number of nibbles
to skip when searching for the 2nd track image in the
buffer.

TSTLEN is the number of nibbles to compare with the 1st
image, to determine that the 2nd image has been found.

SYNCPAT is the pattern number for the sync pattern.

LEADSS is the value of the lead-in self-sync nibble.

LEADFB is the number of framing bits (1 or 2) in lead-in
self-sync.

DATAFB is the number of framing bits (1 or 2) in self­
sync within the data buffer.

SLOT is the slot (1 through 7) for all Locksmith functions.
Note that overlays will always be loaded from the boot
slot and drive.

DRIVE is a 2-byte parameter which contains the from­
drive and to-drive for copy operations.

SYNCTYP controls track-syncing. If it is set to $01, the
previous track will be sync'ed to. If it is set to $00, a
specific track will be sync'ed to. If it is set to $02, the
current track will be sync'ed to.

SYNCTRK is the track number to sync to, ifSYNCTYPis
set to the value $00.

BDISPL is the buffer displacement for SYNCTRK.

89

MINSS is the minimum number of self-sync to be
effective.

PRSLOT is the slot number of the printer to be used, if a
control-Z (screen print) command is given.

PA UTOCR is set to O if no automatic carraige return is
desired at the end of each line to the printer.

DLINSS is a 2-byte parameter which represents the
number of lead-in self-sync for a non-svnc'ed track.

SLINSS is a 2-byte parameter which represents the
number of lead-in self-sync for a sync'ed track.

PA TI'OL is the tolerance value for finding the start of the
3rd image based on the 1st and 2nd images.

PA TPFX is the length of the :3rd image pattern-match
prefix.

CNTERR indicates how close to get during nibble
counting. If set to $00, the count must match exactly.

VERLEN is the num her of nibbles to verify at the start of
track after writing to insure that the track was not over­
written.

DDH 1,DDH2,DDH3 (default D5 AA AD) are 3
parameters which define the start of data field for the
DOS data-field fix algorithm.

DISPL is a 2-byte parameter representing the
displacement for pattern match.

SPAN is the range of values used by the CHANGE
RANGE algorithm. This parameter is 2-bytes. The first is
the minimum value, the 2nd is the maximum value.

90

PREMIN,POSTMIN,MINLEN,MAXLEN are described
in the section on algorithms.

VALUE is a general purpose parameter which is used to
pass a value to the CHANGE pattern to VALUE
algorithm.

CHOPS is the number of times to shorten for each
iteration of shortening.

TSAMP is a parameter which represents the length of the
sample size for the single track status map produced by
the 'G' command in the nibble editor.

QSAMP is a parameter which represents the length of
the sample size for one pixel on the display created by the
quickscan function.

MINGAP is the minimum gap size allowed by the
shortening algorithms.

NOTIFY can be set non-zero to ring the bell continuously
on completion of a backup/copy operation, to notify the
user that the operation has completed.

A TRACE can be set to zero to inhibit the screen display of
algorithm number tracing.

91

ALGORITHMS

Algorithms are the basic building blocks for the
Locksmith backup routine. Each algorithm is a function
that operates on the nibble buffer or performs some other
control function. Which algorithms to use, and the order
they are to be used, is defined by the Locksmith
Programming Language (LPL) commands, which are
specified in a text file, and' compiled' by the user. Because
of this, Locksmith backup is very flexible and can be
adapted easily to almost any protection scheme.

The algorithms fall into several categories. They are
listed in this section by the algorithm number assigned to
them. Algorithm numbers range from $01 to $7F. They
are categorized as follows:

General purpose 01-0F
nibble changing 10-lF
track start setting 20-2F
track end setting 30-3F
verify start setting 40-4F
track shortening 50-SF
reserved 60-6F
special purpose 70-7F

ALGORITHM NAME� ERROR

PURPOSE: ERROR HANDLER

ALG # (l]

SYNTAX: ERROR n

PARMS USED: MAXERR

PASS VALUE: error code

FUNCTIONAL DESCRIPTION:

MAXERR is tested if error code is $0-$F. If MAXERR is
exceeded, then fail flag is set, otherwise succeed flag
is set.

93

ALGORITHM NAME� TEXT

PURPOSE: SET TEXT MODE

ALG # [2]

SYNTAX: TEXT

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Sets page 1 text mode

--- ALGORITHM NAME� GRAPHICS

PURPOSE: SETS GRAPHICS MODE

ALG # [3)

SYNTAX: GRAPHICS

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

FUNCTIONAL DESCRIPTION:

Changes all occurrences of the first specified pattern
to the second specified pattern. I.E. CHANGE PAT3 TO
PAT7.

--- ALGORITHM NAME� INSERT

PURPOSE: INSERT A 00 NIBBLE

ALG # [5]

SYNTAX: INSERT PATx

PARMS USED: PATl THRU PAT7

PASS VALUE: PATTERN#

FUNCTIONAL DESCRIPTION:

Inserts a 00 nibble at all occurrences of the specified
pattern. The 00 nibble is inserted after the specified
nibble.

ALGORITHM NAME� INSERT SS LONER

PURPOSE: INSERT A 00 NIBBLE

ALG # [6)
Sets full screen page 1 hi-res graphics mode.

!LGORITHM NAME� CHANGE PATTERN TO PATTERN

PURPOSE: CHANGE 1 PATTERN TO ANOTHER PATTERN

ALG # [4]

SYNTAX: SET PATx to PATx

PARMS USED: PATl TO PAT7

PASS VALUE: PATTERN NUMBER TO CHANGE AND THE PATTERN
NUMBER TO CHANGE TO.

94

SYNTAX: INSERT SS LONER
INSERT SS LONER target
Where target may be: SS

NORM
value
(value)

PARMS USED: NONE

PASS VALUE: NONE

95

normal
self-sync

FUNCTIONAL DESCRIPTION:

Insert a zero 00 nibble whenever it finds a self-sync
loner. A self-sync loner is any self-sync nibble with a
normal nibble on either side of it. The nibble is
inserted after the self-sync nibble. If 'target' is
specified, the 00 nibble is inserted only if the loner
self-sync found matches 'target'.

PURPOSE: SET ANCHOR

ALG # (7)

SYNTAX: ANCHOR

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Sets a pointer to the current buffer location. This is
used for further processing. I.E. Moving the track end
or the track start forwards or backwards in the buffer
will move from this point.

PURPOSE: NO OPERATION

ALG # (8)

SYNTAX: NOP

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Always succeeds in case you wish to set a STATUS FLAG to
succeed.

96

ALGORITHM NAME� COMPARE

PURPOSE: COMPARE TRACK IMAGES IN MEMORY

ALG # (9)

SYNTAX: COMPARE

PARMS USED: SSLAHD
PATTOL
PATMBK
MAXCOR
PATPFX
DSPCMP

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm compares the first track image in the
nibble buffer with the second image, one nibble at a
time. If the nibbles match, the compare continues. If
they do not match (a soft-error has occurred), the third
image of the track is checked, and used as a tie
breaker. The nibble that is wrong is corrected, assuming
the third image matches one of the other two. If the
third image does not match either of the other two, then
a 4 error will occur.

ALGORITHM NAME� NIBED

PURPOSE: invoke NIBBLE EDITOR.

ALG # [OA]

SYNTAX: NIBED

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

invokes NIBBLE EDITOR. When ESC is used to exit nibble
editor, control is returned to backup routine.

97

�LCORITHM NAME: TESTlFB

PURPOSE: TEST SELF-SYNC FRAMING BITS

ALC # [OB]

SYNTAX: TESTlFB

PARMS USED· NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Tests to see if a track has one or two framing bits in
the self-sync fields.
Suceeds if it finds one framing bit in the self-sync
nibbles.

COMMENTS: This algorithm works only if RDTYP is set to
2.

----- --- ALGORITHM NAME: FIX SS DHDR

PURPOSE: FIX DATA HEADER.

ALC # [OD]

SYNTAX: FIX SS DHDR

PARMS USED: DDH2 (DEFAULT AA)
DDH3 (DEFAULT AD)

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Changes the AD in a standard data header to a normal
nibble. Sometimes DOS writes the AD as & self-sync
nibble. This algorithm looks for self-syno, then any
normal nibble, then the values in DDH2 and DDH3. If this
test is passed, then the value that matches DDH3 is set
to normal

ALGORITHM NA� DISPLAY

PURPOSE: DISPLAYS TRACK START AND LENGTH

ALC I [OE]

SYNTAX: DISPLAY

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Displays traok start and length.

ALGORITHM NA.ME:: TRKMAP

PURPOSE: DISPLAYS TRACK MAP

ALC # [OF]

SYNTAX· TRKMAP

PARMS USED: TSAMP

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Displays track map from within the NIBBLE EDITOR. Used
by the [D] command in the NIBBLE EDITOR. Each charaoter
on the screen represents a string of TSAMP length.

ALGORITHM NAME: CHANCE SS

PURPOSE: CHANCE SELF-SYNC NIBBLES

ALC # (10)

98

SYNTAX: CHANCE SS TO target
Where target may be. SS

NORM
value
(value)

99

normal
self-sync

PARMS USED. PREMIN
POSTMIN
MINLEN
MAXLEN

PASS VALUE: target

FUNCTIONAL DESCRIPTION:

Find PREMIN number of normal nibbles followed by at
least MINLEN self-sync nibbles. The number of self-sync
nibbles may not exceed MAXLEN. Then the algorithm looks
for the minimum number of normal nibbles that are
specified by POSTMIN.

I.E (1) nnnnnssssssnnnnn
(2) nnnnnnnssnnnnnnn

If the values for the parms are:
PREMIN:5 MINLEN:3 MAXLEN:6 POSTMIN:4

Then this algorithm will find pattern (1) but not
pattern (2) After finding pattern (1) it would change
the self-sync nibbles to the requested value.

COMMENTS: THIS IS A SELF-SYNC CLEANUP ROUTINE.

�LCORITHM NAME� CHANCE NORM

PURPOSE: CHANCE NORMAL NIBBLES

ALC # [11)

FUNCTIONAL DESCRIPTION:

This algorithm functions exactly like algorithm 10
except that it is reversed. PREMIN and POSTMIN represent
fields of self-sync nibbles, and MINLEN and MAXLEN
represent normal nibbles.

COMMENTS: CLEANUP NORMAL NIBBLES IN THE MIDDLE OF A
SELF-SYNC STRINC.

�LCORITHM NAME� CHANCE PATTERN TO SS

PURPOSE: CHANCE A PATTERN

ALC # (12)

SYNTAX: CHANCE PATx TO SS

PARMS USED: NONE

PASS VALUE; PATTERN NUMBER TO USE.

FUNCTIONAL DESCRIPTION:

Change any occurrance of PATx to self-sync.

ALGORITHM NAME: CHANCE PATTERN TO NORM

PURPOSE: CHANCE A PATTERN

SYNTAX: CHANCE NORM TO target
Where target may be: SS

NORM
value
(value)

PARMS USED: PREMIN
POSTMIN
MINLEN
MAXLEN

PASS VALUE· target

100

normal
self-sync

ALC # [13)

SYNTAX: CHANCE PATx TO NORM

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE.

FUNCTIONAL DESCRIPTION:

Changes any occurrance of PATx to normal nibbles.

101

�LGORITHM_ NAME_;_ CHANGE ALL

PURPOSE: CHANGE ENTIRE BUFFER

ALG # [14)

COMMENTS: CLEANUP SELF-SYNC.

�LGORITHM NAME_;_ CHANGE INVALIDS

SYNTAX: CHANGE ALL TO target
Where target may be: SS

NORM
value
(value}

PARMS USED: NONE

normal
self-sync

PURPOSE: CHANGE INVALID NIBBLES

ALG # [16)

SYNTAX: CHANGE INVALIDS TO target
Where target may be: SS

NORM

PASS VALUE: target

FUNCTIONAL DESCRIPTION:

Changes the entire nibble buffer to the target value.

PARMS USED: NONE

PASS VALUE: target

value
(value}

normal
self-sync

COMMENTS: THIS MAY BE USED TO DO TESTING ON A DISK. IT
IS ALSO A CONVENIENT WAY TO CLEANUP THE BUFFER AND WRITE
A TRACK WITH A KNOWN VALUE.

ALGORITHM NAME: CHANGE RANGE

PURPOSE: CHANGE A RANGE OF NIBBLES

ALG # [15]

FUNCTIONAL DESCRIPTION:

Changes all invalid nibbles to the specified value.
DEFINITION: An invalid nibble is any nibble that
contains more than two consecutive zero bits. A nibble
with more than two consecutive zero bits will not read
reliably.

COMMENTS: THIS ROUTINE IS USED TO CLEANUP GLITCHES WHICH
ARE LEFT AFTER A WRITE HEAD IS TURNED OFF. IT MAY ALSO
BE USED TO CLEANUP PORTIONS OF A TRACK THAT HAVE NOT
BEEN FORMATTED.

SYNTAX: CHANGE RANGE TO target
Where target may be: SS

NORM
value
(value}

normal
self-sync

-- ALGORITHM NAME_;_ CHANGE SHIFTED

PURPOSE: CHANGE SHIFTED SELF-SYNC NIBBLES

PARMS USED: RANGE (THESE ARE 2 BYTE WHICH DEFINE THE LOW
AND HIGH VALUES FOR THE RANGE. I.E. FE AND FF (THESE ARE
THE DEFAULT VALUES

PASS VALUE: target

FUNCTIONAL DESCRIPTION:

Changes all nibbles greater than or equal to the lower
boundary and less than or equal to the higher boundary
to the specified value.

102

ALG # [17]

SYNTAX: CHANGE SHIFTED

PARMS USED: NONE

PASS VALUE: NONE

103

FUNCTIONAL DESCRIPTION:

This algorithm looks for patterns of FF self-sync that
were read in before the read head was synchronized. It
then changes these nibbles to self-sync FF. This routine
only works for self-sync value FF.

COMMENTS: CLEANUP SELF-SYNC ROUTINE.

----- ---
�LCORITHM NAME� CHANCE BITLOOKUP

PURPOSE: CHANCE NIBBLES

ALC # (18)

ALGORITHM NAME: CHANCE EXTEND

PURPOSE: EXTEND SELF-SYNC NIBBLES

ALC # (19)

SYNTAX: CHANCE EXTEND BY x
Where xis the number of nibbles you wish to

extend to the right or a self-sync field.

PARMS USED: NONE

PASS VALUE: x

FUNCTIONAL DESCRIPTION:

SYNTAX. CHANCE BITLOOKUP TO target
Where target may be: SS

NORM
value
(value)

PARMS USED: BITTAB

PASS VALUE: target

FUNCTIONAL DESCRIPTION:

normal
self-sync

If the nibble following a self-sync (SS) string is the
same value as the self-sync in the string then change it
to self-sync as long as the length doesn't exceed the
number of the pass value. In the following example the
FF prior to the AA would be changed to self-sync but the
AA would not. If however there were three normal FF's
following the self-sync string, only the first two would
be changed to self-sync.

EXAMPLE:
PASS 2

Every nibble in the nibble buffer is translated
according to a 16 byte parameter called BITTAB Each of
the 128 bits in the 16 byte parameter BITTAB represents
a nibble value from $80 to $FF. If the bit corresponding
to the nibble being translated is a 1-bit, the nibble is
changed to the target value. If the corresponding bit is
a 0-bit, no change takes place.

EXAMPLE:
If the nibble being translated is $96, BITTAB+2 is
examined, and the $02 bit determines whether the nibble
being translated will be ohanged or not.

COMMENTS: A fast way to change many different nibbles to
the same target value, or to SS or to NORM.

104

SS SS SS NN NN
FF Ff FF FF AA

ALGORITHM NAM� CHANCE PATTERN TO VALUE

PURPOSE: CHANCE A PATTERN
ALC # [lA)

SYNTAX: CHANCE PATx TO VALUE
Where VALUE is any value between $0 and $FF.

PARMS USED: VALUE

PASS VALUE: PATTERN NUMBER TO USE (l-7).

FUNCTIONAL DESCRIPTION:

Change any occurrances of the pattern to the specified
value.

105

!LGORITHM NAME� CHANGE FRAME!

PURPOSE: CHANGE NORMAL NIBBLES

ALG # [lB]

SYNTAX: CHANGE FRAME!

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Changes a maximum of two normal nibbles in a string of
self-sync nibbles to self-sync.

COMMENTS: PROVIDES A FAST METHOD OF CLEANING UP NORMAL
GLITCHES IN A SELF-SYNC FIELD. THIS COULD ALSO BE DONE
WITH ALGORITHM 11.

!LGORITHM NAME� CHANGE SS INVALIDS

PURPOSE: CHANGE SELF-SYNC INVALIDS

ALG # [IE]

ALGORITHM NAME� TSTART PATTERN

PURPOSE: SET TRACK START

ALG # [20)

SYNTAX: TSTART PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE.

FUNCTIONAL DESCRIPTION:

Set track start to first occurrance of the specified
pattern in the buffer.

!LGORITHM NAME: TSTART FSPACE

PURPOSE: SET TRACK START

ALG # (21)

SYNTAX: TSTART FSPACE bytes
Where bytes may be: l field $00

of bytes $01-$FF

SYNTAX: CHANGE SS INVALIDS TO target
Where target may be: SS

NORM
value
(value)

normal
self-sync

PARMS USED: NONE

PASS VALUE: NUMBER OF NIBBLES TO MOVE THE TRACK START
FORWARD.

FUNCTIONAL DESCRIPTION:
PARMS USED: NONE

PASS VALUE: target

FUNCTIONAL DESCRIPTION:

Changes invalid self-sync to specified value.
DEFINl�ION: Invalid self-syno is any self-sync nibble
with the two low order bits equal to zero.
I.E. FC.

Normally this is not an invalid nibble but since it is
self-sync and therefore followed by more zero bits it
may not read reliably.

106

This algorithm takes the current track start and moves
it forward the specified number of nibbles in PASS
value.
EXCEPTION: If PASS value is zero (0) then track start is
moved forward one field.
I.E. If track start is on a normal nibble then it will
move forward to the first self-syno nibble if finds. If
track start is on self-sync then it will move forward to
the first normal nibble it finds.

107

TSTART FIRST SS ALGORITHM NAME
ALGO.!UTHM NAME� TSTART BSPACE ---
PURPOSE: SET TRACK START

PURPOSE: SET TRACK START
ALG # [22)

SYNTAX: TSTART BSPACE bytes
Where bytes may be: 1 field $00

of bytes $01-$FF
PARMS USED: NONE

ALG # [24)

SYNTAX: TSTART FIRST SS

PARMS USED: NONE

PASS VALUE: NONE
PARMS USED: bytes

FUNCTIONAL DESCRIPTION:

Same as algorithm number 21 except it moves backwards
through the buffer instead of forwards.

FUNCTIONAL DESCRIPTION:

t k Start to the first self­ This algorithm set the rac
sync nibble following a normal nibble.

COMMENTS: AFTER SELECTING TRACK START THIS ALGORITHM MAY
BE USED TO MOVE THE TRACK START TO THE BEGINNING OF THE LEADIN SELF-SYNC FIELD.

ALGORITHM NAME. TSTART LONG NORM

PURPOSE: SET TRACK START

ALG # [25)

SYNTAX: TSTART LONG NORM

PARMS USED: NONE

ALGORITHM�- TSTART FIRST NORM ---

ALG # [23)

PURPOSE: SET TRACK START

SYNTAX: TSTART FIRST NORM

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm sets the track start to the first normal
nibble occurring after a self-sync nibble. A self-sync nibble is looked for to make sure the entire normal field is present.

This algorithm sets the track start to the beginning of
the longest normal nibble field that occurs in the first
$2000 nibbles.

COMMENTS: THIS MAY BE USEFUL FOR DETERMINING DATA AREAS
ON SPIRAL TRACKS.

COMMENTS: THIS IS OFTEN USED IN SYNCHRONIZING TRACKS.

108
109

--- !LGORITHM NAME� TSTART LONG SS

PURPOSE: SET TRACK START

ALG # (26)

SYNTAX: TSTART LONG SS

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm sets track start to the first normal
nibble following the longest self-sync field in the
first $2000 bytes of the nibble buffer.

COMMENTS: THIS NORMALLY FINDS A GOOD TRACK START. THIS
IS THE DEFAULT VALUE.

--- ALGORITHM NAME� TSTART DOS

PURPOSE: SET TRACK START

ALG # (27)

SYNTAX: TSTART DOS PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE. DEFAULT=l.

FUNCTIONAL DESCRIPTION:

This algorithm uses a PATTERN (1) to determine a normal
13 or 16 sector track start. This will normally be sector 0.

COMMENTS: THIS HELPS FIND THE TRACK START ON NORMAL DOS DISKS.

110

!LGORITHM NAME� TSTART ASSIGN

PURPOSE: SET A PATTERN

ALG # (28)

SYNTAX: TSTART ASSIGN PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO STORE TRACK START
INFORMATION

FUNCTIONAL DESCRIPTION:

This algorithm finds the current track start location
and sets the PATTERN= to the first 16 nibbles following
the track start.

ALGORITHM NAME� TSTART FSPACE EQUAL

PURPOSE: SET TRACK START

ALG # (29)

SYNTAX: TSTART FSPACE EQUAL

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm takes the current track start and moves
it forward to the first nibble of a different value.

111

PURPOSE· SET TRACK START
--- ALGORITHM NAME. TEND FSPACE

-- -- --- !�TRM !!!!!_�� TSTART BSPACE EQUAL

ALG # (2A) PURPOSE: SET TRACK END

SYNTAX: TSTART BSPACE EQUAL
ALG # (31)

PARMS USED: NONE SYNTAX: TEND FSPACE bytes
Where bytes may be: 1 field $00 # of

PARMS USED: NONE bytes $01-$FF

FUNCTIONAL DESCRIPTION: PARMS USED: NONE

This algorithm moves the traok start baok through the
buffer to the first nibble of a different value.

-------- --------------------
�ITBM �� TEND PATTER�- - ----------

PURPOSE: SET TRACK END

ALG # (30)

SYNTAX: TEND PATx

PASS VALUE: bytes

FUNCTIONAL DESCRIPTION:

This algorithm takes track end and moves it forward the
specified number of nibbles in PASS value.
EXCEPTION: If PASS value O then track end is moved
forward one field.
I.E. If track end is on a normal nibble then it will be
moved forward to the first self-sync nibble. If track
end is on a self-sync nibble then it will be moved
forward to the first normal nibble.

PARMS USED: NONE

PASS VALUE PATTERN NUMBER TO USE. --- ALGORITHM NAME: TEND BSPACE
FUNCTIONAL DESCRIPTION: PURPOSE: SET TRACK END
This algorithm sets the track end to the first
occurrance of the specified pattern.

ALG # [32)

SYNTAX: TEND BSPACE bytes
Where bytes may be: 1 field
bytes $01-$FF

$00 # of

PARMS USED: NONE

PASS VALUE: bytes

FUNCTIONAL DESCRIPTION:

This algorithm is the same as algorithm 32 except it
moves the track end back through the buffer instead of
forward.

112
113

--- !LGORITHM NAME� TEND REPEAT

PURPOSE: SET TRACK END

ALG # (33]

SYNTAX: TEND REPEAT

PARMS USED: TSIZMIH
TSTLEN
BIGTRK

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm sets the track end - to track start. It
takes track start and adds TSIZMIH * $100 nibbles and
searches forward through the buffer for a repeat of
track start. It searches for TSTLEN number of nibbles
for a match. It then calculates track length. Track
length must be less than BIGTRK * $100. After the
pattern is found, track end is set to this location and
then moved back through the buffer to the beginning of the previous self-sync field.

COMMENTS: DEFAULT ALGORITHM

--- ALGORITHM NAME� TEND TSTART

PURPOSE: SET TRACK END

ALG # (34]

SYNTAX: TEND TSTART pages

PARMS USED: NONE

PASS VALUE: pages

FUNCTIONAL DESCRIPTION:

This algorithm takes track start and adds the specified number of pages and sets track end.

114

------------------- -------------------------------------
ALGORITHM NAME: TEND ASSIGN

PURPOSE: SETS A PATTERN

ALG # (38]

SYNTAX: TEND ASSIGN PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE.

FUNCTIONAL DESCRIPTION:

This algorithm sets a specified PATTERN to the 16
nibbles that preceed track end.

!LGORITHM NAME: TEND FSPACE EQUAL

PURPOSE: SET TRACK END

ALG # [39]

SYNTAX: TEND FSPACE EQUAL

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm takes track end and moves it forward to
the first nibble of a different value.

115

-------------------------------- --------------- ALGORITHM NAME· TEND BSPACE EQUAL ----------
PURPOSE: SET TRACK END

ALC # [3A)

ALGORITHM NAM�� VSTART FSPACE

PURPOSE: SET VERIFY START

ALC # (41)
SYNTAX: TEND BSPACE EQUAL

PARMS USED: NONE

PARMS USED: NONE

FUNCTIONAL DESCRIPTION:

This algorithm moves the track
buffer to the first nibble of aend backwards through the different value.

SYNTAX: VSTART FSPACE bytes
Where bytes may be: l field
bytes $01-$FF

PARMS USED: NONE

PASS VALUE: bytes

FUNCTIONAL DESCRIPTION:

$00 # of

------------------------- ALGORITHM NAME� VSTART ;�;;��-;---------

PURPOSE: SET VERIFY START

ALG # (40)

SYNTAX: VSTART PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE.

FUNCTIONAL DESCRIPTION:

This algorithm takes the verify start and moves it
forward the number of nibbles in PASS value.
EXCEPTION: lf PASS value O then verify start is moved
forward one field.
I.E. If verify start is on a normal nibble then it will
move forward to the first self-sync nibble. If verify
start is on a self-sync nibble it will move forward to
the first normal nibble.

ALGORITHM NAME� VSTART BSPACE

PURPOSE: SET VERIFY START

This algorithm sets the verif sta occurrance of th Y rt to the first e specified pattern in the buffer.
ALG # (42)

SYNTAX VSTART BSPACE bytes
Where bytes may be: 1 field
bytes $01-$FF

PARMS USED: NONE

PASS VALUE: bytes

FUNCTIONAL DESCRIPTION:

$00 # of

116

This algorithm takes the verify start and moves it
exactly like algorithm 41 except it is moved backwards
through the buffer. All the information in algorithm 42
is the same as that in algorithm 41.

117

--- ALGORITHM NAME: VSTART NORM

PURPOSE: SET VERIFY START

ALG # [43)

SYNTAX: VSTART NORM

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm moves the verify start forward to the
first normal nibble from track start.

COMMENTS: SINCE TRACK START IS NORMALLY SET TO THE
BEGINNING OF SELF-SYNC THIS IS USED TO MOVE THE VERIFY
START FORWARD TO THE FIRST NORMAL (DEFAULT).

--- ALGORITHM NAME� VSTART TSTART

PURPOSE: SET VERIFY START

ALG # [44)

SYNTAX: VSTART TSTART pages

PARMS USED: NONE

PASS VALUE: pages

FUNCTIONAL DESCRIPTION:

This algorithm takes track start and adds the specified
number of pages to it and uses that position for the
verify start.

118

ALGORITHM NAME� VSTART ASSIGN

PURPOSE: SET A PATTERN

ALG # [48)

SYNTAX: VSTART ASSIGN PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO ASSIGN VERIFY START TO.

FUNCTIONAL DESCRIPTION:

This algorithm finds the verify start and sets the
assigned PATTERN equal to the following 16 bytes.

ALGORITHM NAME: VSTART FSPACE EQUAL

PURPOSE: SET VERIFY START

ALG # [49)

SYNTAX: VSTART FSPACE EQUAL

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm takes the current verify start and moves
it forward to the first nibble of a different value.

119

!LGORITHM NAME� VSTART BSPACE EQUAL

PURPOSE: SET VERIFY START

ALG # [4A]

SYNTAX: VSTART BSPACE EQUAL

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm moves the verify start backwards through
the buffer to the first nibble of a different value.

--- ALGORITHM NAME� SHORTEN ALL EQUAL

PURPOSE: SHORTEN TRACK

ALG # [50)

SYNTAX: SHORTEN ALL EQUAL BY n

PARMS USED: MINGAP

PASS VALUE: n where n is the number of self-sync nibbles
to remove each time

FUNCTIONAL DESCRIPTION:

This algorithm goes through the buffer removing the
specified number of self-sync nibbles from each self­
sync field, leaving at least MINGAP self-sync nibbles in
each field.
Note: This removes only self-sync values that are the
same as other self-sync values in the self-sync string.
It will not remove self-sync nibbles with differing
values. The self-sync nibbles are removed from the
beginning of the self-sync string.

120

----------- -------------------------- ------------------------ ALGORfTHM NAME� SHORTEN ALL CENTER

PURPOSE: SHORTEN TRACK

ALG # [51]

SYNTAX: SHORTEN ALL CENTER BY n

PARMS USED: MINGAP

PASS VALUE: n where n is the number of self-sync nibbles
to remove each time

FUNCTIONAL DESCRIPTION:

This algorithm is the same as algorithm 50 except it
doesn't require the self-sync nibbles to be of the same
value. It removes the self-sync nibbles from the middle
of the self-sync string.

ALGORITHM NAME� SHORTEN LONGEST EQUAL

PURPOSE: SHORTEN TRACK

ALG # [52)

SYNTAX: SHORTEN LONGEST EQUAL BY n

PARMS USED: MINGAP
CHOPS

PASS VALUE: n where n is the number of self-sync nibbles
to remove each time

FUNCTIONAL DESCRIPTION:

This algorithm searches the buffer for the longest self­
sync field and removes the specified number of sel�-sync nibbles. This sequence is repeated the number of times
specified in CHOPS. The self-sync nibbles value must be
the same and they are removed from the beginning of the
self-sync string.

121

�LGORITHM NAME� SHORTEN LONGEST CENTER

PURPOSE: SHORTEN TRACK

ALG # (53]

SYNTAX: SHORTEN LONGEST CENTER BY n

ALGORITHM NAME� GOTO

PURPOSE: GOTO A LOCATION IN DYNAMIC STACK

ALG # (70]

SYNTAX: GOTO label

PARMS USED: MINGAP
CHOPS

PASS VALUE: n where n is
to remove each time

the number of self-sync nibbles

PARMS USED: NONE

PASS VALUE: label where label is a value between $0 and
$FF

FUNCTIONAL DESCRIPTION:
FUNCTIONAL DESCRIPTION:

This algorithm performs the same as algorithm 52. The
differences are that it takes the self-sync nibbles from
the middle of the self-sync string and doesn't check to
see if the self-sync values are the same.

---------------------------- ---------------------- �LGORITHM NAME� SHORTEN MANUAL

PURPOSE: SHORTEN TRACK

ALG # (54]

SYNTAX: SHORTEN MANUAL

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm prints SHORTEN on the screen. In the
manual mode you must shorten the track yourself.

122

This algorithm is used to goto a label at a location in
the algorithm processing stack. It is very useful if
you wish to return and do further processing after
encountering an error while analyzing.

PURPOSE: SET A LABEL IN DYNAMIC STACK

ALG # [71]

SYNTAX: LABEL label

PARMS USED: NONE

PASS VALUE: label where label is a value between $0 and
$FF.

FUNCTIONAL DESCRIPTION:

This algorithm is used to set a label which may be used
by the GOTO label algorithm (70)

123

!LGORITHM NAME� RESTORE

PURPOSE: RESTORE PARAMETERS

ALG # (72]

SYNTAX: RESTORE

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm restores all default parameters in
Locksmith's parameter tables.

ALGORITHM NAME� SCRNPRT

PURPOSE: SCREENPRINT

ALG # (73]

SYNTAX: SCRNPRT

PARMS USED: PRSLOT (default 1)
PAUTOCR (default 1)

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm prints the current text screen on the
printer.

COMMENTS: THIS ALGORITHM ASSUMES THE PRINTER IS TURNED
ON AND ON LINE WHEN IT IS INVOKED.

124

------------------------------------- -------------
!LGORITHM NAME_;_ CLEAR ANCHOR

PURPOSE: CLEARS ANCHOR

ALG # (74]

SYNTAX: CLEAR ANCHOR

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm clears the ANCHOR to the beginning of the
buffer.

----------------------------------- --------------------------
!LGORITHM NAME: ABORT

PURPOSE: ABORTS CURRENT OPERATION

ALG # (75]

SYNTAX: ABORT

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm aborts the current operation and returns
you to the previous menu.

125

--- !LGORITHM NAME� TSTLONG

PURPOSE: TEST TRACK LENGTH

ALG # [76)

SYNTAX: TSTLONG

PARMS USED: BIGTRK

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm checks to make sure that track length is
less than BIGTRACK * $100.

--- ALGORITHM NAME� SKIP

PURPOSE: SKIP A TRACK

ALG # [78)

SYNTAX: SKIP

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm skips the current track, and continues
with the next track in the copy process.

COMMENTS: This is often used after encountering errors
in processing, to continue the copy.

126

-- -------------------
ALGORITHM NAME: CLEAR STATUS

PURPOSE: CLEAR STATUS REGISTERS

ALG # [7A)

SYNTAX: CLEAR STATUS n

PARMS USED: NONE

PASS VALUE: n where n is the number of the status
register to clear.

FUNCTIONAL DESCRIPTION:

This algorithm clears the STATUS register with the value
n.

----------------- --------------- --------------------------
ALGORITHM NAME: READ

PURPOSE: READS A TRACK

ALG # [7B)

SYNTAX: READ

PARMS USED: REREAD
AC TREAD
AC TERR

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm reads a track. If it encounters an error
it checks to make sure that the number of times the
track has been read is less than the value of REREAD. If
so it increments ACTREAD, clears all error flags and
rereads the track. If the value is equal or greater than
REREAD it exits with the appropiate error flags set.

127

PURPOSE: COPY TRACKS

ALG # ['l'F]

SYNTAX :COPY TRACK nn TO nn BY nn

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm sets up the copy process after all
analysis algorithms have been entered into the text
file. The starting track, ending track and track
increment are defined.

128

NIBBLE EDITOR COMMANDS

CURSOR MOVEMENT

[I] Move up one line.
[J] Move left one character.
[K] Move right one character.
[M] Move down one line.
[up] Up arrow Move up one line Apple //e only.
[dn] Up arrow Move down one line Apple //e
only.
[lt] Left arrow Move left one character.
[rt] Right arrow Move right one character.
[<] Move back one screen page.
[>] Move forward one screen page.
[,] Continous scroll backwards.
[.] Continous scroll forward.
[CTRL-B] Move to beginning of buffer or to track
start.
[CTRL-E] Move to end of track or end of buffer.

CONTROL KEY COMMANDS

[CTRL-R] Read a track into the buffer.
[CTRL-W] Write the current buffer to disk.
[CTRL-B] Move to beginning of buffer orto track
start.
[CTRL-E] Move to end of track or end of buffer.
[CTRL-A] Perform an Algorithm. It will ask for
PASS: value. RETURN defaults.
[CTRL-S] Perform current set of algorithms on
track.

129

[CTRI.r V] Set track verify start. Should be used
after'('. Check'(' below.
[CTRL-I] Insert nibble. Replicates nibble under
cursor.
[CTRlrD] Delete nibble under cursor.
[CTRL-F] Find has four options.
[CTRL-FJ Enter data as hex numbers separated
by spaces, end with RETURN key.
[CTRL-F] RETURN repeats the last CTRL-F
command.
[CTRL-FL] Enter length (0-F). Look for pattern
starting at cursor of (length).
[CTRL-FL] RETURN repeats the last cFL
command.
[CTRL-FP] Enter a number (1-7) uses parm
(pattern) for the search.
[CTRL-FO] Finds the first nibble that is
different from the one the cursor is on.
[CTRL-PJ Change parameters from within
Nibble Editor.

CTRLP HAS THE FOLLOWING OPTIONS.

PARM: Enter <ctrlR> + RETURN. Restores all
default parameters.
PARM: Enter <name>+ RETURN.
PARM: Enter <hex value> (0- lFF valid) +
RETURN.
PARM: Enter<?>+ RETURN. Displays all valid
parm names.
PARM: Enter <+> + RETURN. Moves to next
parameter in sequence.

130

PARM: Enter <RETURN>. Exit parameter
change mode.
AFTER PARM HAS BEEN ENTERED YOU
HA VE THE FOLLOWING OPTIONS FOR
VALUE.
VALUE: Enter <RETURN>. Accepts displayed
default value.
VALUE: Enter <hex>+ RETURN.
VALUE: Enter <hex hex hex ... >+ RETURN.
VALUE: Enter <track number with decimal
point.> + RETURN.
WARNING! NO CHECK IS MADE TO SEE IF
THE PARM IS TRACK.

MISCELLANEOUS COMMANDS.

[(] Sets track and verify start at cursor position.
[)] Sets track end.
[SJ Sets nibble under cursor to self synch.
[NJ Sets nibble under cursor to normal (non-self
synch).
[C] Enter change mode. Enter <hex hex ... > +
RETURN to exit change mode.
[CJ The commands (S and N) also work in
change mode.
[HJ Entering 'H' will display current buffer on
the hi-res screen.
[HG] Entering a 'G' while in hi-res mode will
print the hi-res screen if:
You have a printer capable of graphics and
a graphics printer card.
[G] Entering a 'G' shows you a text graphic
display of the buffer.

131

[DJ Entering a 'D' will give you a display of the
16 sector addresses and the data checksum.
For 13 sector it will display address fields only.
[CTRL-Z] Prints current screen to printer.
[#] Prints from'(' <track start> to')' <track end>
on the printer.
[ESCJ Pressing the 'ESC' key exits the Nibble
Editor.

132

16 SECTOR 6-BIT NIBBLE TRANSLATE
TABLE

The following translate table is used for calculating
data field checksums. It is described in the chapter on the
nibble editor describing the 'D' command.

00:96 01:97 02:9A 03:9B
04:9D 05:9E 06:9F 07:A6
08:A7 09:AB OA:AC OB:AD
OC:AE OD:AF OE:B2 OF:B3
10:B4 ll:B5 12:B6 l3:B7
14:B9 15:BA 16:BB 17:BC
18:BD 19:BE lA:BF lB:CB
lC:CD lD: CE lE:CF 1F:D3
20:D6 21:D7 22:D9 23:DA
24:DB 25:DC 26:DD 27:DE
28:DF 29:E5 2A:E6 2B:E7
2C:E9 2D:EA 2E:EB 2F:EC
30:ED 31:EE 32:EF 33:F2
34:F3 35:F4 36:F5 37:F6
38:F7 39:F9 3A:FA 3B:FB
3C:FC 3D:FD 3E:FE 3F:FF

<�<�ra:i�ra:i�<�<�ra:i�ra:i�<�<�ral�ral�<� ra:lra:lra:lra:lra:lralra:lralra:lra:lralralra:lra:lralral����������
<<��<<��ralra:l��ralral��<<��<<��ralra:1 �������������������������� ..

<�l'&l�l&I� ������
� � ral l'&l � �
������

< i:Q < i:Q r.i r.. r.i r.. <<<<<<<<
< < i:Q i:Q < < i:Q i:Q <<<<<<<<

< i:Q < i:Q r.i'"' r.i'"' <<<<<<<<
r.i r.i r.. r.. r.i r.i '"''"' <<<<<<<<

co en< i:r:l u Q r.i r..
00000000

O r-1 NI:') ,q, II'> <O t-.
00000000

r.i
::::,
..:l

r.i <
..:l >
i:Q < rn
E-< r.i

..:l
r.i i:Q
Q i:Q
0
c., z
r.i
Q

i:r:
r.i r.i
i:Q::::,
:S ..:l ::::, < Z>
i:r: rn
O r.i
E-< ..:l
c., i:Q
r.i i:Q rn ,...

z

i:Q i:Q i:Q i:Q i:Q < < i:Q i:Q <
<r.J<r.J< < < < < i:Q

<<<<< < < i:Q i:Q <
i:Q'"' i:Q r.. i:Q < < < < i:Q

oc:ooc:oo
0 0 r-1 rl N

<<<<< <<i:r:li:r:l<
< r.i < r.i < < < < < i:Q

i:Q i:Q i:Q i:Q i:Q < < i:Q i:Q <
i:Q'"' i:Q r.. i:Q < < < < i:Q

r.. r.. '"' '"' < < i:Q i:Q

< r.i < r.i <<<<

r.i r.i r.i r.i <<i:r:li:r:l
< r.i < r.i <<<<

r.i r.i r.i < < r.i i:Q
i:Q

i:Q r.. r.. < < i:Q < < ..
(0 r.i .. r.i
0 0 <O r-1

r-1

r..'"' '"' < < '"'i:Q
i:Q

i:Q r.. '"' < < i:Q < < ..
r,. r.. .. r..
0 0 t-. r-1

<�l'&l�l&I�
������
��ra:11&1�� <<<<<<

< � ra:i � r,il �
������
� � ra:i r,il � � <<<<<<

< � l'&l � !&I �
������
� � ra:i l'&l � � ������

<�l&l�ral�
������
�i&.l&lra:I��
������

<�ra:l�ral�
������
��ra:lral��
������

<�1&1�1&1�
������
��1&11&1��
!&I l'&l !&I ral l'&l !&I

< � l'&l � ra:i �
������
��1&11&1�� l'&l l'&l l'&l 1&11&1 !&I

..

..

..

OriN���w��m<�UQra:l�OrlN���w��m
��������������������������

<�<�1&1�1&1�<�<�1&1�1&1�<�<�ral�1&1�<� rall&ll&ll&lrall&ll&ll&ll'&ll'&ll&lra:11&11&11&11&1����������
<<��<<��ra:ll'&l��rall'&l��<<��<<��l'&ll&I
��������������������������

<�<�ral�1&1�<�<�1&1�1&1�<�<<1&1�1&1�<� <<<<<<<<<<<<<<<<����������
<<��<<��l'&lral��l&ll&l��<<��<<��l'&ll'&l ��������������������������

..

...

OrlN���w��m<�uAf&l�OrlN���w��m <<<<<<<<<<<<<<<<����������

<�<���1&1�<�<�1&1���<�<�ral�1&1�<� <<<<<<<<<<<<<<<<����������
<<��<<��rall'&l��rall'&ll'&l�<<��<<��l'&ll'&l l'&ll'&ll'&ll'&lrall'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll&ll&lrall&ll&ll&ll&lrall&ll&ll'&l

..

..
OrlN���w��m<�UQl'&l�OrlN���w��m UUUUUUUUUUUUUUUUQQQQQQQQQQ

OnN���w��m<�uQral�OrlN���w��m ralralra:lra:lra:ll'&ll'&ll'&ll'&lrall'&ll'&ll'&ll'&lralral����������

<�<�1&1�1&1�<�<�1&1�ral�<�<�1&1�1&1�<� <<<<<<<<<<<<<<<<����������
<<��<<��l'&ll'&l��ra:ll'&l��<<��<<��l'&lral ��������������������������

<�<�1&1�1&1�<�<�1&1�ral�<�<�ra:l�1&1�<� rall'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&lralrall'&ll'&ll'&ll'&l����������
<<��<<��rall'&l��l'&ll'&l��<<��<<��l'&ll'&l l'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&ll'&lralrall'&ll'&ll'&lrall'&ll'&ll'&ll'&ll'&l

OrlN���w��m<�UAra:l�OrlN���w��m
����������������mmmmmmmmmm

<�<�1&1�1&1�<�<�1&1�1&1�<�<�1&1�1&1�<� l&ll'&lrall&ll&ll&ll&ll&ll'&lra:ll&ll'&lrall&ll'&lra:I����������
<<��<<��l&ll&l��l&ll&l��<<��<<��l'&ll&I <<<<<<<<<<<<<<<<<<<<<<<<<<

<�<�ra:l�1&1�<�<�1&1�ral�<�<�ral�1&1�<� <<<<<<<<<<<<<<<<����������
<<��<<��l&ll'&l��l'&ll&l��<<��<<��rall'&l <<<<<<<<<<<<<<<<<<<<<<<<<<

OriN���w��m<�UQl&l�OrlN���w��m
NNNNNNNNNNNNNNNN����������

OrlN���w��m<�uAf&l�OnN���w��m wwwwwwwwwwwwwwww����������

OriN���w��m<�UQl&l�OrlN���w��m oooooooooooooooonnrlrlrlrlnrlrlrl

134 135

PHYSICAL TO LOGICAL
TRANSLATION TABLE

The sector numbers contained in the address fields of
a 16-sector formatted diskette appear in ascending order
($0 to $F) on successive sectors. These physical sector
numbers are converted by the disk operating system to
logical sector numbers, to allow for faster read/write of
multiple sectors. The following table shows the
relationship between physical sector number and logical
sector number.

PHYSICAL

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

LOGICAL

0
7
E
6
D
5 c
4
B
3
A
2
9
1
8
F

137

TRACK LAYOUTS (13 and 16 sector)

There have been two different track formats in
common use for the Apple II. One of them recorded 13
sectors on each of the 35 tracks. The other, by employing
a more efficient data packing algorithm and slightly
modified hardware, is capable of recording 16 sectors per
track.

Both formats are basically the same, with the
exception of the method of packing the data field. In
addition, the address field header is slightly different to
allow the two different formats to be identified easily.

Since the 13 sector format is no longer in common
use, we will discuss the 16 sector format, and will identify
where the two formats differ.

The track is recorded with 16 (or 13) sectors, each
consisting of an address field and a data field. The
address field contains information about the data field
which immediately follows it. The fields are separated by
gaps, which contain 'self-sync' nibbles. These self-sync
nibbles are specially recorded nibbles which cause the
disk controller hardware to synchronize, so that the field
following the self-sync can be read.

The address and data fields each contain a header,
information nibbles, and a trailer.

The address field contains header nibbles of D5 AA
96 (or D5 AA B5, if 13 sector), followed by 4 items of
information, encoded in double-nibble format. Two
consecutive nibbles are used to represent the volume
number, track number, sector number, and checksum.
The checksum is simply an exclusive-or of the other 3
items of information. A table is included in this manual
to allow you to convert these double-nibbles to the values

139

they represent. Following these 4 items of information, is
the address field trailer, which consists of DE AA.

After a gap of self-sync nibbles, the data field
appears. The data field consists of a header, D5 A/\ AD,
followed by 342 nibbles (or 410, if rn sector format) which
represent the actual sector data. These nibbles are
encoded using a 6-bit table shown in the section of this
manual titled "Data Field Nibble Encoding". (If 13sector
format, a 5-bit table is used.) After the data nibbles, a
single nibble is provided for checksum, followed
immediately by the data field trailer, DE AA.

In some early protection schemes, the header and
trailer nibbles in the address and data fields was
changed to some other value. (see "History of Locksmith
and Copy Protection" chapter of this manual)

140

