THE ORIGINAL
LOCKSMITH
USERS MANUAL

VERSION 5.0

B g g iy

A, -
: i ff:g%?g e

s ‘fP’;‘!::r} .
I
tag]
I tag
gt
«L? 57 011
S Joy
Al

¥
14
7

http://www.cvxmelody.net/AppleUsersGroupSydneyAppleIIDiskCollection.htm

TABLE OF CONTENTS

RS e e i chiom ik e s S R R T e 1
History of Locksmith and copy protection b
Important Locksmith information000000 13
Cietling started:backing up' a digk e oiioaa i 17
BB CEUD/Copyaiak . .. L b s R 21
Error codes from backup/copy diskiueesciiiiaiann 25
BN cRean disk L. L 27
EEREAEametors: ., .00 5ol o Do e LR DR 29
e] O U BRI S T S 33
e disk ..o ou oo R G L A 35
BN aneed 00 e ose s R s W Y 37
B Ol Bditor . ..o, . .o il S s 41
R Fext Fditor menty. 0. aehiblmes o mn b Sl i i s ol 57
ifsino the text editor. i bbb o s fo il 59
Locksmith Programming Language (LPL) 61
Batching the Lacksrmith daske e oo ibeie il g 65
I sector utilithes: s s ainhe el w i rio ol dre i 67
16 sector: VEISNG NG ciiisheii v s b S g 67
16 sector FAST DISK BACKUPI[B]0 69
16:sector FORMATIFT .. s il solvnleals 3
16 sector COMPBPARE [C] s o s i g Bavaniies ks
16 sector SYNC SIGNATURE [S] i 75
RN S D ety WRESON - o b e s i 79
BRI Teorisiatig- vl 0 h) S A e s e s 81
B Sereemy vt L R e 81
PRIt Rebhonh: .l S o e b A G e 81
Appendices:
s L e e S R e S L 83
RIS srror codes oG e e R Rl e s e v 85
By e eter keywords) L Ll i i i s § e s 87
B G R SN ATY e UL e e s w e e 93
Nibble editor command summary 129
Address-field nibble encoding table 133
Data-field nibble encoding table os 134
Physical/logical sector translation table- 137
Track layouts (16 and 13 sector)cocvveemerrees 139

NOTICE

Omega MicroWare, Inc. reserves the right to make
improvements in the product described in this manual at any
time and without notice.

DISCLAIMER OF ALL WARRANTIES AND
LIABILITY

Omega MicroWare, Inc. and the author make no
warranties, either express or implied, with respect to this
manual or with respect to the software described in this
manual, its quality, performance, merchantability, or fitness
for any particular purpose. This softwareis sold or licensed "as
is”. The entire risk as to its quality and performance is with the
buyer. Should the programs prove defective following their
purchase, the buyer (and not Omega MicroWare, Inc., the
author, their distributors, or their retailers) assumes the entire
cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Omega
MicroWare, Inc., or the author be liable for direct, indirect,
incidental, or consequential damages resulting from any
defect in the software, even if they have been advised of the
possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation
or exclusion may not apply to you.

NOTICE OF COPYRIGHT

dom'lr‘:is tmanual its _cop)}rlrilghted. All rights are reserved. This
ent may not, in whole or in part, be copied, photocopied
reproduced, taragllsl?ted or r(lelduced to any electronic mediuI:n or
machine readable form without prior consent, in writin

Omega MicroWare, Inc. " i

This software is a fully copyrighted work and as such is
pmte(;ted under the copyright laws of the United States of
America. According to these laws, consumers of copywritten
material may make copies for their personal use only.
Duplication for any other purposes whatsoever would
constitute infringement of copyright. Please note that this

software is supplied on diskettes which are uniquel
with an encrypted serial number., I Soved

Copyr_lght 1980,1981,1982,1983 by:
Omega MicroWare, Inc.
222 South Riverside Plaza
Chicago, Illinois 60606
(312) 6481715

The word LOCKSMITH and the Locksmi
trademarks of Omega MicroWare, Inc.e AR Sogn e

INTRODUCTION

THE OMEGA POLICY

THE COPYRIGHT LAW ALLOWS THE
CREATION OF ARCHIVAL COPIES OF COMPUTER
SOFTWARE WHICH IS OWNED BY THE
LOCKSMITH USER. LOCKSMITH 5.0 IS SOLD WITH
THE UNDERSTANDING THAT THE PURCHASER
WILL NOT USE THE PROGRAM TO GENERATE
DISKS OF COPYRIGHTED PROGRAMS FOR SALE
OR DISTRIBUTION. SHOULD THE PROGRAM BE
MISUSED, OMEGA MICROWARE WILL ASSIST IN
THE PROSECUTION OF VIOLATORS AT THE
COPYRIGHT HOLDER’S REQUEST.

If a program is sold with an archival (or back up)
disk, Omega MicroWare will make no effort to permit
Locksmith to make an archival copy of that program.

THE HISTORY OF LOCKSMITH

In the early days of the Apple computer all programs
were copyable. In fact, each Apple Disk Operating
System (DOS) came (and comes) with a copy program
permitting the owner to copy programs quickly and
efficiently. DOS itself has facilities to save out a program
and information to diskettes. Most of the first
commercial programs for the Apple were copyable.
However some software manufacturers were concerned
over indiscriminate distribution of their product and
began to employ methods that would not allow copying of
their programs. Other manufacturers noticed that disks
had a tendency to wear out or get destroyed and began
charging for the privilege of getting a replacement. In
some cases the backup copies were almost as much as the
originals. Some manufacturers would not provide
backup copies, period! Finally, from the users’
standpoint, when they found out they needed a backup

copy and attempted to contact the rnanufacturer,- they
sometimes found the manufacturer was out of business.

Any Apple disk can be copied! As software protection
was developed, as an intellectual exercise, computer
aficionados determined what was done and counteracted
it. These individuals were not necessarily interested in
copying the program, but in determining how the
protection was done. Today, as computer knowledge
grows, more and more people exist who can defeat copy
protection.

Unfortunately, there was (and is) another group of
people who only wish to make a copy of their program in
case their disk goes bad. They don’t care how it's
duplicated, they have no ulterior motives, they only want
to use their program. Locksmith came about as a result of
this need.

In January 1981, Omega MicroWare offered a
program which would copy programs for the general
user.

EASE OF USE

In the original days of Locksmith, it copied virtually
all programs. In this, the seventh revision, it again copies
virtually everything. However it is to be expected that
new techniques will be developed to prevent the user to
make archival copies. As this happens, registered
Locksmith owners will be provided with the necessary
information to back up programs. As the state of art
changes, new revisions of Locksmith may be
necessary...always at a reasonable price.

Through this manual, we will introduce you to the
way Locksmith works. If you're not interested, you need
not go beyond the first chapter. However, it is interesting
to note that classes and seminars are springing up

around the country dealing with the way Locksmith
works and modifications and changes which can be
made using it in conjunction with its companions,
Watson and The Inspector, programs also available
through Omega MicroWare.

THE FUTURE

Imitation is the sincerest form of flattery, they say.
Locksmith is flattered by its imitators and it keeps us on
our toes. We promise our customers to stay in the
forefront of the duplication technology and provide them
with the information and assistance they need to keep us
number one.

SYSTEM REQUIREMENTS

You will need an Apple II, Apple II+, Apple Ile or
Apple /// in emulation mode. Locksmith 5.0 will also
work with all known computers running Apple software.
You must have at least one disk drive and disk controller
card. If you have two disk drives, both on the same disk
controller card, your copying will be much easier and
faster. If you have a controller card manufactured by
Apple, all features of Locksmith 5.0 will work as
described. Other, non-Apple manufactured controller
cards, may or may not allow all the features of Locksmith
5.0 to function properly. Apple built controller cards are
totally controlled by software which means that the disk
controller software is modifiable. Some controller cards
are controlled by firmware and are therefore not
modifiable. If you tell these to do some things, via
software, they aren’t able to do it. Fortunately, most non-
Apple controller cards are also software controlled.

A printer can also be used but is not required.

THE HISTORY OF LOCKSMITH AND
COPY PROTECTION

For the past several years, there has been an intense
battle being fought between software manufacturers and
software users. The manufacturers, concerned about
their programs being pirated or stolen, started
'protecting’ their software. They did this by making their
programs uncopyable. This means that normal copy
programs would no longer copy their software. Since it
could not be copied, it could not be passed around between
users. This was toinsure that anyone who wished touse a
program would be required to purchase it, thereby
guaranteeing that the manufacturer would receive his
fair share of profits.

As in most issues, however, there are two sides.
Software users, upon purchasing a program, received a
disk which they could not copy. This means that they
could not even make back-ups of their disks, which is a
legitimate concern of everyone who has ’blown’ a disk.
Since some businesses day to day operations rely very
heavily on their software investment, this becomes a
very critical situation. Some applications simply do not
allow for up to several weeks waiting time while the bad
disk is sent out to be replaced. In addition, some of the
manufacturers charge inflated prices to get these
replacements. It seems rather unfair to charge $35.00 for
a replacement of a $2.00 disk for which the user already
paid $100.00 or more.

Shortly after these ’protected’ disks started
appearing on the market, Locksmith was made available
to copy these disks. Locksmith used a new type of
technology to copy protected software, known as nibble-
copying. In the several years since, the manufacturers
have introduced new, more sophisticated methods of
copy protection. As a result, Locksmith has been updated
several times to anticipate new methods of protection.

5

In this chapter, we will discuss the origin of
Locksmith, and some of the different methods that have
been used for protection over the past several years.

Locksmith was written by an Apple programmer
with 18 years of computer experience, including systems
prograimming on large IBM mainframes at several large
corporations. His interest in computers dates back to
grammar school, when he would spend his Saturdays
taking computer courses at the IIT computation center in
Chicago.

The first version of Locksmith, which was never
released, was a primitive nibble copy program known as
'NIBY’. It was written as an educational exercise —
"because it was a challenge”. When it was shown to some
of his close friends from the local Apple users group, it
gathered much interest, and because no program like it
was available, several Apple users suggested that the
program might be marketable.

In January, 1981, Omega MicroWare (then called
Omega Software Products) released its first product.
Locksmith version 2.0 was the first program ever
introduced to allow the Apple user to backup his copy-
protected software.

Like any tool in the wrong hands, it was feared that
Locksmith might be used for tasks it was not intended to
perform. Because of this fear, each Locksmith was
uniquely serial numbered and registered, and every copy
of Locksmith also placed this unique serial number on
EVERY disk that copied. This fact, by the way, was
never made known until now. Encoding the Locksmith
serial number on the copied disk provided Omega with
the capability of identifying the owner of any Locksmith
used for pirating any manufacturers software, and
Omega offered to assist software manufacturers in the
prosecution of software pirates. No software

‘manufacturer however, has ever requested this

assistance from Omega. Placing the Locksmith serial
number in an inconspicuous place on every disk that is
copied is not an easy task. In fact, this practice has
caused several problems with copying some disks.
Because of this, the Locksmith version 5.0 no longer
encodes its serial number on the copy disk.

Locksmith has evolved from version 1.0 (the
unreleased 'NIBY’), to versions 2.0, 2.1, 2.2, 3.0, 3.1, 4.0,
4.1, 4.1a, and now 5.0. No longer just a nibble-copier,
Locksmith is now a full-featured utility and diagnostic
tool for the Apple II computer. Always searching for
improvements, Omega welcomes suggestions,
comments, and any questions you may have about
Locksmith.

We will now discuss some of the different methods that
have been used for protection over the past several years.
Some of the descriptions are of a technical nature, and
are intended for the more advanced user.

The very first types of copy protection were very
simple in nature. The first protected disks used nothing
more complicated than erasing an unused track on the
disk. This was usually track 3. This method is not very
complicated, but initially it was quite effective. All of the
copy programs at that time copied the disk one track at a
time. When it tried to read the erased track, it would get
an 1/0 error, causing the copy program to stop. By doing
this, none of the tracks beyond the erased track would
copy.

Some of the copy programs that came out a little later
would copy only those sectors that were marked on the
catalog track (track $11) as being used. This got past the
erased track problem. To combat those copy programs,
companies started to move the catalog to a different

track. When the copy program went out to track $11 to
read the information, the information would not be there.
This also prevented a normal Disk Operating System
(DOS) from reading and writing to the protected disk.

Shortly after that time, a new method was
introduced. It was a little known fact that while the disk
normally used only tracks $00-$22, it was actually
capable of reaching track $23. Some of the software
began using this track for program information. All copy
programs at that time were incapable of copying track
$23, so that when a copy was made, some information
was lost. This method proved to be very dangerous,
because some disk drives could not reliably read or write
to track $23. This means that you could not even use the
original protected disk on that drive, since it could not
read that track.

At this point, the protection methods started to
become more sophisticated. State of the art had
progressed to the point where the manufacturers were
actually changing the format of information on adisk. At
first, this was done by changing the checksum for the
address field on the disk. This would cause 1/0 errors
which would halt the copy process. Disks which were
protected by changing the format of information
required their own Disk Operating System.

At approximately the same time, some
manufacturers started changing the format of the
address field on a disk sector. Normally, the format is to
have an address header, followed by information
concerning the volume, track, sector and checksum. This
was followed by an address trailer. The order of the
volume, track and sector was changed around, or putin a
different format. For example, one company changed all
sector numbers to be even numbers. Instead of sectors 0,
1, 2, 3 etc., they used numbers of 0, 2, 4, 6 etc. Normal DOS
could not understand these formats.

The headers and trailers for both the address fields
and data fields were changed as the next type of
protection. Since DOS looks for a specific header or
trailer to read a sector, it will never find a sector on this
type of disk. On these disks, it would impossible to read
any information with a normal DOS.

Once again, an entirely new technology appeared for
protection. Up until this time, all information was stored
on a disk in Track/Sector format. Now, tracks started to
appear using pseudo-sectors. A pseudo-sector is a long
string of data, with only a data header of some type. Some
of these pseudo-sectors were an entire track in length.
None of the programs for reading Track/Sector format
could decode this type of track. With the advent of pseudo-
sectors, nibble copy programs became necessary. Until
this time, it was usually possible to modify normal DOS,
to copy these disks. This was no longer possible. Shortly
after pseudo-sectors appeared, Locksmith was first
introduced. It was capable of copying tracks which were
in a non-standard format.

Synchronized tracks were the next method of disk
protection. Synchronized tracks are tracks that are
written in a specific timing relationship to each other.
For example, after reading track $00, the disk drive would
then seek to track $01. Upon arriving at track $01, data
would be read in from that track. The program that was
booting would look for specific data to be present when it
arrived at the new track. If this data was not at the
beginning of the track it read, it would cause the program
to fail. This meant that copying tracks without
preserving this timing relationship would result in a bad
copy, even though all of the information was transfered.

Another type of protection which was concerned not
only with the actual data that was copied, was nibble
counting. After writing a track when generating a disk,
the track would be read back, and a count of the nibbles

on a track would be stored on the disk. Upon booting, the
disk would look for the track to be that specific length.
Since very few disk drives run at exactly the same speed,
the chances were very unlikely that the track length
would be the same on a copied disk.

Software manufacturers next started to take
advantage of a little known fact concerning the disk
drive. While disk drives were normally used on tracks $00
through $22, they were capable of reaching between
tracks. This area between tracks is known as a half-track.
Due to the width of the read /write head, it is not possible
to write data on adjacent tracks and half tracks without
experiencing cross-talk problems. However, it is possible
to write data on half-tracks, providing that the adjacent
tracks are not used. It then became necessary to use copy
programs that were capable of reaching these half-
tracks. One major problem with this type of protection
scheme is that not all disk drives are capable of reaching
half-tracks. Some very popular drives can only reach
integral tracks, and disks using this type of protection
can not boot on these drives. If you are using Micr-Sci
type A40 drives with your Apple, keep in mind that half-
tracks can not be accessed, although all other Locksmith
functions work as documented.

There was one type of protection which appeared and
shortly thereafter, disappeared from the market. This
type of protection actually physically damaged the disk.
A scratch was made on the disk with a sharp instrument.
When booting, the disk would attempt to write and then
reread data on the track with the scratch. If the test
passed, it meant that the disk was not damaged, and
therefore, not an original disk. This was a very
undesireable method, since the damaged portion of the
disk would need to come in contact with the read/write
head on the disk drive. When the head was over the
damaged track, you could actually hear a’tick-tick’ as the
scratch hit the head. This could cause damage to the

10

£

D,

head, and because of that, the method was quickly

abandoned.

The chief difficulty in copying protected disks was
identifying which nibbles on a track were normal, and
which nibbles were self-sync. Locksmith versions 2, 3,
and 4 attempted to identify self-sync nibbles by context,
that is by the surrounding nibble patterns. Up until this
time, disks used nibbles with a value of $FF for self-sync
nibbles. It was a fair assumption that a string of $FF
nibbles represented fields of self-sync. To combat this,
manufacturers started to use different values for self-
sync. This made identifying self-sync nibbles more
difficult. In some cases, multiple nibbles were used, for
example $D5 $AB $D5 $AB, etc. Because Locksmith
identified self-sync nibbles contextually, parameter
changes were required for copying disks of this type with
Locksmith versions 4.1 and earlier.

One very sophisticated method of protection
appeared on the market shortly thereafter. This method
required that specific nibbles in the middle of normal
data be special self-sync nibbles. By using timing
routines, it was possible to determine if this nibble was
normal, or special. This special nibble is called a data-
latched nibble. When reading a track of nibbles
normally, the data-latched nibble was indistinguishable
from a normal nibble. Copying these tracks was very
difficult, since it required actually breaking or
deciphering the code to determine which nibbles had to
be data-latched. This method was very effective, and has
been in use for quite a while. Locksmith 5.0 is capable of
determining self-sync nibbles while it is reading them
without regard to context nibbles, and it is able to detect
data-latched nibbles without any user-supplied
parameters.

As mentioned before, it is not possible to write
adjacent tracks and half-tracks. This is due to the fact

11

that the read/write head is wide enough to overlap onto
the adjacent track or half-track, effectively erasing
information. To alleviate this problem, the concept of
spiral tracks was invented. This is simply writing
approximately 1/3 of a track, jump out a halftrack, write
another 1/3 of a track, etc. By using this method,
adjacent tracks and half-tracks may be used without
actually writing any data closer than one full track apart.
The data on the disk actually seems to spiral in toward
the center of the disk, hence the name ’spiral track’.

The most recent type of protection is much the same
as half-tracks. It is the use of quarter tracks. While it is
true that the disk drive is not normally capable of
reaching quarter tracks, it is possible to drive the stepper
motor on the drive so that it will stop on the quarter track.
This requires some very special timing routines. It works
basically the same as half-tracks, and the same
restrictions about adjacent data apply.

Locksmith 5.0 is capable of handling all of these
types of protection methods, along with many others.
Due to its extreme flexibility, it will also support many
protection methods which have not yet appeared. In the
meantime, the conflict between software manufacturers
and software users will continue.

12

IMPORTANT LOCKSMITH
INFORMATION

This chapter includes general information
important to the Locksmith 5.0 user. This information
concerns many of the Locksmith functions.

The CTRL-Z key may be pressed at any time that you
wish the screen contents to be dumped to a printer. See
the chapter in this manual on the 'CTRL-Z’ key.

The ESC key may be pressed at any time to abort a
function. Pressing this key will eventually bring you
back to the Locksmith main menu.

When the prompt 'PRESS SPACE TO CONTINUE’
appears in flashing characters at the bottom of the
sereen, you may press the space bar to continue, or press
the ESC key to abort the function.

The status display at the top of the Locksmith screen
shows tracks from $00 to $23 (decimal 0 to 35). Normally,
only tracks $00 to $22 are used, but Locksmith supports
track $23, in case it is used on the disk to be copied. The
status display has four rows of status information. The
top one is for integral tracks (00, 01, 02, etc.). The 3rd one
is for half-tracks. The 2nd and 4th rows are for 1/4 and
3/4 tracks, respectively. The status display is not cleared
by Locksmith functions, with the exception of the
'CLEAR STATUS’ command. The status indicators that
may appear in the status display are discussed in the
individual chapters describing the Locksmith functions
and are summarized in the appendix.

The RESET key will cause Locksmith to reboot your

system. Do not use the RESET key unless you wish to
reboot.

13

The message that appears below indicates that the
function you have selected destroys data on the target
disk. Make sure that your Locksmith disk or any other
disk you wish to keep is out of the drive at the time the
function begins.

HEX 000000000000000011111111111111112222
TRX 0123456789ABCDEF0122345478%ABCDEF0123
.00
229
s
i

DISK SPEED

WARNING :

THIS LOCKSMITH FUNCTION DESTROYS DATA
OM 'THE ~ TARGET' DISK.

PRESS ESC TO ABORT

PRESS SPACE 'TO CONTINUE

The prompt 'INSERT DISK(S)’ will appear
immediately before a Locksmith function is to start,
giving you a last chance to insure that the drives
contain the proper disks, before you press the space
bar to begin the function.

The prompt INSERT LOCKSMITH DISK’ indicates

that to continue, Locksmith needs information that is on
the Locksmith disk. Place the Locksmith disk in the drive

14

requested by the prompt, and press the space bar. The slot
and drive requested will always be the one booted from,
regardless of which drives are used for Locksmith
functions. If you have more than two drives on your
system, you can boot Locksmith in one slot, use the
"PARAMETER CHANGES’ function to change the
SLOT that Locksmith is to use, and keep the Locksmith
disk in the boot drive to eliminate the need to switch disks
when Locksmith needs information from the Locksmith
disk.

15

GETTING STARTED

A step by step example of how to copy a disk that
requires no parameter changes.

1. First insert your Locksmith disk in drive one.

9. Turn on the computer to load the Locksmith
program into memory.

3. When the Locksmith title page appears, press the
space bar.

4. You should now be at the main menu.

HEX 000000000000000011111111111112112222
TRK 0123454789%ABCDEF012345478%ABCDEFQ0123
.00

.25

.50

075

THE LOCKSMITH - VERSION 5.0 - SER#10000

B BACKUP/COPY DISK I INSPECTOR/WATSON

P PARAMETER CHANGES E ERASE DISKETTE

/ CLEAR STATUS N NIEELE EDITOR

WS TEXT EDITOR S DISK SPEED

Q@ QUICK SCAN DISK COEERTILEY \DESK

g1y SCTR UTILITIES X EXIT [REBOOT

CTRL-Z SCREEN PRINT ESC ABORT/RESTART

17

5. Press the letter ‘B’ for Backup/Copy disk.

6. You will see the following screen display.

HEX 000000C0QO00C0COCO0O0011111111111111112222
TRK 012345678B9ABCDEF0123456789ABCDEF0123
.00
D
.30
ER I ihe

BACKUP/COPY DISK

PRESE (ESE TO ABORT

CRIVE- ORIGINAL:1

7. NOW REMOVE YOUR LOCKSMITH DISK
FROM THE DRIVE.

8. When prompted for the drive of the ORIGINAL it
will show the default '1’. To accept the default press the
'RETURN’ key.

9. When prompted for the drive of the COPY it will
show the default ’2’. If you have two drives accept the
default by pressing the ' RETURN?’ key. If you only have
one drive enter a ’1’.

10. Now you will be prompted for the starting
TRACK number. It will show the default starting track
as '00’. Press the 'RETURN’ key to accept the default.

11. Now you will be prompted for the ending TRACK

number. It will show the default ’22’. Press the
'RETURN’ key to accept the default.

18

12. Now you will be prompted for the INCREMENT.
It will show the default increment as ’1’. Press the
'RETURN’ key to accept the default.

13. Now you will be asked if you wish to
SYNCHRONIZE tracks. It will show the default as "N’.
Press the 'RETURN’ key to accept the default.

14. Now you will be asked if you wish to PRESERVE
TRACK LENGTH. It will show the default as 'N’. Press
the 'RETURN’ key to accept the default.

JUST PRIOR TO YOUR PRESSING THE
'RETURN’ KEY IN ANSWER TO THE AUTO ERROR
RETRY QUESTION, THE LOCKSMITH SCREEN
SHOULD LOOK LIKE THIS:

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF012345678%ABCDEF0123
.00
25
.50
79

BACKUP/COPY DISK

PRESS ESC TO ABORT
DRIVE- ORIGINAL:1 COPY 2
TRACK- START:00 END: 22 INC:01
SYNCHRONIZE (Y/N):N
PRESERVE TRACK LENGTH (N/A/M):N

AUTO ERROR RETRY (Y/N):Y

19

15. Finally, you will be asked if you wish AUTO
ERROR RETRY. It will show the default as’Y’. Press the
'"RETURN’ key to accept the default.

16. After you have pressed the '/RETURN’ key you
will be asked to INSERT DISK(S) and press the space bar

to continue.

17. Your Locksmith program will now attempt to
copy the disk using the default parameters built into the
program.

18. While copying the disk Locksmith will provide
you with a dynamic screen display showing the trackitis
copying and certain information about the track. You
will be using this information as you become more
familiar with Locksmith.

19. When Locksmith is finished analyzing and
copying the disk it will display a flashing 'PRESS
SPACE TO CONTINUE’ at the bottom of the screen.
When you press the space bar, the main menu will
reappear.

20

[B] BACKUP/COPY DISK

This command is used when you are ready to copy a
disk. All parameter changes should have been made
either through the parameter change mode, or loaded
into Locksmith from the Text Editor.

Locksmith will prompt you for the DRIVE of the
ORIGINAL disk. The default drive number is being
displayed on the screen. If this is the drive you wish to use
for the original, press RETURN. If you wish a different
drive for the original disk, enter the number of the drive
you wish to use. Locksmith will prompt for the drive
number for the COPY. Again the default drive is shown.
If you wish to use the default drive press RETURN, if not
enter the drive number you wish to use.

You will now be prompted for the starting track
number you wish to use to make this copy. Again a
default value is shown. If you wish to use the default
value, just press RETURN. If not, enter in the starting
track number you wish to use and press RETURN. After
you have made your selection for the starting track
number, Locksmith will prompt you for the ending track
number. Again the default value is shown. If you wish to
use the default value, press RETURN, otherwise enter
the value you wish to use and press RETURN. The next
prompt from Locksmith will be for the increment you
wish to use between tracks. The default valueis shown. If
you wish to use the default press RETURN, otherwise
enter the increment you wish to use and press RETURN.

Now Locksmith has the information about what
drives you wish to use and the tracks you want to copy. It
now needs to know some other information about how
you wish to copy the disk.

21

You will now be asked whether you wish to
synchronize the tracks or not. The default value is No. If
you wish the default just press RETURN. If not enter ina
'Y’ for yes. Some disks are protected by having the tracks
written to the disk in a certain time relationship to each
other. If you select synchronization, this time
relationship will be preserved.

You will now be asked whether you wish to preserve
the track length.
The prompt is:

PRESERVE TRACK LENGTH (N/A/M):N
This is a technique called nibble counting. Some
protection schemes count the number of nibbles on a
track when the disk is made. When you copy the disk the
odds are against you writing the same number of nibbles
on the track. This is due to the variations in drive speed
that occur all the time. If you require Locksmith to write
the same number of nibbles on the copy as it read from
the original, it could increase the copying time
significantly.

If you wish the default value press RETURN. If you do
not wish to use the default value you have two choices. If
you select ’A’, Locksmith will attempt to adjust the track
length automatically for you.

If you choose 'M’ then you must adjust the track
length yourself. There are two ways to do this. Oneway is
to adjust the drive speed, using the speed adjustment
screw inside the disk drive. The other way is with the '<’
and the >’ keys. While preserve track length is in effect
Locksmith will continuously print either a <’ or a >’
followed by a four digit hex number. This number
represents the difference in count between the original
and copy disks. To adjust the track length with the <’ and
the > keys, you should press the key that is shown in
front of the four digit hex number. When you press this
key, your computer will start to beep. Pressing any other

22

key will stop the beeps and show the difference in track
length again. The object is to get this number to be ’0000’.
When this occurs the track length is the same as the
original and Locksmith will move to the next track.

If you do adjust your drive speed with the set screw,
be sure and use the Locksmith disk speed test to reset
your drive to the proper speed before you leave
Locksmith.

If you have selected 'M’ manual mode and have

gotten the track length fairly close, you may press’A’ and
have Locksmith take over and finish the adjustments.

You will now be prompted for how you wish errors to
be handled. You have two options. The first is to let
Locksmith attempt to fix the error, and the second is to
have Locksmith ask you to fix the error.

The prompt is:
AUTO ERROR RETRY (Y/N):Y

The default is to let Locksmith do the work. If you
wish the default just press RETURN, if not enter 'N’.

Just prior to your answering the last prompt about

error retry the screen would look like this if you accepted
all the defaults to the prompts.

23

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF012345478%ABCDEF0123

.00
.29
.50
-]
BACKUP/COPY DISK
PRESS ESC TO ABORT
DRIVE- ORIGINAL:1 COPY:2
TRACK- START: 00 END: 22 INC:01
SYNCHRONIZE (Y/N) :N
PRESERVE TRACK LENGTH (N/A/M):N

AUTO ERROR RETRY (Y/N):Y

After all the questions are answered you will be
prompted to INSERT DISK(S). After the disks are in the
appropriate drives, press the space bar to proceed with
the actual copying process. When Locksmith is done with
the copying process you will be prompted to PRESS
SPACE TO CONTINUE. Pressing the space bar will
return you to the main menu.

24

ERROR CODES FOR
BACKUP FUNCTION

0’ indicates that no error occured.

I’ nothing inteligible found on track - track is
garbage.

2’ can’t find the repeat of track start.
4’ error compareing first and second track images.
'S5 end of limit during automatic count preserve.

'8 verify field after write (perhaps track start
overwritten).

NOTE — Because of the flexibility of Locksmith
BACKUP function using LOCKSMITH PROGRAMM-
ING LANGUAGE, other error codes (ranging from 0 to
$F) may appear on the status display, and other error
codes (ranging from 0 to $FF) may appear on the main
screen during a backup function. The cause of these error
codes can be determined by examining the current LPL
file in use during the backup function, as they are entirely
user-defined.

25

& [Q] QUICKSCAN DISK
'E

This utility will help you to determine what tracks
3 in use on a disk you are trying to copy.

~ Pressing 'Q’ from the main menu will put you into the
qulckscan utility. This utility is used to determine what
tracks on a disk contain valid data. You will be prompted
for the drive number you wish to use and then for the
starting track, ending track and increment between
tracks.

- The display is a hi-res graphic display of the sync
‘bytes on a disk. The graphic display of a track runs from
‘the bottom to the top of the screen. The first time you run
this utility you should do it on a normal DOS 3.3 disk.
First try tracks 0 to 22 in whole track increments. This
will show you what a good track will normally look like.
The series of dots you see on the screen above each track
number are the gaps of self sync bytes between each
sector. Normally on a 16 sector disk there will be 16 or 17
of these dots. This is because Locksmith always reads
long enough to read the whole track into memory and it
may have read more than the whole track. Similarly a 13
sector disk would have 13 or 14 of the little dots. On a 16
- sector disk one of the dots will be a little longer than the
~others, that is the self sync group in front of sector zero on
 that track. If you look closely you can see a definite
Fpattem to the longer dots; they will either move up or
~ down as you move from track to track on the disk. Thisis
i due to the time it takes to move the disk drive head from
- track to track.

iy
W

: Now using the same disk try quickscanning from
 track .5 to track 22.5 with an increment of 1. You will see
~ very long lines of white in no particular pattern. This
- means there is no valid data on the track.

27

If the disk is using a protection scheme called spiral
tracking you will see the long band of white but there will
also be a pattern of black in between the white. The black
sections will not be right next to each other but will be
offset slightly as you move across the tracks. This is due
to the time it takes the disk drive to move from track to
track. The more that you use the quickscan feature the
more valuable you will find it. This is because you will
become more adept at interpreting the results it gives
you.

28

5 [P] PARAMETERS

i

[ESC]
" Pressing the 'TESC’ key will always abort the current
operation and return you to a menu.

[CTRL-Z]

This option is activated by pressing and holding the
key marked '"CTRL’ and pressing the 'Z’ key. This option
is a screen print. It will print whatever is showing on the
text screen at the time it is pressed. This is assuming that
you have a printer turned on and that Locksmith has
been told the correct slot for the printer interface card.

Now we will cover cursor movement within the
parameter buffer.

CURSOR MOVEMENT:

Locksmith supports the normal Apple II cursor
movement keys.

UP
1]
LEFT [J] [K] RIGHT
[M]
DOWN

You may also move left or right with the left and
right arrow keys.

If you have an Apple //etheup and down arrow keys
are also operational.

If you move left past the beginning of the line, you
will be placed on the last character of the previous line.
Similarly, if you move past the end of the current line, you
will be placed at the beginning of the next line.

29

[<]

Pressing the <’ key will move backwards through the
parm buffer one screen page, unless you are already at
the beginning of the buffer.

I>]

This key moves forward through the parm buffer one
screen page, unless you are already at the beginning of
the buffer.

[,]
This key scrolls continuously backwards until
another key is pressed.

[.]
This key scrolls continuously forwards until another
key is pressed.

Pressing 'C’ will allow you to change the parameter
you have the cursor on by typing in a 2 digit hex number.
After typing the number you may press either the
'RETURN’ key or the space bar. If you press RETURN,
you will exit change mode. If you press the space bar you
will move to the next position within the buffer and can
continue to make changes.

[CTRL-P]

This command is used to change prameters from
within the Parameter Editor. It has the following options
available. After pressing 'CTRL-P’ you will get the
prompt PARM:.

PARM:
Enter 'CTRL-R’and press the RETURN key.
This will restore all default parameters.

PARM:

Enter '?” and press RETURN. This will
display the valid parm names.

30

-

L

3=

e

PARM:

Enter <name> and press RETURN. This
tells Locksmith you wish to change the named
parameter. You will be shown the parameter
number in parenthesis, and the current value of
the parameter. You may typein anew value and
press RETURN or simply press RETURN to
accept the current value. Valid parameter
names and their definitions can be found in the

~ appendix.

PARM:

Enter <hex value> (values [0-$1FF) are
valid) and press RETURN. This is an alternate
way to specify a parameter. The results and
options are the same as with <name> above.

PARM:

Enter '+' and press RETURN. This tells
Locksmith you wish to change the next
parameter in sequence. The current value will be
displayed. The options and results are the same
as the two previous commands.

PARM:
Press <return> Exit parameter change
mode.

AFTER PARM HAS BEEN ENTERED
YOU HAVE THE FOLLOWING OPTIONS
FOR VALUE.

VALUE:

Enter <return>. Accepts displayed current
value.

VALUE:
Enter <hex> and press RETURN.

31

VALUE:
Enter <hex hex hex ...> and press RETURN.
This enters the hex values into memory starting

at PARM and continuing in sequence until the
RETURN is encountered.

VALUE:

Enter <track number with decimal point>
and press RETURN.

NOTE: NO CHECK IS MADE TO SEE IF THE
PARM ACTUALLY REPRESENTS A TRACK VALUE.
SINCE THE TRACK VALUES ARE STORED
DIFFERENTLY THAN NORMAL PARM VALUES,
USING A DECIMAL POINT WHEN ENTERING

NORMAL PARMS WILL STORE INCORRECT
VALUES.

32

[C] CERTIFY DISK

to use. It may also tell you if there is something
ong with your disk drive.

Pressing 'C’ from the main Locksmith menu will take
you to this utility. THIS UTILITY DESTROYS DATA

ON THE TARGET DISK.

You should place the blank disk you wish to check in

" one of your drives. The program will prompt you for the

drive number, the starting and ending track numbers

and the increment you wish to use between them.

This program works by writing a specific pattern
onto every track you specified. It then reads this pattern
back to verify that it can read what was written. If
Locksmith is unable to read what it wrote, it will flag the

track as bad. There can be three different reasons for the
track being flagged as bad. First it may not have been

written correctly due to a disk drive malfunction. Second
it may not read correctly due to a disk drive malfunction.

Third and most likely the disk media may be flawed.

When Locksmith checks the disk it will write a period
'’ in the status area for every track that checks good. If a
track checks bad it will be flagged with an asterisk '*.

When the program terminates it will take you back to
the Locksmith main menu. The status area will not be
cleared. The following print out is an example of a bad

disk.

33

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF012345678%ABCDEF0123

RO L TR, R R R R o e B S
.25

.50

ol -

THE LOCKSMITH - VERSION 5.0 - SER#10000
B BACKUP/COPY DISK I INSPECTOR/WATSON
P PARAMETER CHANGES E ERASE DISKETTE

/ CLEAR STATUS N NIBBLE EDITOR

T TEXT EDITOR S5 DISK SPEED

Q QUICK SCAN DISK C CERTIFY DISK

U 14 SCTR UTILITIES X EXIT / REBOOT

CTRL-Z SCREEN PRINT ESC ABORT/RESTART

[E] ERASE DISK

" This utility is used to erase all the data from the
cks you specify on the target disk.

~ Pressing 'E’ from the Locksmith main menu will take
ou to this utility. THIS UTILITY DESTROYS DATA
N THE TARGET DISK.

~ You should place the disk you wish to erase in the
rive of your choice. Locksmith will prompt you for the
lrive of the target disk, the starting track number and the
nding track number you wish erased, and the increment

After you have specified the above information,
- Locksmith will prompt you to insert the disk to be erased.

{ha&e the specified tracks on ' the disk.

u

.,When the program is finished erasing the specified
,,rr%h‘acks it will return you to the main menu. The status

~ areais not cleared. Every track that was erased will have
\;(;an 'E’ in the status area.

*r"' Some disk protection schemes require that a track
7 }never have been used. The only way to accomplish this is
- to use either a new disk or erase the track on a used disk.

35

[S] DISK SPEED

_'.. This is a utility to allow you to set the speed of your
ik drive. Normally disk drive speed changes from the

- Pressing 'S’ from Locksmith’s main menu will put
into the set disk speed utility. Depending on which
y you have in memory at the time, you may be
d to insert your Locksmith disk to load the program.
e first question will be which drive number. Then you
1 be asked which of three types of speed check you
. The first is to calibrate your drive to 300 RPM. This
the normal drive speed recommended by the
ufacturer. The second choice is to calibrate your
e to the optimum drive speed. This speed is
ommended for copying disks, since it runs slightly
wer than normal. This helps to ensure that an entire
ck can be written, regardless of the drive speed of the
ginal.

The third option is to calibrate your drive to the same
d as the drive on which the original disk was written.
will be prompted to insert your original disk in the
e. This is to allow Locksmith to determine the
nal drive speed. After inserting your Locksmith disk
oad an overlay, you will then be given three choices for
graph scale. The screen you see is the one shown

37

HEX 000000000000000011111111111111112222
TRK 0123454789ABCDEF0123456789ABCDEF0123
.00
41
.90
B

DISK SPEED

SELECT GRAPH SCALE:

1. FINE ADJUST (2.5%=70 UNITS)
2. MEDIUM ADJUST (53%=140 UNITS)
3. COARSE ADJUST (10%=280 UNITS)

You should normally choose fine adjust. The other
two options are for disks that are so far out of adjustment
that they can’t be seen on the fine scale. After you choose
the type of graph you wish, Locksmith will prompt for the
number of samples you wish per plot. The screen you see
below is the one you should now see.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF01234564789ABCDEF0123
.00
.23
.50
B0

DISK SPEED
SELECT CRAPH SCALE:
1. FINE ADJUST (2.5%=70 UNITS)

2. MEDIUM ADJUST (5%=140 UNITS)
3. COARSE ADJUST (10%=280 UNITS)
1

ENTER NUMBER OF SAMPLES PER LINE

(1-3)

38

L LT T

The choices you have on the above menu are used by
smith to determine how many times to check the
prior to plotting a point on the hires screen.
ally you would select one sample per plot. This will
k the drive speed once for every point it plots on the
en.
Next you will be asked to insert a blank disk in the
e you selected for the speed test. After you press the
ace bar Locksmith will write and read from track zero
the blank disk. You must use a blank disk for this
st since the data on track zero will be destroyed.

39

[N] NIBBLE EDITOR

C]
Pressing the "ESC’ key will always abort the current
ation and return you to a menu.

RL-Z]
~ This option is activated by pressing and holding the
key marked 'CTRL’ and pressing the 'Z’ key. This option
a screen print. It will print whatever is showing on the
~ text screen at the time it is pressed. This is assuming that
~ you have a printer turned on and that Locksmith has
“been told the correct slot for the printer interface card.

Locksmith supports the normal Apple II cursor
- movement keys.

UP
(1]
LEFT [J] [K] RIGHT
[M]
DOWN

You may also move left or right with the left and
right arrow keys.

If you have an Apple //e the up and down arrow keys are
also operational.

If you move left past the beginning of the hne, you
- will be placed on the last character of the previous line.
Similarly, if you move past the end of the current line, you

- will be placed at the beginning of the next line.

[<]
Pressing the <" key will move backwards through the
- nibble buffer one screen page, unless you are already at
the beginning of the buffer.

41

[>]

Pressing the > key will move forward through the
nibble buffer one screen page, unless you are already at
the end of the buffer.

[-]

Pressing the ’ key will allow you to scroll
continously back through the buffer until either a key 1s
pressed or you reach the beginning of the buffer.

[.]

Pressing the ' key will allow you to scroll
continously forward through the buffer until either a key
is pressed or you reach the end of the buffer.

CONTROL KEY COMMANDS:

[CTRL-R]

Pressing 'CTRL-R’ will allow you to read a track into
the buffer. You will be prompted with TRACK:. If you
have previously read a track into the buffer, that track
number will also be displayed. The current default drive
for the track read will also be displayed. If you wish to
reread the same track just press the RETURN key. If not
then enter the number of the track you wish to examine.
You may enter a decimal point in the track number. The
track number you enter will be multiplied by four before it
is stored internally. This is necessary due to the way
Locksmith finds the tracks specified. After you have
entered the track number you wish, press the RETURN
key to tell Locksmith you are finished with the entry. The
cursor will move to the drive entry to allow you to change
the default if you wish. If you want the default drive,
press RETURN. The first time you read a track into the
nibble buffer Locksmith will recalibrate. If you wish to
recalibrate at any other time enter CTRL-R and when the
prompt TRACK: appears enter the track number,
followed by 'R’ and press the return key. This will force

42

FNSE
s

."°£sgcksmith to recalibrate. The following screen is an
‘example of the display after reading a track.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123
.00 N
.25
.50
175

NIBBLE EDITOR

0000~ (A71 AC AC 926 ED DY BE BF

pooe- BE CB B4 B4 EE BS BB BE
0010- BE BE BD ET F2 E? ES rC
0018- DC 96 D9 9E EA ED Eé Dé&
0020~ Dé 26 9B Ad Fé F9 AC B2
0028- EB Bé Dé FA DA CB FC AF
0030 - ER B& 9F Fé A7 FF FB DF

. D0O38- D3 Aé cD AD 264 DC AF Dé
0040 - Bé BF Dé Eé B2 EG AF CD
0048~ AC D9 E? Bé A ED FA EY
0050- D¢ DC ES E? DE F5 CD D7
0058- AF Bé DF EF Eé D7 EB DE
0060~ A7 B9 F3 ES E7 BE CE BF
0D0&68- DA ES Bé 94 ?D D9 F4 Dé&
0070- ES DD DD FD F3 D& D3 B7
0078- E7 D9 EB DC DD EC FD D3
[CTRL-A]

After you have a track in the buffer you will probably
wish to perform some analysis on the track. Entering
'CTRL-A’ will allow you to perform analysis with one
algorithm at a time and see the results. See the chapter
refering to the Text Editor for an explanation of
algorithms. After you enter 'CTRL-A’ you will be
prompted with ALG:. Enter the number of the algorithm
you wish to perform and press RETURN. Next you will be
prompted with PASS:. Locksmith needs to know the
value you wish the algorithm to use. The default value
will be displayed. If you wish to use the default value just

43

press the RETURN key. If you do not wish to use the
default value, type in the hex value you wish to use and
press the RETURN key. If the al gorithm is unsuccessful,
Locksmith will beep and display an inverse FAILED' at
the upper right corner of the nibble buffer. You may
repeat this procedure for as many algorithms as you
wish.

[CTRL-S]

Entering a 'CTRL-S’ tells Locksmith you wish to
perform the current set of analysis algorithms on the
track in the nibble buffer. All the current algorithms will
be displayed as they are performed by Locksmith.

[CTRL-W]

Entering a 'CTRL-W’ tells Locksmith to write the
current track back to disk. You will be prompted with
TRACK:. Enter the number of the track you wish to be
written to the disk followed by RETURN. Pressing return
will write the data to the current track that was read.
Next the cursor will be placed on the default drive number
for the write. If you wish to use the default drive just press
RETURN. If you wish to change the default, enter the
number of the drive you wish to write to.

WARNING! IF NO ANALYSIS HAS BEEN DONE ON
THE TRACK TO SET THE TRACK START AND
TRACK END, LOCKSMITH WILL ATTEMPT TO
WRITE THE ENTIRE BUFFER.

[CTRL-V]

This command is used to tell Locksmith where to
start verifying the track start after it writes the track to
the disk. The series of bytes that follow the verify start
are the ones that are checked when the track is written to
disk. This is done to make sure that the beginning of the
track was not overwritten and destroyed by the end of the
track. Normally, if the verify bytes are overwritten the
track will be shortened and rewritten until they are not
overwritten or until the track can no longer be shortened.

14

track can no longer be shortened you will get a
_error. This error may possibly be corrected by
ng the copy drive to a slower speed prior to writing
ack.

"0

Tow verify start, place the cursor on the nibble you wish
to start verifying, and press CTRL-V. This will set the

verify start to this location. There will be a'V’ displayed
in front of the nibble you selected for verify start.

[CTRL-T]

- This command is used to add nibbles to the current
‘buffer. When you enter '"CTRL-I" the nibble that is at the
‘current cursor location is duplicated and all the nibbles to

the right are moved one position to the right.

[CTRL-D]

This command is used to delete nibbles from the
current buffer. When you enter '"CTRL-D’ the nibble that
18 at the current cursor location is deleted from the buffer
and all the nibbles to the right of the cursor are moved one
position to the left.

[CTRL-F]

L This command is used to find different patterns of
nibbles within the buffer. Enter CTRL-F, and you will see
the prompt FIND:. The Find Command has four options.

D]

Enter 'D’ followed by a series of hex
numbers seperated by spaces and followed by
the RETURN key. Locksmith will start
searching forward through the buffer from the
current cursor position for this sequence of
nibbles. When the sequence is found the cursor
will be moved to the first nibble in the pattern
within the buffer. If the pattern is not found
Locksmith will print in inverse at the top right
of the buffer 'NOT FOUND’ and beep. If the
pattern is found and you wish to repeat the

45

search then you would press 'CTRL-F’ foll_owed
by the RETURN key. This tells Locksmith to
repeat the last '"CTRL-F’ search.

(L]

Entering 'L’ will give you the prompt
LENGTH:. You may now enter in a length from
(1-F). This instruction tells Locksmith to start
looking forward through the buffer for a pattern
that matches the one that starts at the current
cursor position and is LENGTH nibbles long.
When the pattern is found, the cursor will be
moved forward in the buffer to the first nibble of
the matching pattern. If you wish to repeat the
search from your present cursor position, type
'CTRL-F’ and press the RETURN key. This
repeats the last search again. If Locksmith is
unsuccessful in its search for the pattern, the
cursor will not move and Locksmith will printin
inverse at the top right of the buffer 'NOT
FOUND’ and beep.

[P]

After you press 'P’ Locksmith will prompt
with PAT:. There are seven general purpose
patterns. When you enter a number between 1
and 7 in answer to the prompt, Locksmith will
take the appropiate pattern and use that as the
search pattern. The results are the same as
described for the two previous commands. The
'CTRL-F° RETURN command to repeat the
search is not available.

[O]

Entering 'O’ tells Locksmith to search for
the first nibble in the buffer that is different
from the one the cursor is presently on. When a
different nibble is found, the cursor will be
placed on it. This command would be used if you

16

_'|

.’..
i

| L]

i 11
e

{
v

-

i %; had a track that was almost all the same value.
- Instead of searching slowly through the buffer

for the different nibbles, you could use this

- command to quickly locate them.

[CTRL-P]

This command is used to change
parameters from within the Nibble Editor. It
has the following options available. After
pressing 'CTRL-P’ you will get the prompt
PARM..

PARM:
Enter 'CTRL-R’and press the RETURN key.
This will restore all default parameters.

PARM:
Enter ’? and press RETURN. This will
display the valid parm names.

PARM:

Enter <name> and press RETURN. This
tells Locksmith you wish to change the named
parameter. You will be shown the current value
of the parameter. You may type in a new value
and press RETURN or simply press RETURN
to accept the current value.

PARM:

Enter <hex value> values (0-$1FF) are
valid, and press RETURN. This is an alternate
way to specify a parameter. The results and
options are the same as with <name> above.

PARM:

Enter '+ and press RETURN. This tells
Locksmith you wish to change the next
parameter in sequence. The current value will be
displayed. The options and results are the same

47

as the two previous commands.

PARM:
Enter <return> Exit parameter change

mode.

AFTER PARM HAS BEEN ENTERED
YOU HAVE THE FOLLOWING OPTIONS
FOR VALUE.

VALUE:]
Enter <return>. Accepts displayed current

value.

VALUE:
Enter <hex> and press RETURN.

VALUE:

Enter <hex hex hex ... >and press RETURN.
This enters the hex values into memory starting
at PARM and continuing in sequence until the
RETURN is encountered.

VALUE: . .)
Enter <track number with decimal point>

and press RETURN.

NOTE: NO CHECK IS MADE TO SEE IF
THE PARM ACTUALLY REPRESENTS A
TRACK VALUE. SINCE THE TRACK
VALUES ARE STORED DIFFERENTLY
THAN NORMAL PARM VALUES, USING A
DECIMAL POINT WHEN ENTERING
NORMAL PARMS WILL STORE INCOR-
RECT VALUES.

48

ISCELLANEOUS COMMANDS:

'RL-B]Moves the cursor to track start. If the cursor is
rack start, the cursor is moved to beginning of buffer.

L-E] Moves the cursor to track end. If the cursor is
ck end, the cursor is moved to the end of buffer.

Sets track start to current cursor position.
Sets track end to current cursor position.

. ~ Sets the nibble under the cursor to self sync.
' Sets the nibble under the cursor to normal.

Change mﬂde. Entel' <hex hex Lo and RETURN to

hex values entered. Pressing the space bar moves the
or to the next position. The commands ’S’ and 'N’
also work in change mode.

Entering "H’ will display the current buffer on the Hi-
1es screen.

[HG]
~ Entering a’G’ while in Hi-Res mode will print the Hi-
Res screen if you have a printer capable of Hi-Res
raphics and a graphics printer interface card. The
printer string required by your printer may be defined by
':f'.a parm 'GRCHARS’. The default is set to CTRL-I G
<CR>CTRL-Q <CR>. This string works for both Silentype

49

and Epson printers with interfaces that support graphic
screen dumps.

[G]

Entering a ‘G’ from the text mode of the Nibble
Editor will display a picture of the buffer using text
characters. Each location on the screen represents a
string of nibbles in the buffer. The length of the string
(sample interval) is defined by the parm 'TSAMP’, and
defaults to $0A. (Note: for 13 sector disks, a value of $0C
works well). On the graphic display the following
symbols are used. A period .’ means that all the nibbles
in the string are normal (non-self sync). An inverse '#’
means the nibbles are all self sync. The '+ means the
nibbles are a combination self sync and normal.

The cursor may be moved within the screen area
using the I,J,K,M keys or the arrow keys. The cursor may
be moved to the location on the screen corresponding to
the area in the nibble buffer that you wish to examine.
Pressing any other key at this point will return to the
nibble display with the cursor set to the area you selected.

HINT: The display starts at either buffer start or
track start and the display may not be centered. Move the
cursor to the center of the screen and press the RETURN
key. It will take you back into the Nibble Editor. Set track
start '(" and press 'G’ again. The display will now be
centered. If the disk you are examining is a 16 sector disk,
you will see one pattern of '#s that is larger than the
others. This is the field of self sync in front of sector zero.
Move the cursor to the first period ’.” following the large
number of '#’s and press RETURN. You will now be back
in the Nibble Editor and the cursor should be near the
first nibble in the address header for sector zero. The
following is an example of the display you will see when
this command is used.

gﬁx 000000000000000011111111111111112222
RK 0123454 ?89ABCDEF0123456789ABCDEF0123
.00 N

Rz s

NIBBLE EDITOR

iR R
{fj’], This is a 16 sector address decode command. You will
. See two columns displayed on the screen. They are

| “decoded in the following manner.

~_The first four numbers in inverse are the buffer

t;lre;ss. Next is the letter "V’ followed by a hex number.
~ Thisis the volume number of the disk. Next is a two digit
! .tshex number followed by a '/’ followed by another two
- digit hex number. This is the track number/sector
' .:__%!umber. This field may be followed by any of these three
- Symbols, '?’’CS’** or if nothing is wrong it will be
A follov\fed by a blank space. They have the following
~ Mmeanings:

! 'I_‘he '? means that either the check sum or the trailer
~ Was Incorrect in the address field.

51

TSl

The ’CS’ means the data field checksum is bad. ly by this 6bit checksum, and data nibbles each

. : ntain only 6-bits of i i
The "** means there is something wrong with the ,_ f of information each.

data field information. It is either a bad data field header
or trailer. If the disk is a 13 sector format, "**" will appear
for all sectors.

: If the disl.: is using a non standard address or data
Mer you will not receive this information unless you
set PARM:SECAF to the correct address field pattern

~ and PARM:
As mentioned above, "** indicates that either the Al o g A i

data field header (D5 AA AD) or data field trailer (DE
AA) is incorrect. If they both appear correct, but are still
marked with "**, the trailer is probably in the wrong
location. Exactly 343 nibbles should occur between the
header and the trailer. (342 data nibbles and one

- | The following is an example of the display you
- should see.

. HEX 000000000000000011111111111111112222

3

. TRK 0123456789ABCDEF0123456789ABCDEF0123

checksum nibble). ol
LmH.OO
A simple way to test this is to perform the following. ’?". s :g
Place the cursor on the D5 of the header field (D5 AA }r e GeRne
AD). Now, press > (shifted) 3 times, T’ 5 times, and 'K’ B <2 VEE 00/00 o ED;:DR
twice. The cursor is now where the trailer should start. If 0958 VFE 00/0E . Agg :’;gg de ey
the cursor is not on the DE of the trailer (DE AA), the . 0CSE VFE 00/0D AP R gg;gg
trailer is not in the correct location. .~ 0Fé4 VFE 00/0C {0E?7 VEE 00704
2 6A VEFE 0070
The address field nibbles occur in double-nibble BN1570 VFE 007/ ui i 2?33 ‘\{';g gg i g's’
format after the address field header (D5 AA 96) and . 1876 VFE 00/09 19F9 VFE oo;u;
represent the volume number, track number, sector It 1B7C VFE 00/08 1CFF VFE 00/0F
number, and checksum. A chart to decode the address ~ 1EEA VFE 00/00 206D VFE 00/07
field double-nibbles is located in the appendix. . 21F0 VFE 00/0E 2373 VFE 00/06
h”24F6 VFE 00/0D 2479 VFE Q00705
The data field nibbles consist of 342 data nibbles .-j!;;;; 27FC VFE 00/0C 297F VFE 00/04
after the data field header (D5 AA AD) plus an additional B0z VEE 00/0B 2C85 VFE 00/03
2%:2508 VFE 00/0A 2F8B VFE 00/02

343rd nibble, which is used for the data field checksum.
This checksum is calculated by taking each of the 342
data nibbles, translating them according to a chart
(which is supplied in the appendix), and exclusive-or'ing
them together to form a checksum. The resulting
checksum is then reverse translated using the same table
and becomes the 343rd nibble. Note that only 64 different
nibbles are present in this table. Data fields are validated

fiﬁlﬂE VFE 00/0°9 3291 VFE 00/01
{*?3414 VEE 00/08 3597 VEE 001/0F
PRESS SPACE TO CONTINUE

i If you look closely at the above display you will see
'. ithat the sector .numbers 0-F are present. If that is not the
case on vour display, then there is a sector missing.

52 53

0630~ *FFXAXFFEX(FFXAFF*XF P XXkFFAXFFXXFFXKFFXXFFXXFFXXFFXXFF*XFFXXFF**xFF*
0640~ XFFXXFFXREFFX X PPk XA R P P A A PP X X PP A X F XXX X FFAXF XA FFAXEFFXXFFX*FF A
Q650" *FPERXRFFAXVDS AN 96 TFF FE AA AA AA AA TFF FE DE AA EB
0660~ *FFAXFFXXFFXXFFXXxFFxxFF*xFF**xFF* D5 AA AD Bé DB DC F4 F3

0670~ BRI RGP 7R TAE- AR Y46 KD AC - YA AR 97 Bi Bl AR
0680~ A K YR RB- 9F =97 B3I 9A B3 RE - 97¢ 25 R34 AC- AE
0690~ K=Y R BB ED) EB -Eé g8 BE AS- DE _LF EE-—Rs A7 ES U7
06A0- BEERRGS DS Y YS SBR T E7 - BA: 9E - CAE 9E AE Y= R Y E R 2
0&6BO- EEo it AL ACY=SA B3 BI- AC A7 AC ¥7——AB>"AB - BA™ P4 97
04CO- A6 B ——ES Nl TR ED- PS5 B —EC —<DE-uBb— ¢ Se==Nge 34 EF
06DO0- By e Do DO RN s RSN ER AB. EA - BY -FD BRE -CDE FD D ChH _ED
D6EQ- Fen oL B RI=-Aw - E4. FC- B DA EER FC AR “FD - E3 RBY" ED
06F0- PADECSERT EE CFD-ET DA BY BY B3 FB D FDEER 9D BD e
0700- KRG Es L - CE= Bé& - —EY-— CR "t ¥YE Fd4. HC - Bk BY DB " EDF SR 9N s
0710- 2L T YH - 25 R 98 B 96 97" 96 $B %6 Y ¥REE- ¥E- K7
0720~ masmt g DC ERe cREE4- GBS KB F3 - BF - ES FEd ~-FB = BE= . F0--OF
0730~ Pt - DY POE BE ER- - PESCEY--CREY.. RY. CPeos RI-SRER SR e e
0740- oD FG - BF: CF %A BD E& AR DY 98 Dy DR VT CEP =G
0750- Enwarn - BC - Dé EYDF FC DE EE F& “%A Fq4 EE &8 “BAh" VEH
0760- B T BRI DR FE %A F& . FZ - AR “ER FCo. DD B —RE -t
0770~ FaampsT Y - AR FIN 94 " % V& 94 9894 96 PR AR S
0780- BV h o= 98— 8 YA 98 9é 96 26 246 94 P& A NS4 0N
0790~ 2R = CF = EBS SBA- BF F7 - F2 ¥D: BA Eé& A7 Pl = Ki EX—i%¥

07A0- DA F2 9D BA E§ O AR o e ¢ - s ¢ e - e R D& S
: 9 ¢ e Phee e 9896 V& 94 26 ool A SRl R e AL AR
9A *ﬁ.mﬁm»nmhn:MN%»HW&*MM»nhmanmh&hﬂﬂ#%ﬁﬂnm K*FF*XXFF*

e s .\II.JMP“.M...-. i e =" = . Y . 4 ,I....-Mu E]

’(’ track start to
sync nibbles will
rintout. The track

verify start will have the letter 'V’ in front of the verify
54

start nibble sequence.

in the Nibble Editor

e current track in the buffer from
end to your printer. The self

Pressing the '# key from with
have '¥ on either side of them in the p

prints th
')’ track

[#]

E

|

[}

5

~ characters and 255 lines.

B BACKUP/COPY DISK F

57

.00
.29
il
D,

TEXT EDITOR
L LOAD FILE A
S SAVE FILE N
C CATALOG X
i DRIVE 1 D
2 DRIVE 2 E

TEXT EDITOR MENU

~ The text editor is used to enter a series of Locksmith
~ Programming Language commands to allow custom
~ tailoring of the copy program for specific needs. The files
~ created by the text editor can be saved for later use in the
form of standard DOS text files. In addition, patches may
 be applied to the Locksmith disk using the text editor.

- The Locksmith text editor is not a general purpose
~ text editor and is not designed for word processing use.
~ Files used by the Locksmith text editor are limited to 39
~characters per line, and 255 lines. If a file which was
~ created by another text editor is loaded which exceeds the
~ above limits, the lines or file will be truncated to 39

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123

APPEND FILE

NEW FILE

SYNTAX CHECK

DELETE FILE

ENTER EDITOR

DISK PATCH

ESC RETURN TO MAIN MENU

The screen shown aboveis the text editor main menu.
The commands are:

'L’ loads a file from the selected disk.

'S’ saves a file from the selected disk.

'C’ displays the catalog frem the selected disk.
"1’ selects drive 1.

"2’ selects drive 2.

A’ appends a file from disk to the end of the current
file in the text editor memory.

‘D’ deletes a file from the selected disk.
‘N’ clears the text editor memory.

'E’ enters the text editor. (see the chapter "Text
Editor”)

‘B’ invokes the BACKUP/COPY function after
compiling the LPL. commands in the text editor buffer.

"X’ compiles and syntax checks the LPL commands

in the text editor buffer, but does not actually invoke the
BACKUP/COPY function.

o8

‘h ;.l

~ [T] TEXT EDITOR

~ The Text Editor is used to enter a series of commands
to Locksmith that may be saved to disk and recalled from
disk for reuse. This will preclude having to reenter the
commands manually when you wish to make another

- copy of a specific disk. You may also use any other text
~editor that stores its files as standard DOS text files.

The Text Editor should normally be used because it will

- not allow command lines to be longer than 39 characters.
- The maximum number of lines allowed in the Text Editor
' is 255.

" TEXT EDITOR COMMANDS

[ESC]

Pressing the 'ESC’ key at any time will take you back

to the Text Editor main menu. If you press the 'ESC’ key

while on aline that has not been entered into memory by
your pressing the '/RETURN’ key, the line will be lost.

[RETURN]

Pressing 'RETURN’ enters the present line into
memory and moves the cursor to the beginning of the
next line. The 'RETURN’ key may be pressed at any
Pposition on the line. You do not need to be at the end of the
line, it will still be entered into memory.

[left arrow]—

Pressing the left arrow key will move the cursor one
character to the left without erasing the character it
passes over. If you are at the beginning of a line, the

- cursor will move to the first character on the line directly

above the one you were on.

4 [right arrow]—

Pressing the right arrow will move the cursor one
character to the right without disturbing the characters it

passes over.

[up arrow (APPLE IIE only)]!

Pressing the up arrow will move the cursor up one
line. If you had not entered the line you were on by
pressing the 'RETURN’ key, this will enter it into
memory.

[down arrow (APPLE IIE only)]!

Pressing the down arrow will move the cursor down
one line. If you had not entered the line you were on by
pressing the 'RETURN’ key, this will enter it into
memory.

[CTRL-K]

Pressing and holding the key marked 'CTRL’ and
pressing the 'K’ key will move the cursor up one line. If
the line you were on had not been entered into memory by
pressing the 'RETURN’ key, this will enter it.

[CTRL-J]

Pressing and holding the key marked 'CTRL’ and
pressing the ’J’ key will move the cursor down one line.
As above, the line you were on will be entered into
memory.

[CTRL-I]

Pressing and holding the key marked 'CTRL’ and
pressing the 'T’ key will allow you to insert a character or
a line. If the cursor is on the first character of a line this
will insert a line. If the cursor is on any character except
the first one, you will be allowed to insert one (1)
character.

[CTRL-D]

Pressing and holding the key marked 'CTRL’ and
pressing the 'D’ key will allow you to delete a character or
a line. If the cursor is on the first character of aline when
you do this, the line will be deleted. If the cursor is on any
character but the first one, the character will be deleted.

60

LOCKSMITH
PROGRAMMING LANGUAGE

Locksmith Programming Language (LPL) can be
used to write custom-tailored backup/copy procedures for
disks that are difficult to copy using the standard
Locksmith defaults. LPL provides commands to change
parameters by name, and to invoke named algorithms.
The algorithms perform buffer analysis functions, as
well as some miscellaneous functions, and provision is
made for error handling and looping.

LPL commands are entered in a normal text file.
Each line in the text file starts a new command, but
multiple commands may be entered on the same line by
seperating them with a colon. The maximum line length
for a command lineis 39 characters. A command may not
be continued on a second line.

The commands are of two types:

1. Parameter setting commands.
2. Algorithm or Processing commands.

Comments may be entered at any time. Comments
begin with '*. They may be added to the end of a line by
preceding the comment with a "*.

There exist within Locksmith, seven (7) general
purpose status registers for passing status from one
algorithm to another. The value of the status registers

can be set to indicate FAIL, SUCCEED, or CLEAR. If, on
an algorithm command line, the keyword "STATUS’ is

found followed by a number from 1 to 7, the specified
status register will be set to the status of the algorithm,
either SUCCEED or FAIL, after the algorithm is
performed. The STATUS keyword and its associated

status register number must be the last non-comment

61

keywords in the statement. All status registers are
initially CLEAR (neither SUCCEED or FAIL), and can
be cleared with the CLEAR STATUS command.

Conditional execution of parameter setting or
algorithm processing can be done by starting the
statement with the keywords IF FAILx, or [IFSUCCEED
x, where 'x’ is the status register to test. If neither
keyword is found, the statement is an unconditional one.

In addition to testing the status registers, you can
test the value of a parameter, and conditionally execute
the statement in that way.

As mentioned earlier, statements can be parameter
setting or algorithm processing. A parameter setting
statement always contains the keyword 'SET’, followed
by the parameter name and one or more parameter
values. For example, the following are valid parameter
setting statements:

SET MINGAP 5
IF FAIL 3 THEN SET MINGAP 5
SET DISPL 0157

To allow for pattern matching within Locksmith,
seven (7) general purpose pattern parameters, each 16
bytes long, are provided. They are PAT1 through PAT7.
When setting these or any other 16 byte parameters,
several values may appear on the same statement. For
example:

SET PAT4 D5 AA 96

The above example would change the first 3 bytes of
PAT4, and the remaining 13 bytes would remain
unchanged. To set the remaining values to zero (“don’t
care” values in a pattern), follow the last value with a

62

slash ’/ character. For example:

SET PAT4 D5 AA 96 /

To indicate "don’t care” values in the middle of a
pattern, code a question mark for each "don’t care”
position. For example:

SET PAT4D5AA 96?7?77 AA AA /

To replicate the last value given in the statement
through the end of the pattern, code 3 periods. For
example:

SET PAT4 D5 AA 96 AA ...

In the above example, the rest of the pattern would be
filled with AA’s.

Some algorithms require that certain values in the
specified pattern be "flagged”, to set them aside from
other values in the pattern. To "flag” a value of the
parameter, enclose the value in parentheses. For
example:

SET PAT1 D5 (AA) AD /

The above example "flags” the AA value. If this SET
command were to be used before the algorithm command
CHANGE PAT1 TO SS
the flagged value (AA) would be changed to self-sync.

When setting the value of parameters which
represent track values, code a decimal point with the
number. For example:

SET SYNCTRK 3.0

63

Note that the statement
SET SYNCTRK 3
is NOT equivalent!

To leave the start of a pattern unchanged, and begin
setting values in the middle of the pattern, code ’+,
followed by a hex value from 1 to F. For example:

SET PAT4 + 2 B5

The above example would change the value of the 3rd
byte (displacement +2) in the pattern.

This technique may be necessary to change the
entire 16 bytes of a pattern to specific values, because the
statement can have a maximum length of 39 characters.
For example:

SET PAT7 D5 AA AD 97 AD 96 DD FF
SET PAT7 + 8 FD FE FF AD DD FF ED FF

Some parameters are 16-bit (2-byte) values. These
can be coded in two ways. For example, to set the 2 byte
parameter DISPL to the value 157 (hex), either of the
following statements would work:

SET DISPL 0157
SET DISPL 57 01

Note that in the second example, that the numbers
are reversed.

The format for algorithm commands is dependent
upon the individual algorithm being used. See the
chapter "Algorithms"” for a complete description of each
algorithm.

" PATCHING THE LOCKSMITH DISK

Locksmith Programming Language makes
Locksmith very flexible. It is designed to have the
capability to copy virtually every protection techniquein
current use, and many that have not yet been introduced.
However, new techniques may be developed which the
current version of Locksmith cannot handle. In addition,
software bugs, not discovered during extensive testing
procedures, may appear. For these reasons, Locksmith
has a built-in routine to allow the user to apply patches to
the Locksmith program. These patches, if required, will
be distributed by Omega MicroWare in one of the
following forms:

1. update diskette
2. printed material
3. modem files

In any case, to apply the distributed patch, the user
simply needs to LOAD the file containing the patches
into the text editor, and press 'P’ from the text editor
menu to apply the patch to the Locksmith disk. The
patches are verified to make sure they are entered
correctly, and that the patches are not already applied.
Then the Locksmith master disk is updated to reflect the
patches. This means that small revisions can be provided
to the registered Locksmith user without the need for
returning the Locksmith diskette to Omega for updating.

No provision is made for Locksmith to download files

- from modem, but after using any popular modem file

download program, Locksmith can use the resulting text
file without the need for entering the data manually. It is
expected that all Locksmith patch files will be made
available on the Source information utility, and perhaps

65

other major systems.

After pressing 'P’ from the text editor menu, if the
bell sounds and the editor is entered, an error was
encountered by the patcher. The cursor will be on the line
with the error. No patches are applied to disk until all of
the patcher commands are verified.

66

16 SECTOR UTILITIES

This option gives you access to five utilities designed
to work with normal 16 sector (generally unprotected)
disks.

[U]

Pressing 'U’ from the main Locksmith menu takes
you to the 16 sector utility submenu. If the correct overlay
is not in memory, you will be asked to insert your
Locksmith disk and press the space bar to load the
utilities into memory.

HEX 000000000000000011111111111111112222
TRK 0123454789ABCDEF012345478%ABCDEFO0123
.00
c 243
.50
il
146 SCTR UTILITIES
SELECT FUNCTION:

V 14 SECTOR FAST DISK VERIFY

B 16 SECTOR FAST DISK BACKUP

F 16 SECTOR FORMAT

C 16 SECTOR COMPARE

& 16 SECTOR SYNC SIGNATURE

[V] 16 SECTOR FAST DISK VERIFY

Pressing 'V’ from this submenu will take you to the
FAST DISK VERIFY utility. You will be prompted for
the drive number of the disk you wish to verify.

67

Locksmith will then proceed to read the disk from track 0

to track $22. You will see the following display.
HEX 000000000000000011111111111111112222
TRK 012345678%ABCDEF012345478B9ABCDEF0123
SER nk e, e e e]
.25
.50
B
14 SECTOR FAST DISK VERIFY
0123456 789ABCDEF012345478%ABCDEF0123

On the status display atthe top of the screen, a period
" means the track read correctly. An asterisk ’*' means
the track did not read correctly. A number represents the
number of extra times the disk had to spin to read all
sectors correctly. A number ’1’ for example means the
track had to be reread once in order to read correctly.

Below the status display is the track/sector display.
On the track/sector display the symbols have the
following meaning.

A period ’.’ means the sector was read correctly on the
first disk revolution. An inverse character ’A’ means
there was something wrong with the address field or the
address field was missing. An inverse .character ‘D)’

68

‘means there was something wrong with the data field.

gain, a number indicates that the sector was read
correctly, but that it took several rereads to read it
correctly.

HEX 000000000000000011111111111111112222

. TRK 0123456789ABCDEF012345678%ABCDEF0123

(TR L IRV SRR 1 TN L T b S YT S
.25
-50
e
16 SECTOR FAST DISK VERIFY
01234547B9ABCDEF0123456789ABCDEF0123
S 10 L e Y p PSR " e R s s e S

MMEMOOmMm> 0@ ~] o1 8 Wik e
LS
b

[B] 16 SECTOR FAST DISK BACKUP

Pressing a 'B’ from this submenu will take you to the

. 16SECTOR FAST DISK BACKUP. This utility is used to
. copy standard disks very quickly. If you have two drives
~ and copy from one to the other, it takes approximately 19

seconds to copy the disk. This time can be be even shorter

b if you have RAM boards (language cards) in your Apple.

Locksmith will automatically search for and use any

. combination of RAM cards in your Apple. The screen

69

display will show the slot and the amount of memory in
each ram card it finds during its search. A complete disk
requires 140K of memory (4K per track). 40K of main
memory is used to allow storage for 10 ($0A) tracks. Each
16K card found will allow 4 additional tracks to be stored.
If 100K or more in total RAM board space is found in
addition to the 40K used of main memory, the program
will allow one-pass disk copies. That is, the entire disk
will be read into memory and can be written many times
without reading the original disk again. This is very
useful for mass duplication of disks for clubs or software
manufacturers.

If an Apple //e is used, 16K RAM is built-in, in
addition to the 48K main memory. If the Apple //e
contains an 80-column auxiliary card with 64K RAM,
only 56K of the 64K auxiliary card will be used. If an
Apple //e is used with 64K auxiliary card, an additional
32K card in any other slot would allow the user to make
single-pass copies. (16K + 56K + 32K — 104K) Note that
ALL slots are searched for RAM cards, including SLLOTS3,
which is not normally available on an Apple //e with
auxiliary card installed. If a RAM card is installed in slot
3 on an Apple //e with auxiliary card, it will be used by
Locksmith FAST DISK BACKUP, even though other
software may not be able to access it.

Locksmith FAST DISK BACKUP is the FASTEST
Apple copy program with or without the use of RAM
boards.

Locksmith will read and write a disk without RAM
boards in 19 seconds, copying 10 tracks per pass. If
verifying after each write, the disk is copied in 26
seconds.

The following table summarizes timing tests done

with some popular copy programs without the use of
RAM boards:

70

i)
i
'4.

ol 5
yoh
alwr
L0
'b
i

1

time time to
trks/ to copy &
Program pass copy verify
Locksmith 5.0 10 19 26
Penulta Copy 5 38
Disk Muncher) 26
Pack Rat 4 35
Apple COPYA 8 88

Also note that Disk Muncher and Pack Rat do NOT
validate checksums during read, and are thus extremely
unreliable.

If RAM boards are found to total at least 100K (128K
RAM boards work fine), the disk can beread in 8 seconds,
and a copy disk written in 8 seconds. If verify-after-write
is desired, the disk is written in 15 seconds.

The following table summarizes timing tests done
with some one-pass copy programs with the use of 128K

RAM boards:

time time time to

to to write &
Program read write verify
Locksmith 5.0 8 8 15
CopyWriter 24 16 23
Copy Cruiser 9 16 23

Note that CopyWriter also has a 'read-twice’ mode
which takes 45 seconds to perform instead of 24 seconds,
but can be more reliable on original disks recorded on
questionable media.

When entering this routine, you will be prompted for

the original and copy drives. Entera’l’,a’2’ or RETURN
(to accept default) in answer to these prompts. After

71

inserting your disks, you will enter the backup routine.
Once the FAST DISK BACKUP routine is entered, it will
be necessary to reboot if you wish other Locksmith
funt_:tlons, as the FAST DISK BACKUP function uses all
available memory for disk buffers.

From within the backup routine, the following
commands are available:

Funection selection commands:

[12] Copy drive 1

[21] Copy drive 2 to drive 1

[11] Copy drive 1 to drive 1

[22] Copy drive 2 to drive 2

E;:% :opy drive 1 to memory (if enough RAM is available)

to1] c:py drive 2 to memory (if enough RAM is available)
py memory to drive 1 (if memory previously loaded)

[02] Copy memor
¥ to drive 2 (if m
[1] Verify drive 1 HOrY PTEEIERRLY AvNaed)

[2] Verify drive 2
[vl Toggles verify-after-write mode

to drive 2

Other commands:
[ESC] exit FAST DISK BACKUP

. [*] Allows a comment statement on screen (useful
with screen print)

func[tli{oEr:-lTURN] OR (SPACE) Start current copy or verify

While the copy operation is in progrss, you may press
[Vl to toggle'the verify-after-write mode. Verifying after
writing will increase the time it takes to write an entire
disk from 8 seconds to 15 seconds.

72

[F] 16 SECTOR FORMAT

Pressing 'F’ will allow you to format a disk. This
utility will format a disk or a range of tracks with the
volume number you specify. This could be very usefulif a
track had been destroyed accidently. In this case thedisk
would normally be unusable. However with this utility
you could simply reformat the one track and use the disk.

NOTE: IT WILL NOT RECOVER DATA THAT WAS
ON THE DESTROYED TRACK.

You will first be prompted for the disk drive you wish

" touse. Presseither’1’or’2, depending on which drive you

wish to use. You will then be prompted for track start, end
and increment. Specify the tracks you wish reformatted.
You will next be prompted for Volume Number. Specify
the volume number that you wish to format in the
Address Field. Following the Volume Number, you will
be asked which Track Numbers to use. Normally, the
defaults will be used. Since it is possible that you may at
some time wish to use a non-standard format, this is left
up to the user. For example, some disks currently on the
market use tracks $06.5 through $22.5. These tracks are
formatted with track numbers $06 through $22.

[C] 16 SECTOR COMPARE

Pressing a ’C’ from this submenu will allow you to
compare two disks for differences. When you select this
option you will be asked for the drive number of the disk
you wish to compare. This routine stores a double-byte
(16-bit) checksum for each sector in memory and
compares it to the one already there. If they don’t match
you will get a 'C’ on the sector number display. When

- reading the first disk to compare, it is normal to get many
- ’compare errors’ because incorrect sector checksums are

73

memory, take it out of the drive and replace it with the
disk you wish to compare to. Press the space bar to begin
compare, and any sector that matches will have a period
" on the sector display for that sector. If a sector doesn’t
match there will be a letter ’C’ on the sector display. The
checksums that were there from the original disk have
now been replaced by those of the disk you just compared,
so if you pressed the space bar again without removing
the disk just compared you should get all periods’.’ on the
sector display. In addition to the’.’ and ’C’, you may also
find inverse 'A’ and inverse 'D’. These indicate address
field and data field errors, respectively.

The following is a display of two disks that were not
the same.

HEX 000000000000000011111111111111112222
TRK 0123456789ABCDEF0123456789ABCDEF0123
.00
.29
.0
iy £

164 SECTOR COMPARE
0123456789ABCDEF01234546789ABCDEF0123
.. .CCCCCCCCcccececccceccecccececececccceceecec
. .CCCCCCCcCcecececececoc.cceececececceoececececceee

..CCCCCCCCCCCCOL . CCECCCECCECoCaanD
. .CCCCCCCCCCCCEC . CCECCCCEECECRLEaoe
-« . CCCECCCCCCCEED . BCECECCCCCCCCCELE
- -CCCCCCCCCUCCECE [GRECLCCCcECCLCCng
PP o ot o o ol off ol o nl ol o ol o o 00 o o o o o ml{ 040401 o 4 64 o o el 1L o
R of ot o of of ofl o of o ol off ol o oA of ol off ol off 0l o a0l ol 0 4 o oAl o 1 0
..CCCCCCCCCCCCCEC. cCceCccocccoccececee

.CCCCCCCCCCCCCCC.ccceoeGcococceceecee
..CCCCCCCCCCCCCCC . CCEeccoEcoccocooecee
. .CCCCCCCECCCCCCC.CeCCLECeCCceCcecteCac
..CCCCCCCCCCCcCCcCcOccceccccecoceccocoee
. -CCCCCCCCCCCCCCCCcECcEcCCcecaecercceccece
..CCCCCCCCCCCCCCCCCcCcCEcEcCcecctocoocect

~-CCCccCCccCCccCcocCeccecececcaoceoceocooee

MEHDOODM>®> 00 0 WU.b W= o
n

74

[S] 16 SECTOR SYNC SIGNATURE

This utility is used to obtain a signa_ture of the sync
pattern on a normal 16 sector disk. This can be gseful
when working on synchronized disks. You wxl.l be
prompted for the disk drive you wish to use. Enter either
’1’ or ’2’. This routine starts at track $00 sector $00. After
reading this sector, it moves to track 1, and fixsplays the
first sector number that it encounters. This continues
until all $22 tracks have been checked.

The sync signature is displayed again and ag_aip. It
may be slightly different due to disk speed v&_lrlatlons
from time to time. To terminate the sync signature
routine, press ESC.

In addition to checking synchronization, this routine
can be used to determine what copy program created a
given 16-sector diskette.

A sync signature on a l6-sector diskette_wil]
normally show a progression of hex numbers, elther
ascending or descending. For example,_ the following
progression shows hex numbers descending by one:

OFEDCBA9876543210FEDCBA9876543210FE

We will identify the above progression as (-1), to
indicate that each hex digit is one less than the one
before. The following table shows several copy programs,
and the progression identifier that identifies the sync
signature for a disk which was created by that spec1lﬁc
copy program. Note that simply writing data to a disk
will not change its syncsignature- the disk must actually
be formatted or generated by a copy program that
formats the disk.

75

Program signature identifier

Program signature identifier
DOS INIT ODA741EBS8S. . . (-3)
Locksmith

g Ap 048C048C. . . (+4)
Locksmith

81 o Yy OFEDCBA987... (-1)
Penulta Copy OECAS. .. (-2)
CopyWriter

(no verify) 0000000.... (+0)
CopyWriter

(verify) OFEDCBA987... (-1)
Disk Muncher OD852FC964... (**)
Pack Rat OD85630DA5. .. (*x*)

Note_ that the signatures will have the same
progression throughout the signature only if the disk was
recorded in a single pass without turning the drive off
between tracks. For example, the following signature
was generated by Locksmith FAST DISK BACKUP in a
single pass copy (with 128K RAM board):

OFEDCBA9876543210FEDCBA9876543210FE
Note that each hex digit is one less than the previous

digit. This is in agreement with the table shown above.
Now compare the following signature:

OFEDCBA98'Z\321OFEDCBAA6543210FED98765
A

76

Note that the progression is the same (-1), except that

- at 3 places (identified by arrows below the signature),

where the progression is instead (-4). This is because this

~ signature is from a disk that was created by Locksmith
. FAST DISK BACKUP running without RAM cards.
. Notice that every 10 tracks, a break in the progression
. occurs. This is because without RAM cards, FAST DISK

BACKUP copies 10 tracks at a time, and then reads the
original disk again. So only groups of 10 tracks remain in

~ sync with each other. Incidentally, the break in the
 progression was (-4). If the disk was created by
" Locksmith FAST DISK COPY with verify after write, the
~ break in the progression would have been (-3). As you can
~ see, a lot can be determined about a disk using sync
~ signature.

77

[I] INSPECTOR/WATSON

(1]
If you have previously booted with a DOS disk that

loads the Inspector/Watson onto a ram card or if you
have a firmware card with these programs on it then
pressing "I’ from the main Locksmith menu will place you
in either the Inspector or Watson.

The Inspector/Watson program works exactly as
documented in the respective manuals, with the
following exception. When Inspector/Watson is given
control from Locksmith, the default buffer address will be
$4000 instead of $0800. This is because $0800 is reserved
for Locksmith use.

If you only have the Inspector, control will be passed
to the Inspector. If you have both the Inspector and
Watson then control will be passed to Watson. All the
normal program commands are useable. To exit
Inspector/Watson press 'CTRL-C’ and you will be back
in Locksmith.

If your Inspector/Watson resides on a RAM board in
slot 0, the ESC key will also return you to Locksmith. If
your Inspector/Watson is in ROM, you must use 'CTRL-
C’ to exit.

For instructions on how to use Inspector and Watson
refer to their respective documentation. These programs
are available from Omega Microware, Inc.

Some notes you might find useful, while using
INSPECTOR/WATSON from within Locksmith follow.

When reading a disk with many soft errors (errors
which are temporary, and if read again, may succeed), it
may be desirable to inhibit the recalibration of the seek

79

mechanism. This will eliminate the constant "burping’
sound the disk drive makes before an I1/0 error occurs.
Inhibiting the recalibration prevents the read operation
from terminating with an I/0 error. The following patch
can be applied while in INSPECTOR, and should be
removed before exiting INSPECTOR. Note that after
applying this patch, that aread operation to a sector with
a permanent 1/0 error (hard error), will never terminate.
For this reason, this patch should only be applied if soft
errors occur while reading a disk using INSPECTOR. If a
read operation fails to terminate because of a hard error
on the disk, the operation can be terminated by removing
the disk and inserting a known good disk in the drive.

Also note, that unlike 'patches’ applied to the
Locksmith disk using the patcher function of the TEXT
EDITOR, the patch given here is not applied to the
Locksmith disk, and will automatically be removed upon
reboot.

To apply the patch, first read a sector using
INSPECTOR. Any sector will do. The purpose of thisisto
insure that the seek mechanism is on the correct track.
Then, change the buffer to $BD00 using the ’'B’
command. (press 'B’,)’B’’D’ RETURN) Then, change
data within the buffer using the following keystrokes:

E C C space 4 C space C 1 space B D return

Then change the buffer back to $4000 (press
‘B4 0, RETURN)

To remove the patch, set the buffer to $BD00 again
and restore the data using the following keystrokes:

E C C space 1 0 space F 3 space A D return

If you are not sure that you did this correctly, simply
press CTRL-RESET, and reboot Locksmith.

80

[/] CLEAR STATUS

(/1

The status display at the top of the screen is not
cleared after each Locksmith function, so that the user
can use the status display with other functions. To clear
the status display, press the '/’ key from the main menu.

[CTRLZ]

.~ [CTRLZ]

Pressing 'CTRL-Z' at any time will print the text

~ screen to a printer. The printer should be turned on and

enabled. Locksmith assumes that the printer interface is
installed in Slot 1, but may be changed to any slot by
changing the parm 'PRSLOT’. The parm 'PAUTOCR is
used to select whether or not Locksmith will send a
carriage return at the end of each line. The default is $00.
Any other value will cause a carriage return to be sent.

[X] EXIT/REBOOT
[X]

Pressing the "X’ key from the main menu will exit
Locksmith.

You will be prompted to insert the disk you wish to boot

and to press thespace bar. Pressing the spacebar will exit
Locksmith and perform a normal boot.

81

STATUS DISPLAY CODES

Codes which may appear on the 4-line status display
at the top of the screen are of two types: inverse
characters, which represent activity codes, and normal
characters, which represent status codes. Inverse
characters are displayed to indicate that a Locksmith
function is active on the track displayed with the activity
code. Normal characters are displayed to indicate that a
Locksmith function has processed that track, and the
status code indicates the status of the last Locksmith
function that processed that track.

. STATUS CODES

Status codes (normal characters) which you may see
in the status display are:

’. indicates normal completion of a Locksmith
function on a track. This means that the certify function,
verify function, or compare function found no errors on
the track.

"* indicates that an error occurred on the track. The
certify function was unable to certify the track, or the
verify or compare function found one or more unreadable
sectors on the track.

1’ to ’9’, when displayed during a verify function,
indicate that the track read correctly, but only after the
indicated number of rereads.

’1’ to ’F’, when displayed during the backup function,

indicate that the displayed error code was generated
~ while processing the track. See chapter concerning error

codes.

83

'’ indicates that the track was copied with no errors
during a backup function.

'E’, when displayed during the erase disk function,
indicates that the track was successfully erased.

'F’, when displayed during the 16-sector utility
format function, indicates that the track was
successfully formatted.

ACTIVITY CODES

Activity codes (inverse characters) which you may
see in the status display are:

'R’ indicates the track is being read.
"W’ indicates the track is being written.
'V’ indicates the track is being verified or compared.

'S’ indicates the track is currently being
synchronized before read or write.

'F” indicates the track is being formatted, or during
copy, nibbles are being fixed to shorten the track or
lengthen the track.

'A’ indicates the track is being analyzed after read.

'E’ indicates the track is being erased.

'C’ indicates the track is being certified or, during
copy, nibbles are being counted.

‘0’ indicates that FAST DISK BACKUP is waiting
for the motor to come up to speed.

"N’ indicates the nibble editor is processing the track.

84

DOS ERROR CODES

The following DOS error codes may appear during
use of the TEXT EDITOR file management functions.
They are described in detail in the DOS manual.

‘04" indicates that the disk is write-protected.

'06° indicates that the specified filename was not

found.

08 indicates that a DISK I/0 error occurred. The disk

drive door may have been left open.
09" indicates that the disk is full.

'0A’ indicates that the file specified is locked. Save
with a diffeent filename, or unlock the file using

standard DOS.

85

PARM KEYWORDS AND THEIR
DEFAULT VALUES

The valid parameter keywords and their meaning

 are described in this section of the manual. Note that

parameters may be changed in 3 ways:
1. Nibble editor
2. Parameter editor

3. Locksmith Programming Language

~ Parm numbers, because they may change in the future,
- are not listed here, but can be determined by using the
~ parameter modifier or nibble editor, and selecting a

~ parameter by name. The associated parameter number
- will be displayed.

~ Because future versions of Locksmith may have different
~ default parameter values, the defaults will not be listed
~ here, but may be determined by using the parameter

modifier or nibble editor.

~ Some parameters may be defined within Locksmith and
~ are not described in this manual. These are parameters
~ which are used for test purposes, or ones which are not
- fully operational. Use these at your own risk.

. PATI
. PAT2
. PAT3
. PAT4
. PAT5

PAT6

Il ~ PAT7 are 7 general purpose pattern parameters. Each is
16 bytes in length. These are used by pattern-matching
- algorithms.

87

BITTAB is a 16-byte parameter which is used by
algorithm 18 (bit lookup). For more information, see the
section discussing algorithms in detail.

INVTAB is a parameter which consists of a 128byte
lookup table to determine invalid nibbles. If the
corresponding value in this table is $00, the nibble is
‘invalid®.

MAXERR is a 16-byte parameter which contains the
maximum error counts for error codes 0 to F.

GRCHARS is a 7-byte parameter which contains the
character string sent to the printer when it is desired to
print the graphics screen.

SECAF is a 6-byte parameter which contains standard
sector address field header and trailer nibble values. This
parameter is used by the nibble editor ')’ command.

SECDF is a 5-byte parameter which contains standard
sector data field header and trailer nibble values. This
parameter is used by the nibble editor ')’ command.

PATMBK is a parameter which is used by the track
image compare algorithm. See the description in the
section of this manual describing algorithms.

SSLAHD is a parameter which contains the number of
nibbles ahead of the current nibble being compared, for
which self-sync is searched.

DSPCMP can be set to 00 if compare failures are not to be
displayed.

MAXCOR is the number of 3rd image corrections allowed
per track.

BIGTRK is the high-order byte of the maximum track

gize, in nibbles. Track sizes greater than this value are
assumed to be in error.

TSIZMIH is the high-order byte of the number of njbbles
to skip when searching for the 2nd track image in the
buffer.

TSTLEN is the number of nibbles to compare with the 1st
image, to determine that the 2nd image has been found.

SYNCPAT is the pattern number for the sync pattern.
LEADSS is the value of the lead-in self-sync nibble.

LEADFB is the number of framing bits (1 or 2) in lead-in
self-sync.

DATAFB is the number of framing bits (1 or 2) in self-
sync within the data buffer.

SLOT is theslot (1 through 7) for all Locksmith functions.
Note that overlays will always be loaded from the boot
slot and drive.

DRIVE is a 2-byte parameter whi_ch contains the from-
drive and to-drive for copy operations.

SYNCTYP controls track-syncing. If it is set to $01, the
previous track will be sync’ed to. If it is set to $00, a
specific track will be sync’ed to. If it is set to $02, the
current track will be sync’ed to.

SYNCTRK is the track numbertosyncto, if SYNCTYPis
set to the value $00.

BDISPL is the buffer displacement for SYNCTRK.

89

MINSS is the minimum number of self-sync to be
effective.

PRSLOT is the slot number of the printer to be used, if a
control-Z (screen print) command is given.

PAUTOCR is set to 0 if no automatic carraige return is
desired at the end of each line to the printer.

DLINSS is a 2-byte parameter which represents the
number of lead-in self-sync for a non-sync'ed track.

SLINSS is a 2-byte parameter which represents the
number of lead-in self-sync for a sync’ed track.

PATTOL is the tolerance value for finding the start of the
3rd image based on the 1st and 2nd images.

PATPFX is the length of the 3rd image pattern-match
prefix,

CNTERR indicates how close to get during nibble
counting. If set to $00, the count must match exactly.

VERLEN is the number of nibbles to verify at the start of

track after writing to insure that the track was not over-
written.

DDH1,DDH2DDH3 (default D5 AA AD) are 3
parameters which define the start of data field for the
DOS data-field fix algorithm.

DISPL is a 2byte parameter representing the
displacement for pattern match.

SPAN is the range of values used by the CHANGE
RANGE algorithm. This parameter is 2-bytes. The first is
the minimum value, the 2nd is the maximum value.

- PREMIN,POSTMIN,MINLEN,MAXLEN are described

in the section on algorithms.

VALUE is a general purpose parameter which is used to
pass a value to the CHANGE pattern to VALUE

~ algorithm.

CHOPS is the number of times to shorten for each
iteration of shortening.

TSAMP is a parameter which represents the length of the
sample size for the single track status map produced by
the G’ command in the nibble editor.

QSAMP is a parameter which represents the length of
the sample size for one pixel on the display created by the
quickscan function.

MINGAP is the minimum gap size allowed by the
shortening algorithms.

NOTIFY can be set non-zero to ring the l}ell contingously
on completion of a backup/copy operation, to notify the
user that the operation has completed.

ATRACE can beset to zero to inhibit the screen display of
algorithm number tracing.

91

ALGORITHMS

Algorithms are the basic building blocks for the
Locksmith backup routine. Each algorithm is a function
that operates on the nibble buffer or performs some other
control function. Which algorithms to use, and the order
they are to be used, is defined by the Locksmith
Programming Language (LPL) commands, which are
specified in a text file, and ’compiled’ by the user. Because
of this, Locksmith backup is very flexible and can be
adapted easily to almost any protection scheme.

. The algorithms fall into several categories. They are
~ listed in this section by the algorithm number assigned to

them. Algorithm numbers range from $01 to $7F. They
are categorized as follows:

General purpose 01-0F
nibble changing 10-1F
track start setting 20-2F
track end setting 30-3F
verify start setting 40-4F
track shortening 50-5F
reserved 60-6F
special purpose 70-7F

ALGORITHM NAME: ERROR

PURPOSE: ERROR HANDLER

ALG # [1]

SYNTAX: ERROR n

PARMS USED: MAXERR

PASS VALUE: error code

FUNCTIONAL DESCRIPTION:

MAXERR is tested if error code is $0-$F. If MAXERR is

exceeded, then fail flag is set, otherwise succeed flag
is set.

93

 FUNCTIONAL DESCRIPTION:
ALGORITHM NAME: TEKXT J
Changes all occurrences of the first specified pattern
to the second specified pattern. I.E. CHANGE PAT3 TO

PAT?.

PURPOSE: SET TEXT MODE
ALG # [2]

SYNTAX: TEXT

ALGORITHM NAME: INSERT

PARMS USED: NONE
PURPOSE: INSERT A 00 NIBBLE
PASS VALUE: NONE
ALG # [5]
FUNCTIONAL DESCRIPTION:
SYNTAX: INSERT PATx
Sets page 1 text mode

PARMS USED: PAT1 THRU PAT?7

ALGORITHM NAME: GRAPHICS

PASS VALUE: PATTERN #

FUNCTIONAL DESCRIPTION:
PURPOSE: SETS GRAPHICS MODE
Inserts a 00 nibble at all occurrences of the specified
pattern. The 00 nibble is inserted after the specified
nibble.

ALG # [3]
SYNTAX: GRAPHICS

PARMS USED: NONE

ALGORITHM NAME: INSERT SS LONER

PASS VALUE: NONE

PURPOSE: INSERT A 00 NIBBLE
FUNCTIONAL DESCRIPTION:

ALG # [s6]
Sets full screen page 1 hi-res graphics mode.
SYNTAX: INSERT SS LONER
INSERT S5 LONER target
Where target may be: SS
NORM
value normal
(value) self-sync

ALGORITHM NAME: CHANGE PATTERN TO PATTERN

PURPOSE: CHANGE 1 PATTERN TO ANOTHER PATTERN

ALG # [4] PARMS USED: NONE

SYNTAX: SET PATx to PATx PASS VALUE: NONE

PARMS USED: PAT1 TO PAT7

PASS VALUE: PATTERN NUMBER TO CHANGE AND THE PATTERN
NUMBER TO CHANGE TO.

94 95

FUNCTIONAL DESCRIPTION:

Insert a zero 00 nibble whenever it finds a self-sync
loner. A self-sync loner is any self-syne nibble with a
normal nibble on either side of it. The nibble is
inserted after the self-sync nibble. If 'target’ is
specified, the 00 nibble is inserted only if the loner
self-sync found matches ’'target’.

ALGORITHM NAME: ANCHOR

PURPOSE: SET ANCHOR

ALG # [7]

SYNTAX: ANCHOR

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Sets a pointer to the current buffer location. This is
used for further processing. I.E. Moving the track end

or the track start forwards or backwards in the buffer
will move from this point.

PURPOSE: NO OPERATION
ALG # [8]

SYNTAX: NOP

PARMS USED: NONE

PASS VALUE: NONE
FUNCTIONAL DESCRIPTIDN:I

Always succeeds in case you wish to set a STATUS FLAG to
succeed.

96

ALGORITHM NAME: COMPARE

PURPOSE: COMPARE TRACK IMAGES IN MEMORY
ALG # [9]
SYNTAX: COMPARE

PARMS USED: SSLAHD
PATTOL
PATMBK
MAXCOR
PATPFX
DSPCMP

PASS VALUE: NONE
FUNCTIONAL DESCRIPTION:

This algorithm compares the first track image in the
nibble buffer with the second image, one nibble at a
time. If the nibbles match, the compare continues. If
they do not match (a soft-error has oeccurred), the third
image of the track is checked, and used as a tie
breaker. The nibble that is wrong is corrected, assuming
the third image matches one of the other two. If the
third image does not match either of the other two, then
a 4 error will occur.

ALGORITHM NAME: NIBED

PURPOSE: invoke NIBBLE EDITOR.
ALG # [0A]

SYNTAX: NIBED

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

invokes NIBBLE EDITOR. When ESC is used to exit nibble
editor, control is returned to backup routine.

97

s - -

ALGORITHM NAME: TESTI1FB

PURPOSE: TEST SELF-SYNC FRAMING BITS

ALG # [0B]

SYNTAX: TEST1FB

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Tests to see if a track has one or two framing bits in
the self-sync fields.

Suceeds if it finds one framing bit in the self-synec

nibbles.

COMMENTS: This algorithm works only if RDTYP is set to

ALGORITHM NAME: FIX SS DHDR
PURPOSE: FIX DATA HEADER.
ALG # [oD]

SYNTAX: FIX SS DHDR

PARMS USED: DDH2 (DEFAULT AA)
DDH3 (DEFAULT AD)

PASS VALUE: NONE
FUNCTIONAL DESCRIPTION:

Changes the AD in a standard data header to a normal
nibble. Sometimes DOS writes the AD as a self-sync
nibble. This algorithm looks for self-sync, then any
normal nibble, then the values in DDHZ and DDH3. If this

test is passed, then the value that matches DDH3 is set
to normal.

98

ALGORITHM NAME: DISPLAY

PURPOSE: DISPLAYS TRACK START AND LENGTH

ALG # [0E]

SYNTAX: DISPLAY

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Displays track start and length.

ALGORITHM NAME: TRKMAP % 1 ir=dm i
PURPOSE: DISPLAYS TRACK MAP

ALG # [OF]

SYNTAX: TREMAP

PARMS USED: TSAMP

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Displays track map from within the NIBBLE EDITOR. Used

by the [D] command in the NIBBLE EDITOR. Each character
on the screen represents a string of TSAMP length.

ALGORITHM NAME: CHANGE SS

PURPOSE: CHANGE SELF-SYNC NIBBLES
ALG # [10]

SYNTAX: CHANGE S5S TO target
Where target may be: SS
NORM
value normal
(value) self-sync

PARMS USED: PREMIN
POSTMIN
MINLEN
MAXLEN

PASS VALUE: target
FUNCTIONAL DESCRIPTION:

Find PREMIN number of normal nibbles followed by at
least MINLEN self-sync nibbles. The number of self-sync
nibbles may not exceed MAXLEN. Then the algorithm looks
for the minimum number of normal nibbles that are
specified by POSTMIN.

I.E (1) nnnnnssssssnnnnn
(2) nannnnnssnnnnnnn

If the values for the parms are:
PREMIN=5 MINLEN=3 MAXLEN=6 POSTMIN=4

Then this algorithm will find pattern (1) but not
pattern (2). After finding pattern (1) it would change
the self-sync nibbles to the requested value.

COMMENTS: THIS IS A SELF-SYNC CLEANUP ROUTINE.

ALGORITHM NAME: CHANGE NORM
PURPOSE: CHANGE NORMAL NIBBLES
ALG # [11]

SYNTAX: CHANGE NORM TO target
Where target may be: S§S
NORM
value normal
(value) self-synec

PARMS USED: PREMIN
POSTMIN
MINLEN
MAXLEN

PASS VALUE: target

100

. FUNCTIONAL DESCRIPTION:

This algorithm functions exactly like algorithm 10
except that it is reversed. PREMIN and POSTMIN represent
fields of self-sync nibbles, and MINLEN and MAXLEN
represent normal nibbles.

COMMENTS: CLEANUP NORMAL NIBBLES IN THE MIDDLE OF A
SELF-SYNC STRING.

ALGORITHM NAME: CHANGE PATTERN T0 s8
PURPOSE: CHANGE A PATTERN

ALG # [12]

SYNTAX: CHANGE PATx TO SS

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE.

FUNCTIONAL DESCRIPTION:

Change any occurrance of PATx to self-synec.

ALGORITHN NAME: CHANGE PATTERN To NORM
PURPOSE: CHANGE A PATTERN

ALG # [13]

SYNTAX: CHANGE PATx TO NORM

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE.

FUNCTIONAL DESCRIPTION:

Changes any occurrance of PATx to normal nibbles.

101

ALGORITHM NAME: CHANGE ALL

PURPOSE: CHANGE ENTIRE BUFFER
ALG # [14]
SYNTAX: CHANGE ALL TO target
Where target may be: SS
NORM

value normal
{value) self-sync

PARMS USED: NONE

PASS VALUE: target

FUNCTIONAL DESCRIPTION:

Changes the entire nibble buffer to the target value.
COMMENTS: THIS MAY BE USED TO DO TESTING ON A DISK. IT

IS ALSO A CONVENIENT WAY TO CLEANUP THE BUFFER AND WRITE
A TRACK WITH A KNOWN VALUE.

ALGORITHM NAME: CHANGE RANGE
PURPOSE: CHANGE A RANGE OF NIBBLES
ALG # [15]

SYNTAX: CHANGE RANGE TO target
Where target may be: S5
NORM
value normal
(value) self-sync

PARMS USED: RANGE (THESE ARE 2 BYTE WHICH DEFINE THE LOW
AND HIGH VALUES FOR THE RANGE. I.E, FE AND FF (THESE ARE
THE DEFAULT VALUES

PASS VALUE: target

FUNCTIONAL DESCRIPTION:

Changes all nibbles greater than or equal to the lower

boundary and less than or equal to the higher boundary
to the specified value.

102

COMMENTS: CLEANUP SELF-SYNC.

ALGORITHM NAME: CHANGE INVALIDS
PURPOSE: CHANGE INVALID NIBBLES
ALG # [16]

SYNTAX: CHANGE INVALIDS TO target
Where target may be: SS§
NORM
value normal
(value) self-sync

PARMS USED: NONE
PASS VALUE: target
FUNCTIONAL DESCRIPTION:

Changes all invalid nibbles to the specified value.
DEFINITION: An invalid nibble is any nibble that
contains more than two consecutive zero bits. A nibble
with more than two consecutive zero bits will not read
reliably.

COMMENTS: THIS ROUTINE IS USED TO CLEANUP GLITCHES WHICH
ARE LEFT AFTER A WRITE HEAD IS TURNED OFF. IT MAY ALSO
BE USED TO CLEANUP PORTIONS OF A TRACK THAT HAVE NOT
BEEN FORMATTED.

ALGORITHM NAME: CHANGE SHIFTED

PURPOSE: CHANGE SHIFTED SELF-SYNC NIBBLES
ALG # [17]

SYNTAX: CHANGE SHIFTED

PARMS USED: NONE

PASS VALUE: NONE

103

FUNCTIONAL DESCRIPTION:

This algorithm looks for patterns of FF self-sync that
were read in before the read head was synchronized. It
then changes these nibbles to self-syne FF. This routine
only works for self-syne value FF.

COMMENTS: CLEANUP SELF-SYNC ROUTINE.

ALGORITHM NAME: CHANGE BITLOOKUP
PURPOSE: CHANGE NIBBLES
ALG # [18]

SYNTAX: CHANGE BITLOOKUP TO target
Where target may be: SS
NORM
value normal
(value) self-synec

PARMS USED: BITTAB
PASS VALUE: target
FUNCTIONAL DESCRIPTION:

Every nibble in the nibble buffer is translated
according to a 16 byte parameter called BITTAB. Each of
the 128 bits in the 16 byte parameter BITTAB represents
a nibble value from $80 to $FF. If the bit corresponding
to the nibble being translated is a 1-bit, the nibble is
changed to the target value. If the corresponding bit is
a 0-bit, no change takes place.

EXAMPLE :
If the nibble being translated is $96, BITTAB+2 is

examined, and the $02 bit determines whether the nibble
being translated will be changed or not.

COMMENTS: A fast way to change many different nibbles to
the same target value, or to 55 or to NORM.

104

ALGORITHM NAME: CHANCE EXTEND
PURPOSE: EXTEND SELF-SYNC NIBBLES
ALG # [19]
SYNTAX: CHANGE EXTERD BY x

Where x is the number of nibbles you wish to
extend to the right of a self-synec field.
PARMS USED: NONE
PASS VALUE: x
FUNCTIONAL DESCRIPTION:
If the nibble following a self-sync (S8S) string is the
same value as the self-sync in the string then change it
to self-sync as long as the length doesn’t exceed the
number of the pass value. In the following example the
FF prior to the AA would be changed to self-syne but the
AA would not. If however there were three normal FF's
following the self-sync string, only the first two would

be changed to self-syno.

EXAMPLE :
PASS=2

SS SS S5 NN NN
FF FF FF FF AA

ALGORITHM NAME: CHANGE PATTERN TO VALUE

PURPOSE: CHANGE A PATTERN
ALG # [1A]

SYNTAX: CHANGE PATx TO VALUE
Where VALUE is any value between $0 and $FF.

PARMS USED: VALUE
PASS VALUE: PATTERN NUMBER TO USE (1-7).
FUNCTIONAL DESCRIPTION:

Change any occurrances of the pattern to the specified
value.

105

ALGORITHM NAME: CHANGE FRAME1l

PURPOSE: CHANGE NORMAL NIBBLES
ALG # [1B]

SYNTAX: CHANGE FRAME1

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

Changes a maximum of two normal nibbles in a string of
self-sync nibbles to self-sync.

COMMENTS: PROVIDES A FAST METHOD OF CLEANING UP NORMAL
GLITCHES IN A SELF-SYNC FIELD. THIS COULD ALSO BE DONE
WITH ALGORITHM 11.

ALGORITHM NAME: CHANGE SS INVALIDS

PURPOSE: CHANGE SELF-SYNC INVALIDS
ALG # [1E]

SYNTAX: CHANGE SS INVALIDS TO target
Where target may be: S8
NORM
value normal
(value) self-synec

PARMS USED: NONE
PASS VALUE: target

FUNCTIONAL DESCRIPTION:

Changes invalid self-sync to specified value.
DEFINIZION: Invalid self-sync is any self-syne nibble
with the two low order bits equal to zero.

1 255 I -

Normally this is not an invalid nibble but since it is
self-sync and therefore followed by more zero bits it
may not read reliably.

106

ALGORITHM NAME: TSTART PATTERN
PURPOSE: SET TRACK START

ALG # [20]

SYNTAX: TSTART PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE.
FUNCTIONAL DESCRIPTION:

Set track start to first occurrance of the specified
pattern in the buffer.

ALGORITHM NAME: TSTART FSPACE

PURPOSE: SET TRACK START
ALG # [21]

SYNTAX: TSTART FSPACE bytes
Where bytes may be: 1 field $00
of bytes $01-§FF

PARMS USED: NONE

PASS VALUE: NUMBER OF NIBBLES TO MOVE THE TRACK START
FORWARD.

FUNCTIONAL DESCRIPTION:

This algorithm takes the current track start and moves
it forward the specified number of nibbles in PASS
value.

EXCEPTION: If PASS value is zero (0) then track start is
moved forward one field.

I1.E. If track start is on a normal nibble then it will
move forward to the first self-sync nibble if finds. If
track start is on self-sync then it will move forward to
the first normal nibble it finds.

107

ALGORITHM NAME: TSTART BSPACE
PURPOSE: SET TRACK START
ALG # [22]

SYNTAX: TSTART BSPACE bytes
Where bytes may be: 1 field $00
of bytes $01-§$FF

PARMS USED: NONE
PARMS USED: bytes
FUNCTIONAL DESCRIPTION:

Same as algorithm number 21 except it moves backwards
through the buffer instead of forwards.

COMMENTS : AFTER SELECTING TRACK START THIS ALGORITHM MAY

BE USED TO MOVE THE TRACK START TO THE BEGINNING OF THE
LEADIN SELF-SYNC FIELD.

ALGORITHM NAME: TSTART FIRST NORM

PURPOSE: SET TRACK START

ALG # [23]

SYNTAX: TSTART FIRST NORM

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm sets the track start to the first normal
nibble occurring after a self-sync nibble. A self-sync

nibble is looked for to make sure the entire normal
field is present.

COMMENTS: THIS IS OFTEN USED IN SYNCHRONIZING TRACKS .

108

ALGORITHM NAME: TSTART FIRST SS

PURPOSE: SET TRACK START
ALG # [24]

SYNTAX: TSTART FIRST SS
PARMS USED: NONE

PASS VALUE: NONE
FUNCTIONAL DESCRIPTION:

This algorithm set the track start te the first self-
sync nibble following a normal nibble.

ALGORITHM NAME: TSTART LONG NORM

PURPOSE: SET TRACK START

ALG # [25]

SYNTAX: TSTART LONG NORM

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm sets the track start to the beginning of

the longest normal nibble field that occurs in the first
$2000 nibbles.

COMMENTS: THIS MAY BE USEFUL FOR DETERMINING DATA AREAS
ON SPIRAL TRACKS.

109

ALGORITHM NAME: TSTART LONG SS

PURPOSE: SET TRACK START

ALG # [28]

SYNTAX: TSTART LONG SS

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm sets track start to the first normal
nibble following the longest self-synec field in the

first $2000 bytes of the nibble buffer.

COMMENTS: THIS NORMALLY FINDS A GOOD TRACK START. THIS
IS THE DEFAULT VALUE.

ALCORITRM NAME: TSTART Dos T
PURPOSE: SET TRACK START

ALG # [27]

SYNTAX: TSTART DOS PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE. DEFAULT=1.

FUNCTIONAL DESCRIPTION:

This algorithm uses a PATTERN (1) to determine a normal

13 or 16 sector track start. This will normally be
sector 0.

COMMENTS: THIS HELPS FIND THE TRACK START ON NORMAL DOS
DISKS.

110

ALGORITHM NAME: TSTART ASSIGN

PURPOSE: SET A PATTERN

ALG # [28]

SYNTAX: TSTART ASSIGN PATx
PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO STORE TRACK START
INFORMATION

FUNCTIONAL DESCRIPTION:
This algorithm finds the current track start location

and sets the PATTERN= to the first 16 nibbles following
the track start.

ALGORITHN NAME: TSTART FSPACE EQUAL
PURPOSE: SET TRACK START

ALG # [29]

SYNTAX: TSTART FSPACE EQUAL

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm takes the current track start and moves
it forward to the first nibble of a different value.

111

ALGORITEM NAME: TSTART BSPACE EQUAL

PURPOSE: SET TRACK START
ALG # [2A]

SYNTAX: TSTART BSPACE EQUAL
PARMS USED: NONE

PARMS USED: NONE

FUNCTIONAL DESCRIPTION:

This algorithm moves the track start back through the
buffer to the first nibble of a different value.

ALGORITHM NAME: TEND PATTERN

PURPOSE: SET TRACK END

ALG # [30]

SYNTAX: TEND PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE.
FUNCTIONAL DESCRIPTION:

This algorithm sets the track end to the first
occurrance of the specified pattern.

112

ALGORITHM NAME: TEND FSPACE

PURPOSE: SET TRACK END

ALG # [31]

SYNTAX: TEND FSPACE bytes
Where bytes may be: 1 field $00 # of
bytes $01-8FF

PARMS USED: NONE

PASS VALUE: bytes

FUNCTIONAL DESCRIPTION:

This algorithm takes track end and moves it forward the
specified number of nibbles in PASS value.

EXCEPTION: If PASS value=0 then track end is moved
forward one field.

I.E. If track end is on a normal nibble then it will be
moved forward to the first self-sync nibble. If track

end is on a self-sync nibble then it will be moved
forward to the first normal nibble.

ALGORITHM NAME: TEND BSPACE
PURPOSE: SET TRACK END
ALG # [32]

SYNTAX: TEND BSPACE bytes
Where bytes may be: 1 field §$00 # of

bytes $01-$FF
PARMS USED: NONE
PASS VALUE: bytes
FUNCTIONAL DESCRIPTION:
This algorithm is the same as algorithm 32 except it

moves the track end back through the buffer instead of
forward.

113

ALGORITHM NAME: TEND ASSIGHN

ALGORITHM NAME: TEND REPEAT

PURPOSE: SET TRACK END PURPOSE: SETS A PATTERN

ALG # [33] ALG # [38]

SYNTAX: TEND REPEAT SYNTAX: TEND ASSIGN PATx

PARMS USED: TSIZMIH
TSTLEN
BIGTRK

PARMS USED: NONE
PASS VALUE: PATTERN NUMBER TO USE.
PASS VALUE: NONE FUNCTIONAL DESCRIPTION:

ified PATTERN to the 16
bt This algorithm sets a spec

nibbles that preceed track end.

This algorithm sets the track end — to track start. It
takes track start and adds TSIZMIH * $100 nibbles and
searches forward through the buffer for a repeat of
track start. It searches for TSTLEN number of nibbles
for a match. It then calculates track length. Track
length must be less than BIGTREK * $100. After the
pattern is found, track end is set to this location and
then moved back through the buffer to the beginning of
the previous self-sync field.

ALGORITHM NAME: TEND FSPACE EQUAL
PURPOSE: SET TRACK END

ALG # [39]

SYNTAX: TEND FSPACE EQUAL

COMMENTS : DEFAULT ALGORITHM ‘
PARMS USED: NONE

ALGORITHM NAME: TEND TSTART

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:
PURPOSE: SET TRACK END

t
This algorithm takes track end and moves it forward to
the first nibble of a different value.

ALG # [34]

SYNTAX: TEND TSTART pages
PARMS USED: NONE

PASS VALUE: pages
FUNCTIONAL DESCRIPTION:

This algorithm takes track start and adds the specified
number of pages and sets track end.

114 115

ALGORITHM NAME: TEND BSPACE EQUAL

PURPOSE: SET TRACK END
ALG # [3A]

SYNTAX: TEND BSPACE EQUAL
PARMS USED: NONE

FARMS USED: NONE

FUNCTIONAL DESCRIPTION:

This algorithm moves the track end backwards through the

buffer to the first nibble of a different value

ALGORITHM NAME: VSTART PATTERN

PURPOSE: SET VERIFY START

ALG # [40]

SYNTAX: VSTART PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO USE.

FUNCTIONAL DESCRIPTION:

This algorithm sets the verify start to the first
Occurrance of the specified Pattern in the buffer

116

ALGORITHM NAME: VSTART FSPACE

PURPOSE: SET VERIFY START

ALG # [41]

SYNTAX: VSTART FSPACE bytes
Where bytes may be: 1 field $o00 # of
bytes $01-§FF

PARMS USED: NONE
PASS VALUE: bytes
FUNCTIONAL DESCRIPTION:

This algorithm takes the verify start and moves it
forward the number of nibbles in PASS value.
EXCEPTION: If PASS value=0 then verify start is moved

forward one field.
I1.E. If verify start is on a normal nibble then it will

move forward to the first self-sync nibble. If verify
start is on a self-sync nibble it will move forward teo
the first normal nibble.

ALGORITHM NAME: VSTART BSPACE

PURPOSE: SET VERIFY START

ALG # [42]

SYNTAX: VSTART BSPACE bytes
Where bytes may be: 1 field $00 # of
bytes $01-%FF

PARMS USED: NONE

PASS VALUE: bytes

FUNCTIONAL DESCRIPTION:

This algorithm takes the verify start and moves it
exactly like algorithm 41 except it is moved backwards

through the buffer. All the information in algorithm 42
is the same as that in algorithm 41.

i L Er

ALGORITHM NAME: VSTART NORM

PURPOSE: SET VERIFY START
ALG # [43]

SYNTAX: VSTART NORM

PARMS USED: NONE

PASS VALUE: NONE
FUNCTIONAL DESCRIPTION:

This algorithm moves the verify start forward to'the
first normal nibble from track start.

COMMENTS: SINCE TRACK START IS NORMALLY SET TO THE

BEGINNING OF SELF-SYNC THIS IS USED TO MOVE THE VERIFY
START FORWARD TO THE FIRST NORMAL (DEFAULT) .

ALGORTTHM NaME: vSTART TsTART
PURPOSE: SET VERIFY START

ALG # [44]

SYNTAX: VSTART TSTART pages

PARMS USED: NONE

PASS VALUE: pages

FUNCTIONAL DESCRIPTION:

This algorithm takes track start and adds the specified

number of pages to it and uses that position for the
verify start.

118

ALGORITHM NAME: VSTART ASSIGN

PURPOSE: SET A PATTERN

ALG # [48]

SYNTAX: VSTART ASSIGN PATx

PARMS USED: NONE

PASS VALUE: PATTERN NUMBER TO ASSIGN VERIFY START TO.
FUNCTIONAL DESCRIPTION:

This algorithm finds the verify start and sets the
assigned PATTERN equal to the following 16 bytes.

ALGORITHM NAME: VSTART FSPACE EQUAL

PURPOSE: SET VERIFY START
ALG # [49]

SYNTAX: VSTART FSPACE EQUAL
PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm takes the current verify start and moves
it forward to the first nibble of a different value.

119

ALGORITHM NAME: VSTART BSPACE EQUAL

PURPOSE: SET VERIFY START
ALG # [aA]

SYNTAX: VSTART BSPACE EQUAL
PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm moves the verify start backwards through
the buffer to the first nibble of a different value.

ALGORITHM NAME: SHORTEN ALL EQUAL

PURPOSE: SHORTEN TRACK
ALG # [50]
SYNTAX: SHORTEN ALL EQUAL BY n

PARMS USED: MINGAP

PASS VALUE: n where n is the number of self-sync nibbles
to remove each time

FUNCTIONAL DESCRIPTION:

This algorithm goes through the buffer removing the
specified number of self-sync nibbles from each self-
sync field, leaving at least MINGAP self-syne nibbles in
each field.

Note: This removes only self-sync values that are the
same as other self-synec values in the self-sync string.
It will not remove self-sync nibbles with differing
values. The self-sync nibbles are removed from the
beginning of the self-syne string.

120

ALGORITHM NAME: SHORTEN ALL CENTER

PURPOSE: SHORTEN TRACK
ALG # [51]

SYNTAX: SHORTEN ALL CENTER BY n
PARMS USED: MINGAP

PASS VALUE: n where n is the number of self-sync nibbles
to remove each time

FUNCTIONAL DESCRIPTION:

This algorithm is the same as algorithm 50 except it
doesn’t require the self-sync nibbles to be of the same
value. It removes the self-sync nibbles from the middle

of the self-sync string.

ALGORITHM NAME: SHORTEN LONGEST EQUAL

PURPOSE: SHORTEN TRACK
ALG # [52]
SYNTAX: SHORTEN LONGEST EQUAL BY n

PARMS USED: MINGAP
CHOPS

PASS VALUE: n where n is the number of self-sync nibbles
to remove each time

FUNCTIONAL DESCRIPTION:

This algorithm searches the buffer for the longest self-
syne field and removes the specified number of self-sync
nibbles. This sequence is repeated the number of times
specified in CHOPS. The self-sync nibbles value must be
the same and they are removed from the beginning of the
self-syne string.

121

ALGORITHM NAME: SHORTEN LONGEST CENTER

PURPOSE: SHORTEN TRACK
ALG # [53]
SYNTAX: SHORTEN LONGEST CENTER BY n

PARMS USED: MINGAP
CHOPS

PASS VALUE: n where n is the number of self-syne nibbles
to remove each time

FUNCTIONAL DESCRIPTION:

This algorithm performs the same as algorithm 52. The
differences are that it takes the self-sync nibbles from
the middle of the self-synec string and doesn’t check to
see if the self-sync values are the same.

ALGORITHM NAME: SHORTEN MANUAL

PURPOSE: SHORTEN TRACK
ALG # [54]

SYNTAX: SHORTEN MANUAL
PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm prints SHORTEN on the scereen. In the
manual mode you must shorten the track yourself.

122

ALGORITHM NAME: GOTO

PURPOSE: GOTO A LOCATION IN DYNAMIC STACK
ALG # [70]

SYNTAX: GOTO label

PARMS USED: NONE

PASS VALUE: label where label is a value between $0 and
$FF

FUNCTIONAL DESCRIPTION:

This algorithm is used to goto a label at a location in
the algorithm processing stack. It is very useful if
you wish to return and do further processing after
encountering an error while analyzing.

ALGORITHM NAME: LABEL

PURPOSE: SET A LABEL IN DYNAMIC STACK
ALG # [71]

SYNTAX: LABEL label

PARMS USED: NONE

PASS VALUE: label where label is a value between $0 and
$FF.

FUNCTIONAL DESCRIPTION:

This algorithm is used to set a label which may be used
by the GOTO label algorithm (70)

123

ALGCORITHM NAME: CLEAR ANCHOR

ALGORITHM NAME: RESTORE

PURPOSE: RESTORE PARAMETERS PURPOSE: CLEARS ANCHOR

ALG # [72] ALG # [74]
SYNTAX: RESTORE SYNTAX: CLEAR ANCHOR

PARMS USED: NONE PARMS USED: NONE

PASS VALUE: NONE PASS VALUE: NONE
FUNCTIONAL DESCRIPTION: FUNCTIONAL DESCRIPTION:

This algorithm clears the ANCHOR to the beginning of the
buffer.

This algorithm restores all default parameters in
Locksmith’s parameter tables.

ALGORITHM NAME: ABORT

ALGORITHM NAME: SCRNPRT

PURPOSE: SCREENPRINT PURPOSE: ABORTS CURRENT OPERATION

ALG # [73] ALG # [75]

SYNTAX: SCRNPRT SYNTAX: ABORT

PARMS USED: PRSLOT (default 1)
PAUTOCR (default 1)

PARMS USED: NONE

PASS VALUE: NONE
PASS VALUE: NONE
FUNCTIONAL DESCRIPTION:
FUNCTIONAL DESCRIPTION:
This algorithm aborts the current operation and returns
This algorithm prints the current text screen on the you to the previous menu.
printer.

COMMENTS: THIS ALGORITHM ASSUMES THE PRINTER 1S TURNED
ON AND ON LINE WHEN IT IS INVOKED.

124 125

ALGORITHM NAME: TSTLONG

ALGORITHM NAME: CLEAR STATUS

PURPOSE: TEST TRACK LE
i PURPOSE: CLEAR STATUS REGISTERS

ALG # [78]
ALG # [7A]

SYNTAX: TSTLONG
SYNTAX: CLEAR STATUS n

PARMS USED: BIGTRK PA USED: NONE
RMS :

PASS VALUE: NONE
PASS VALUE: n where n is the number of the status

FUNCTIONAL DESCRIPTION: register to clear.

This algorithm checks to make sure that track length is TR S OMAL DUSCRIRTIION:

less than BIGTRACK * $100.
’ This algorithm clears the STATUS register with the value

ALGORITHM NAME: SKIP

PURPOSE: SKIP A TRACK ALGORITHM NAME: READ

ALG # [78] PURPOSE: READS A TRACK

SYNTAX: SKIP ALG # [7B]

PARMS USED: NONE SYNTAX: READ

PARMS USED: REREAD
ACTREAD
ACTERR

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

TFia algorithm skips the current track, and continues e el i
with the next track in the copy process. FUNCTIONAL DESCRIPTION:
COMMENTS: This is often used after encountering errors

in processing, to continue the copy . This algorithm reads a track. If it encounters an error

it checks to make sure that the number of times the
track has been read is less than the value of REREAD. If
so it increments ACTREAD, clears all error flags and
rereads the track. If the value is equal or greater than
REREAD it exits with the appropiate error flags set.

126
127

ALGORITHM NAME: COPY

PURPOSE: COPY TRACKS

ALG # [7F]

SYNTAX :COPY TRACK nn TO0 nn BY nn

PARMS USED: NONE

PASS VALUE: NONE

FUNCTIONAL DESCRIPTION:

This algorithm sets up the copy process after all

analysis algorithms have been entered into the text

file. The starting track, ending track and track
inerement are defined.

128

NIBBLE EDITOR COMMANDS
CURSOR MOVEMENT

[I] Move up one line.

[J] Move left one character.

[K] Move right one character.

[M] Move down one line.

[up] Up arrow Move up one line Apple //e only.
[dn] Up arrow Move down one line Apple //e
only.

[1t] Left arrow Move left one character.

[rt] Right arrow Move right one character.

[<] Move back one screen page.

[>] Move forward one screen page.

[,] Continous scroll backwards.

[.] Continous scroll forward.

[CTRL-B]Move to beginning of buffer or to track
start.

[CTRL-E] Move to end of track or end of buffer.

CONTROL KEY COMMANDS

[CTRL-R] Read a track into the buffer.
[CTRI-W] Write the current buffer to disk.
[CTRL-B] Move to beginning of buffer or to track
start.

[CTRI-E] Move to end of track or end of buffer.
[CTRL-A] Perform an Algorithm. It will ask for
PASS: value. RETURN defaults.

[CTRL-S] Perform current set of algorithms on
track.

129

[CTRL-V] Set track verify start. Should be used
after ’(’. Check ’(’ below.

[CTRL-I] Insert nibble. Replicates nibble under
Cursor.

[CTRL-D] Delete nibble under cursor.
[CTRL-F] Find has four options.

[CTRL-F] Enter data as hex numbers separated
by spaces, end with RETURN key.

[CTRL-F] RETURN repeats the last CTRL-F
command.

[CTRL-FL] Enter length (0-F). Look for pattern
starting at cursor of (length).

[CTRL-FL.] RETURN repeats the last cFL
command.

[CTRL-FP] Enter a number (1-7) uses parm
(pattern) for the search.

[QTRLFO] Finds the first nibble that is
different from the one the cursor is on.

[QTRL—P] Change parameters from within
Nibble Editor.

CTRLP HAS THE FOLLOWING OPTIONS.

PARM: Enter <ctrlR> + RETURN. Restores all
default parameters.

PARM: Enter <name> + RETURN.

PARM: Enter <hex value> (0-1FF valid) +
RETURN.

PARM: Enter <?>+ RETURN. Displays all valid
parm names.

PARM: Enter <+> + RETURN. Moves to next
parameter in sequence.

130

PARM: Enter <RETURN>. Exit parameter
change mode.

AFTER PARM HAS BEEN ENTERED YOU
HAVE THE FOLLOWING OPTIONS FOR
VALUE.

VALUE: Enter <RETURN>. Accepts displayed
default value.

VALUE: Enter <hex> + RETURN.

VALUE: Enter <hex hex hex ...> + RETURN.
VALUE: Enter <track number with decimal
point.> + RETURN.

WARNING! NO CHECK IS MADE TO SEE IF
THE PARM IS TRACK.

MISCELLANEOUS COMMANDS.

[(] Sets track and verify start at cursor position.
[)] Sets track end.

[S] Sets nibble under cursor to self synch.

[N] Sets nibble under cursor to normal (non-self
synch).

[C] Enter change mode. Enter <hex hex ..> +
RETURN to exit change mode.

[C] The commands (S and N) also work in
change mode.

[H] Entering "H” will display current buffer on
the hi-res screen.

[HG] Entering a 'G’ while in hi-res mode will
print the hi-res screen if:

You have a printer capable of graphics and

a graphics printer card.

[G] Entering a 'G’ shows you a text graphic
display of the buffer.

131

[D] Entering a ’D’ will give you a display of the
16 sector addresses and the data checksum.
For 13 sector it will display address fields only.
[CTRIL-Z] Prints current screen to printer.

[#] Prints from ’(’ <track start> to ’)’ <track end>
on the printer.

[ESC] Pressing the 'ESC’ key exits the Nibble
Editor.

16 SECTOR 6-BIT NIBBLE TRANSLATE
TABLE

The following translate table is used for calculating
data field checksums. It is described in the chapter on the
nibble editor describing the 'D’ command.

00:96 01:97 02:9A 03:9B
04:9D 05:9E 06:9F 07:A6
08:A7 09:AB OA:AC OB:AD
OC:AE OD:AF OE:B2 OF:B3
10:B4 11:B5 ' 12:8B6 '13:B7
14:B9 15:BA 16 :BB 17:BC
18:BD 19:BE 1A:BF 1B:CB
206D ID:CE' "IEJCEF ' IF;:D3
20:D6 21:D7 22:D9 23:DA
24:DB 25:DC 26:DD Z7:DE
28 :DF 29:E5 2A:E6 2B:E7
2C:EH9 2D:EA ZE:EB 2F:EC
30:ED 31:EE 32:EF 33:F2
34:F3 35:F4 36:F5 37:F6
38:F7 39:F9 3A:FA 3B:FB
3C:FC 3D:FD 3E:FE 3F:FF

132
133

d4
a4
A4
a4
a4
vd

ANTVA SHATHHIN

dg J4vV:dT 39 4V AT 49

dg gv:LT dd gv:9T Jd

AV dV:d40 JV 4V:F0 dV

AV €V:40 AV dV:i90 4V
dTdVL

dd:dd 44 43:4d 49 A4 49
dd:34d 34 43:3a I JAd°39
q4:qd 44 II‘@a 49 IJ'ad
d4:04 T4 FI:'D0A dHE FA:DH
dd:gd 94 J43:'€9d 99 JJ'€9d
d4:'Vd V4 43:'Vd VdH J4:Vd

av:
Vv:
av:
vv:

at
ST
ao
S0

g 3AV:-
g Vv
av Jv:
av vv:

o1
PI
20
¥0

INTVA SIATHEHIN
ITdVI JId003IA YIEWAN dOIDIS

av
g4
a4
av
av

g4 -
dV:
av:
av:

av

22
g1
g1
g0
‘80

\A L
vd
vd
\AJ
Vv

JAODHa ¥HIHWAN MDVHL

Jdd

ad

49

a4

a4
vd

g9 ¢
A9
a4 -
K i
g9
g9

46
a6
as
26
g6
V6

LI
a4
44
qd
g4
vd

L&
L §:
ag:
a9 -
g4 -
44 -

g4
qJi
as
24
g4
Vi

Jdd
T4
d4
ad
g4
vd

AV
AV
av
av
AV
AV

g4 -
av:
av:
4V
av:

O (0]
i £°)
-as
‘08
bR L)
B 4°)

ez
Vi
et
Vo
20

av
a4
qad
av
av

Jd9d Jd9:
ad J9:
Jdd 34:

ve:
av-
vv:
qy:
Vv:

qg dd:

g9 449
vea 49

I2
61
It
60
10

ae
ae
as
o
8 : 4%
‘vVe

Vv
Ve
Ve
Vv
vV

Jdd
a4
49
ad
g4
vd

ve:
av:
Vv:
av:
Vv:

Jdy:
dv:
av -
av:
AV
V-

0z
81
ot
80
00

T
CQ
at
2T
a1
VI

135

g4

g4
q4
g4
a4
g4
vd
g4
Vd
A9
ad
J3
A
g3
va
g3
va
J9
a3
L
a3
g9
Vi
2 4C |
va

dd: 64
d4:84
gd4: 44
qg4°94
Vd:cd
Vd:vd
g4d: 24
g4:24
V4:'Td
Vad:0d
d4 43
L R A
a4 -ad
d4:03
Jd4:gH
d4 V3
di:6d
d4:81
b I P
g4:93
Vd:ed
Vd:¥3E
qg4:20
g4:2d
Vd: T3
Vd:0d

g4
vd
Jd4
a4
g4
a4
g4
vd
g4
vd
Ao
ad
JH
i
g3
v
g3
va
g |
C§ |
J9
a3
g3
v
g3
va

b §C B
aq -
g3
g3
va:
va:
2 4 R
g3 ¢
Vi
va:
K & i
K ¢ i
i ¢ i
¢ i
g
49 :
Jd -
JH -
g9 -
8 &0
va:
va:
qai:
g9
va:
va:

6d
8a
L4
oa
sa
va
eda
ea
Ia
oa
4D
d9
an
20
)
Vo
60
8d
40
9)
Sd
¥0
22
2d
L8]
02

g4
vd
g |
aJd
A4
Jd
gad
vd
g4
v
AV
av
AV
qav
qav
Vv
qav
b §
AV
av
AV
av
av
Vv
av
Vv

Jd4
a4

‘64
‘8d
g4
qg4:
Vd:
Vd:
g4
g4
vd:
Vda:
L&
LE &
ad:
JJd:
L
LR
b B &
a4
g4
g4
vd:
Va:
g4
a4:
vd:
vd:

L9
od
cd
¥d
o
e
18
od
AV
av
av
oV
qaVv
LA
6V
8V
A
9V
v
v
eV
ev
Vv
ov

g4

vd
L&

ad
L g
ad
g4

ve

g9
ve
AV
AV

LA

av
qav
vy

av
Vv

dVv
av

AV
AV
av

LA 4

av
Vv

K € &
C §C i
g3 ¢
g3 ¢
va:
va:
g3
4
va:
va:
AT
C ¢ &
Jq:
a3
L §C B
A9 :
aq:
a9 :
2 8
qa3:
Vi
vi:
2 @
qa3:
va:
va:

66
86
L6
96
c6
¥6
26
26
I6
06
a8
a8
as
o8
a8
Ve
68
88
L8
98

ve
28
c8
I8
08

g4
vd
d4
a4
d4
a4
g4
vd
g4
vd
J3
CHC |
49
aq
g3
v
g4
v
dH
N §
J9
Jd
g
va
g4
va

qJ4g:
3g:
qg4q:
ad:
ve:
ve:
qa4q:
g4
ve:
ve:
49
LE:
q4g:
a9 :
J9 *
‘V9

A9

J4g:
Jq -
:8:
qg4g:
ve:
ve:
g4
qad:
ve:
vea:

64
84
L4
94
S4
¥4
o4
44
T4
04
a9
a9
as
29
g9

69
89
49
99
G9
¥9
e9
29
9
09

g4
vd
d4
a4
d4
adq
g4
vd
g4
vd
L
4§
Lo
t 4§
g3
v
g3
v
49
a3
L
K i |
g1
v
g3
va

qav:
qv:
qav:
qav:
vv:
vv:

qav

qav:
vv:
VVv:
AV
AV -
qav -
av:
AV :
gV
qyv -
av:
av:
av:
vv:
Vv:
av:
gav -
VVv:
vv:

6S
8¢
LS
- 1°)
es
i 4]
‘8¢
2s
Is
0sS
A%
av
av
oF
284
V¥
6%
8y
LY
9%
=5 4
LAY
ev
44
¥
oy

g9 d39:6¢2
vda 3d:8¢
49 g9:42
Jd d9:9¢
48 vVH:'G¢
g vd:9Q
vd g9:2¢2
Ve g9:2¢
g9 vd: 18
vd vd:o0g
AV Jd9:d2
av Jd9:3¢
dV dg:de
av d9g:0¢
av Jdg:9¢2
VvV Jd49:ve
gy J3d9:62
Vv Fg:82
AV gd:42
dV gd:92
dV vag:62
av vd:¥2
gy g9:e2
VvV dgd9:22
av vd:12
VvV vd:0¢2

g4
ve
49
ad
g
ag
qgg
vd
g4
Ve
AV
qv
LA
av
av
Vv
av
Vv
dV
av
aVv
av
qav
Vv
av
LA

av:
qv:
qav:
qav:
Vv:
vv:
av:
qav:
vv:
LA K
gV
AV :
av:
qv:
AV :
AV
av:
av:
qav:
av:
Vv:
vv:
qav -
av:
vv:
Vv:

6T
8T
LT
91T
ST
vL
2T
2T
5
ot
40
30
ao
20
g0
Vo
60
80
40
90
S0
¥0
20
20
0
00

JTdVLI Jd0ddd JATIIIN

134

PHYSICAL TO LOGICAL
TRANSLATION TABLE

The sector numbers contained in the address fields of
a 16-sector formatted diskette appear in ascending order
($0 to $F) on successive sectors. These physical sector
numbers are converted by the disk operating system to
logical sector numbers, to allow for faster read /write of
multiple sectors. The following table shows the
relationship between physical sector number and logical
sector number.

PHYSICAL LOGICAL

HEOOQOE P bW~ O
Mo~ ON>WEAQUDOENO

137

TRACK LAYOUTS (13 and 16 sector)

There have been two different track formats in
common use for the Apple II. One of them recorded 13
sectors on each of the 35 tracks. The other, by employing
a more efficient data packing algorithm and slightly
modified hardware, is capable of recording 16 sectors per
track.

Both formats are basically the same, with the
exception of the method of packing the data field. In
addition, the address field header is slightly different to
allow the two different formats to be identified easily.

Since the 13 sector format is no longer in common
use, we will discuss the 16 sector format, and will identify
where the two formats differ.

The track is recorded with 16 (or 13) sectors, each
consisting of an address field and a data field. The
address field contains information about the data field
which immediately follows it. The fields are separated by
gaps, which contain ’self-sync’ nibbles. These self-sync
nibbles are specially recorded nibbles which cause the
disk controller hardware to synchronize, so that the field
following the self-sync can be read.

The address and data fields each contain a header,
information nibbles, and a trailer.

The address field contains header nibbles of D5 AA
96 (or D5 AA B5, if 13 sector), followed by 4 items of
information, encoded in double-nibble format. Two
consecutive nibbles are used to represent the volume
number, track number, sector number, and checksum.
The checksum is simply an exclusive-or of the other 3
items of information. A table is included in this manual
to allow you to convert these double-nibbles to the values

139

they represent. Following these 4 items of information,is
the address field trailer, which consists of DE AR
After a gap of self-sync mbb]eq: th
appears. The data field consists of a head. er, I
followed by 342 nibbles (or 410, if 13 sector
represent the actual sector data. ‘hese n
encoded using a 6-bit table shown in the sectio
manual txtled "Data Field Nibble Encoding”. (If 13,
format, a 5bit table is used.) After the data nibh -
single nibble is provided for checksum, followe
immediately by the data field trailer, DE AA. oH

In some early protection schemes, the header and
trailer nibbles in the address and data fields was
changed to some other value. (see "History of Locksmith
and Copy Protection” chapter of this manual)

140

