

http://www.cvxmelody.net/AppleUsersGroupSydneyAppleIIDiskCollection.htm

Applesoft BASIC •

A Collection of Programming Tips, Tricks, and Techniques

Jeanette Sullivan & Dave Sullivan

Hayden Book Company
A DIVISION OF HAYDEN PUBLISHING COMPANY, INC.

HASBROUCK HEIGHTS, NEW JERSEY I BERKELEY, CALIFORNIA

Acquisitions Editor: KAREN PASTUlYN
Production Editor. LORI WILLIAMS
Design: JOHN M-R6BLIN
Illustrations: PETER BONO
Compositor. McFARLAND GRAPHICS AND DESIGN

Ubrary of Congress Cataloglng-ln-Publlcatlon Data
Sullivan. Jeanette.

Applesoft BASIC subroutines & secrets.

I. Apple II IComputer)-Programming. 2. Basic
[Computer program language) I. Sullivan. Dave /Dave
Leonard) II. Title. Ill. Title: Applesoft BASIC
subroutines and secrets.
OA76.8.A662S85 1985 005.36'5 85-13976
ISBN 0-8104-6756-9

Apple is a registered trademark of Apple Computer Inc., which is
not affiliated with Hayden Book Company.

C?pyright © 1985 by H!'iYOEN BOOK COMPANY. All rights reserved. No part of
this bo�k may be _reprinted, or reproduced, or utilized in any form or by any
electronic, mechanical, or other means, now known or hereafter invented includ
in� photocop�in� a�d re��rding, or in any information storage and retrieval �ystem,
without perrmssion m wntrng from the Publisher.

Printed in the United States of Americe

1 2 3 4 5 6 7 8 9 PRINTING

85 86 87 88 89 90 91 92 93 YEAR

PREFACE

This book has been written for the users of the Apple II computers who
are familiar with BASIC and would like to enhance their ability to write
interesting, innovative, and professional-looking programs. The programs can
be used with the Apple II Plus. lie, and lie computers.

Once you have learned how to write programs in BASIC, you may want
to add special features, sound, or graphics to your programs. This book is
a collection of tips and tricks that can be easily incorporated into your programs.
The ideas are either in a program or subroutine format. You can use the
RENUMBER program on the System Master disk to renumber the subroutines
or programs to fit into your programs. You can then use the MERGE feature
of the RENUMBER program to merge the subroutine into your program. This
is explained in the first chapter.

Chapter J also provides ways to enter and edit programs and to improve
access to your programs or files on disk. Chapter 2 assists you in data entry
and error checking and shows you how to include commas and colons in
entries, as well as how to disable both the CONTROL C and the RESET keys.
Chapter 3 presents various ways of displaying the output on the screen in
a format that makes it easy for the user to interpret it, then introduces several
ways to erase the screen.

Chapter 4 includes special effects for printing a message in a diamond
shape, strobing the keyboard, and text animation. Chapter 5 presents techniques
for sorting, searching, and scrambling.

Chapters 6 and 7 provide both low and high resolution graphics routines
to get instant backgrounds, draw warps, and scroll the screen. Chapters 8
and 9 demonstrate how to draw circles and spirolateral-type designs and
then present a poor man's slide show of your graphics pictures.

Chapter JO enables you to use the Apple speaker to produce special sound
effects and musical tunes. The Appendixes include the ASCII code chart; the
Apple memory map; color charts for graphics; a list of commonly used PEEK,
POKE, and CALL commands; and a summary of commands to save graphics
or text.

The ideas in this book can be accessed in random order. A few sections.
however, are more easily understood if you read the section in its entirety.
These sections are "Low Resolution Special Effects with Machine Language
Routines" (Chapter 6); "Bit Mapping" and "High Resolution Special Effects
with Machine Language Routines" (Chapter 7); and all of Chapter JO. In order
to understand Chapter 8, first read the introductory pages of that chapter
along with the explanation for the Circle program.

EQUIPMENT NEEDED
To use the programs in this book, you will need the following
equipment:

• An Apple II {with Applesoft), II Plus, lie, or lie with
48K minimum

• A disk driv€
• A monitor or TV (color recommended}
• Paddles, joystick. or track ball for the following

programs: Paddle Adjustment 0-N, Paddle Adjust
ment A-N, Laser Shoot Lores Paddle Demo, Hires
Paddle Demo

CONTENTS

1. PROGRAM ENTRY AND DISK ACCESS 1
PRINT Statement Spacing 2
Clea ring the Screen 3

GR:HOME or HGR:HOME 3
TEXT:HOME 3

Clea ring Memory 4
CLEAR 4
FRE(O) 4

Speed of Program Execution 5
Editing Program Statements 6
Editing with ESC Key 6
Control Commands 7
Initializing a Blank Disk with a HELLO Program 8

Changing HELLO Program at a Later Time 9
Personalized Disk Volume Heading 10
Renumbering a Program 12

Entire Program to Default Parameters 12
Part of a Program 12

RENUMBER Fix for Apple 11/11 Plus Users Only 13
Merging Two Programs 14
Ampersand Shortcut to CATALOG, RUN, or LIST l 4
Protecting Files from Unauthorized Access 15
Finding Control Character in Filename or String Variable
Binary File Address 16
Saving a Binary File to Another Disk 17
Alternating Disk Dnves 18
Changing Disk Dnves 19

2. DATA ENTRY AND ERROR TRAPPING 21
Even/Odd Number Check 22
Test for Factor 22
One-Keystroke Entry and Error Trapping 23

GET Command 23
INPUT Command 24
PEEK{37) 24

Y/N Trick 27
Which Letter? 27
Null or Empty String <> Blank String 28
Null Entry Check 29
Entering Commas in DATA Statements 30
Entering Commas and Colons in User Reply 30

16

With INPUT Command 31
With GET Command 31

DOS Commands After a GET Command 32
ONERR GOTO Command 34

Overflow Error 34
Applesoft Error Codes 35
DOS Error Codes 36
Illegal Quantity 36

Disabling CONTROL C 37
CONTROL C and RESUME 37
CONTROL C and GOTO n 37

Disabling CONTROL C and RESET Keys 38
Password Protection with RESET Disabled 39

Simple Password 39
Control Character in Password 40
Any System Command Results in RUN 41

3. OU I PUT FORMAT 43
Avoiding Error When Raising to a Power 44
Dividing Two Numbers 45

To Get Whole-Number Remainder 45
To Get Fractional Remainder 45

Numbers Counting Up and Down Simultaneously
1 to N and N to 1 46
Crisscross Message 46
O to N and N to O 4 7
X Marks the Spot 48
Rectangles In 48

Random Number Range 49
O to N-1 Range 49
1 to N Range 49
A to B Range 49

Justifying the Message 50
Centering 50
Right-Justifying 50

Aligning Columns 52
4 Columns Simultaneously 52
3 Columns One at a Time 53

Printing List of More Than 24 Items 54
Rounding Off the Answer 55

To the Nearest Integer 55
To the Nearest Decimal 55

Dollar-and-Cent Alignment 55
PRINT USING Simulator 56
Dollars and Cents 58

46

4.

Instant Inverse Screen 59
Window Adjustment and Appf'ications 60

Window Size 60
Using POKE 33,33 to Edit a Line 60
Freeze Inverse Heading 61
Border Subroutine 62
Frozen Border Subroutine 63
Clearing Text from Left Middle

GR Commands without GR Command
POKE HLIN/VLIN Demo 64
Screen Characters 66
Easy Inverse Border 67

Erasing the Screen with Graphics Commands
From Upper Left Corner 68
From Lower Right Comer 68
Warp Erase 69

Scrolling the Text Screen 70
Erasing the Screen Starting at Bottom Line
Scrolling Up the Screen 71

68

70

SPECIAL EFFEC IS 73
String Manipulations for Output 74

Reverse Message 74
Pyramid 74
Mirrow Image Diamond 76

Design 1 76
Design 2 78
Hollow Diamond 80

CONTROL J Uses 82
ASCH Code Applications 83

Commonly Used ASCII Codes 83
Apple J[84
Quotes in Output 84
Backing Up and Erasing a Character 84

Strobing the Keyboard 85
Strobe Demo 86
Dice Roller 86
Randomized Random Numbers 87
Press Any Key 88
Time limit 89
Call -756 90
WAIT Command 90
Moving Message 91
Moving Message with Dummy Cursor 92

63
64

1. HIGH RESOLUTION GRAPHICS 161
Background 162

Instant Background Method 1 163

153

147

142

136

134
134

143

140
140

140

Animation 133
Moving a Dot Across the Screen 133
Moving a Dot Up and Down the Screen
Moving an Object with FOR ... NEXT

Across the Screen 135
Up and Down the Screen 136

Moving an Object with the Keyboard
Poking the Graphics Color 137
SCRN Command 138

SCRN Demonstration 138
Test for Collision 139

Erasing the Graphics Screen
From Upper Left Comer
From Lower Right Comer
With Warp In 141
With Warp Out 141

Saving a Graphics Picture in the Program Mode
With Blank Text Window 142
After GET with Blank Text Window
With Title 14 3
With Variable Name 144

Retrieving a Graphics Picture 146
Special Effects with Machine Language Routines 14 7

Step A Entering Routines for the First Time Only
Step 1: BLOADing a Special Effects Routine 148
Step 2: Loading a Lo-Res Graphics Picture 148
Step 3: Calling a Special Effects Routine 148
Reversing Colors of the Graphics Screen 148
Flipping the Screen Upside Down 150
Flipptng the Screen Left to Right 150
Scrolling the Screen Up 151
Scrolling the Screen Down 152

Setting Up and Accessing Left and Right Scrolling Routines 153
Step A Entering the Generator Routines for the First Time Only
Step J: Creating a Special Effects Routine J 53
Step 2: Loading a Lo-Res Graphics Picture 153
Step 3: Calling a Special Effects Routine J 53
Scrolling the Screen Left 154
Scrolling the Screen Right 155
Paddle Demonstration of Special Effects Routines 156
Keyboard Demonstration of Special Effects Routines J 58

98

Twirling Cursor 94
For Apple 11/11 Plus 94
For Apple lie/lie 95

Sliding Characters Across the Screen 96
Presenting 96
Sliding/Centering Two-Word Message by Character 97
Sliding/Centering Two Messages from Opposite Directions
Left to Right and Right to Left 99
Moving Character 100

6. LOW RESOLUTION GRAPHICS 117
Full Screen Graphics 118
Filling in Background 119

FOR ... NEXT Loop Fill 119
Instant Background 1 120
Instant Background 2 121
Ampersand Variation of Instant Background 121
Saving and Loading Instant Background Routines 122

BSAVE 122
BLOAD 123
Relocatability of Instant Background 123

Warp In/Out 124
Warp In/Out 1 124
Warp in/Out 2 125

Rectangular Spiral In/Out 126
Spiral In/Color Out/Black 128
Mosaic Diamond Design 130
Paddle Adjustments 132

Range Oto N 132
Range A to N 132

S. SOR I ING, SE'\.RCHING, AND SCRAMBLING 101
Sorting 102

Bubble Sort 102
Another Sort (Shell) 104

Logarithms 104
Shell Sort 106

Searching 109
Linear or Sequential Search 109
Binary Search 110

Shuffling and Scrambling 112
Shuffling Items in a List 112
Scrambling Letters of a Word 114
Alphabetizing Letters of a Word 116

180

167
168

8. CIRCLES, SINES, COSINES, AND DESIGNS 221
Degrees and Radians 222

Conversion 222
Sine and Cosine 223

Frequency 224
Amplitude 225

Sine Waves 226
Vertical Star Sine Wave 226
Sine Wave a Border in HGR 228

Circles 230
Circles Using Trigonometric Method 230
Spokes 234
Drawing Circle Faster with Arrays 236
String Circle of N Points 238
Circle Fill 1 240
Circle Fill 2 241

203

204

199

214
216

199

205

209

206

Erasing a Character 196
Special Effects with Machine Language Routines 198

Step A Entering Routines for the First Time Only
Step I: BLOADing a Special Effects Routine 199
Step 2: Loading a Hi-Res Graphics Picture I 99

POKE Option for Setting Up Page I or Page 2
Step 3: Calling a Special Effects Routine 200
Instant lnverser 200
Flipping the Screen Upside Down 201
Flipping the Screen Left to Right and PreseNing Color 202
Flipping the Screen Left to Right with Complementary Colors

Setting Up the Special Effects Scrolling Routines 204
Step A Entering the Generator Routine for the First Time Only
Step 1: Selecting Page I or Page 2 204
Step 2: Creating a Special Effects Routine 204
Step 3: Loading a Hi-Res Graphics Picture 205
Step 4: Calling a Special Effects Routine 205
Scrolling Different Pictures on the Same Page
Scrolling on Both Pages 205
Scrolling Left with Complementary Colors
Scrolling Left with Same Color 208
Scrolling Right with Complementary Colors
Scrolling Right with Same Color 210
Scrolling Up 212
Scrolling Down 213
Keyboard Demonstration of Special Effects Routines
Paddle Demonstration of Special Effects Routines

Spiral Display of Screen 218

196

190

Instant Background Method 2 163
Screen Eraser 164
Soft Switches 165
Poking Memory Locations 166

Page 1 with Full Screen Graphics 166
POKE Commands Equivalent to HGR to HGR2
Switching Between Text Page and Graphics Page

Saving a Picture with BSAVE 169
From Page 1 169
From Page 2 170
Saving an Extra Sector on the Disk 170

Loading a Picture with BLOAD 171
Loading to Same Page 171
Loading to Different Page 171

Loading to Page I from Page 2 171
Loading to Page 2 from Page 1 171

Showing Full Graphics I 72
Picture lnverser 172

Vertical lnverser I 72
Horizontal lnverser I 74

Color 175
Pixel 175
Preventing Loss of Vertical Lines I 76

Fixed Color 176
Random Colors 176

Getting 36 HGR Colors 177
Mixing Colors 178
POKE HGR Colors I 79
PEEK HCOLOR and Position of Last Dot Plotted

Bit Mapping 182
Correlation of Memory Addressing 182
Shaded Block 183
Subsequent Addresses 183
Screen Addressing 184
Specific Bit-Mapped Character 184
Design of a Character 185
Character Set 186
Address Finder 188

Derivation of Formula 189
Using Arrays to Hold Data for Bit-Mapped Characters
Character Generator 192
Using a Binary File to Store Character Generator 195
Loading a Binary File of Bit-Mapped Characters 196

Loading a Binary Image or Creating a Hi-Res Picture
Missing Four Lines 196

9. SUDE SHOWS 257
Applesoft Programs 258

Linking Lo- and Hi-Res (Poor Man's Slide Show) 258
Saving a Text Page 259
Retrieving a Text Page 259
Switching to GR after HGR2 260
EXECing a Text File with a Delay Statement 260

Binary Files 262
Lo- and Hi-Res Pictures Using Menu and Strobe 262
Lo-Res Slide Show Using Page Flipping 265

Lo-Res Slide Show Starter 265
Lo-Res SI ide Show 266

Hi-Res Slide Show Using Page Flipping (Forward and Reverse)

Multiple Arrays to Store Tune ("Mary'' and "Twinkle") 290
Changing Pitch (Brahms' Lullaby) 292

Saving the Machine Language Tone Generator Routine 293
Accessing the Tone Generator ("Take Me Out to the Ball

Game") 294

Designs Using Sine and Cosine
Flower Maker 242
Spherical Design 244
Lissajous Patterns 246
Superose 250
Spiral Design 254

242

269

Appendix A: ASCII Codes 295
Appendix B: Apple Memory Map 299
Appendix C: Color Charts 300
Appendix D: PEEK, POKE, and CALL Commands 301
Appendix E: Summary of Commands to Save Graphics or Text 305

275
276
276

Typewriter
Ticker Tape

Sound 278

10. BEL• S, CLICKS, SOUNDS, AND TUNES 273
Bells 274

Message with Bells l 274
Message with Bells 2 274

Clicks 275
Alarm

Machine Language Tone Generator 278
Ascending/Descending 278
Menu with Sound Effects for Wrong Response 280

Tunes 282
Frequency Chart 282
Equivalent Piano POKEs for Frequency 283
Duration Chart 284

Playing a Tune 284
DAT A Statements to Hold Frequency and Duration 284
Changing Tempo (Theme from Star Wars) 285
Adding a Rest ("Charge!") 286
CALL MUSIC or CALL SOUND 287
One Array to Store Tune (Beethovan's 9th) 288

CHAPTER

DISK ACCESS

This chapter presents some techniques to aid in program entry and editing
along with hints on how to speed program execution.

The System Master disk has many useful programs. One of these is
RENUMBER, which will not only renumber a program but will also merge two
programs.

The search for the perfect HELLO program is a never-ending task. Just when
you think your HELLO program has every feature you can imagine, you see
another HELLO program with some new funcnon. This chapter presents a few
additional features to add to your "almost perfect" HELLO program.

___ 1 _

This chapter also contains techniques to personalize your disk to read a
heading of your selection in place of the words "DISK HEADING," to use the
ampersand utility as a shorthand notation for some of the system commands, and
to protect your files. It also includes the PEEK commands to enable you to copy a
binary file without the program FID from the System Master.

CLEARING THE SCREEN
GR:HOME OR HGR:HOME

The following statements clear the text portion of a graphics screen.

PRINT STATEMENT SPACING

This shows you how to avoid splitting words when using the PRINT statement.

EXPLANATION _

Often a word will be split when you use the PRINT statement You could use different
PRINT statements for every 39 characters or you could use the following method. Enter the
PRINT statement either with the 7 or the command PRINT and make sure that there is a
space under the first quotation marl<. You might have to add several spaces to av0id
splitting a word.

The following two statements show how this spacing works. Each statement shows
how the statement was entered, how it looks when you list it. and how it looks when you
run it.

EXPLANATION--------------------

The GR or HGR command sets the computer in the low resolution or high resolution
mode with a text window of four lines below the graphics screen. The HOME command
after the GR or HGR command clears the text screen.

1

If you want to use the window to write a message, then either use a few PRINT
statements or VT AB 21.

10 GR:HOME
20 VTAB 21

or

10 HGR:HOME
20 VTAB 21

RUN]RUN
THIS STATEMENT DEMONSTRATES SPACING ON
THE APPLE COMPUTER.

L�T]LIST
10 PRINT "THIS IS A TEST OF THE

APPLE'S PRINT STATEMENT.

Sample 2:

Statement Entry]10 ? "THIS STATEMENT DEMONSTRATES SPACIN
G ON THE APPLE COMPUTER."

Sample l:

Statement Entry] 10 PRINT "THIS IS A TEST OF THE APPLE'S
PRINT STATEMENT."

IEXl:HOME

10 TEXT:HOME
Text has several effects:
I. Sets the screen to full screen window.
2. Gets out of graphics mode and into text mode.
3. Sets the cursor to last line of the text screen.

If the program uses graphics or the program that you previously ran uses graphics, then
use the TEXT command to set the screen to text mode in case the new program has a title
or directions in text.

If your program or a previous program uses the POKE commands that adjust the screen
windows. then the command TEXT returns the screen to normal default size of 24 rows
and 40 characters per row. Chapter 4 will explain the POKE commands to adjust the
screen size.

The HOME command clears the screen and places the cursor at the upper left corner or
home position.

Many of the programs in this book are short demonstrations and consequently do not
always use TEXT:HOME. It is advisable to use TEXT:HOME on your finished program.

This command starts the program with a standard-sized screen that is clear of graphics
and text.

EXPLANATION _

You will often see a program begin with the TEXT command.
]RUN
THIS IS A TEST OF THE APPLE'S PRINT
STATEMENT.

RUN

LIST]LIST
10 PRINT "THIS STATEMENT DEMONST

RATES SPACING ON THE APPLE
COMPUTER."

2 APPLESOFT BASIC SUBROUTINES & SECRETS PROGRAM ENTRY AND DISK ACCESS ------------- 3

CLEARING MEMORY
CLEAR

This command clears the variables and resets the dimension of the arrays to the default
value.

EXPLANATION _

When you run a program. the variables and arrays are cleared. The numeric and
integer variables and arrays are set to zero. and the string variables and arrays are set to
contain the empty string represented by " ". Sometimes within a program you want to
clear the variables without starting the program at the beginning. The CLEAR command
will help you clear the memory.

Often you will see the following statement either at the start of a program or within a
program:

10 TEXT:CLEAR:HOME
CLEAR has several effects:
I. Resets all numeric variables and numeric arrays to zero.
2. Resets all the integer variables and integer arrays to zero.
3. Resets all string variables and string arrays to the null or empty string.
4. Resets the dimensions of numeric. integer. and string arrays to the default value of 10.

This lets you access the array elements 0-10.
5. Clears the microprocessor's stack of return addresses and values.

FREIOI

This command returns the amount of memory available and can be used to clean up
unused string variables.

EXPLANATION _

The command PRINT FRE(O) returns the amount of memory available. If the memory is
expressed as a negative number, add 65536 to obtain the positive equivalent. The number
65536 is the maximum amount of memory available on a 64K Apple and is obtained by
raising 2 to the 16th power, since two bytes are necessary to address any memory location.

PRINT FRE(O) + 65536
or

? FRE(O) + 2 A 16
CLEARING UNUSED STRING VARIABLES

The command X = FRE(O) clears the unused string variables so you won't run out of
computer memory because of lack of sufficient string storage. String variables are stored in
a special area of random access memory (RAMJ.

4 APPLESOFT BASIC SUBROUTINES & SECRETS

Any number can be used for the argument. You will often see zero used. The variable
name x can be replaced by any legal numeric variable name. This command can be used
periodically in a program that uses strings.

100 X = FRE(O)

SPEED OF PROGRAM ExECUTION

The following are some ideas to speed up the execution of a program.
1. use colons to put several related statements on the same line. This way the computer does

not have to look up the additional line numbers. The following example groups the set of
commands to fill in the background in low resolution graphics.

10 COLOR= 6:FOR X = 0 TO 39:HLIN 0,39 AT X:NEXT X
2. Choose meaningful variable names and reuse them in the program.
3. Use subroutines for sets of commands that will be used several times in a program. This

also improves the readability of the program and makes the program flexible for future
changes.

4. Put the most often used subroutines at the lowest line numbers. When the computer
encounters instructions to branch to a line number. it starts looking at the very beginning
of the program and searches sequentially through the program until it finds the line.

5. Put often-used DATA statements at the beginning of the program for the same reason as
subroutine placement.

6. Omit the index variable in a FOR ... NEXT statement. The program does not have to take
time to verify that you entered the correct index. It keeps track of these indices in a stack.

50 NEXT:NEXT
7. Omit the REM statements. One version can be documented and the other version can be

used for speed.
8. Use variables in place of constants. It takes less time for the computer to look up the value

of a variable than to convert a constant to a real number. Variables also provide more
flexibility in a program. Rather than change each occurrence of that constant. merely
change the value of the variable or let the user enter the value of the variable.

9. Use the FRE (OJ statement periodically to clean up the string storage area of memory if your
program uses many variables.

PROGRAM ENTRY AND DISK ACCESS -------------- 5

I

EDITING PROGRAM STATEMENTS TABLE 1-2. ESC KEY EDITING FOR
APPLE lie/lie

TABLE 1-3. CONTROL COMMANDS

The control commands can be used in program entry or execution.

CONTROL COMMANDS

EXPLANATION _

Table 1-3 displays some control commands that you can use either when entering or
executing a program.

Cursor moves up one line
Cursor moves left one character
Cursor moves right one character
Cursor moves down one line
Clears text from cursor to end of line
Clears text from cursor to end of page

Effect Key
ESC I or ESC t
ESC J or ESC +
ESC K or ESC--+
ESC Mor ESC!

ESC E
ESC F

CONTROL Command Effect
CONTROL C Stops program and displays line number where the stop

occurred
If program was expecting keyboard input, you will have to

press the RETURN key after CONTROL C
Continue the program where it left off with command CONT

CONTROL G Rings bell
Must be within quotes in the program

CONTROL H Moves cursor back one space/ character
Same as left arrow

CONTROL J Line feed without carriage return
Moces cursor down one line

EDITING WITH ESC KEY

This section explains the technique for editing a program statement. Sometimes it is
easier to edit the statement. while other times it is more convenient to retype a new
statement. Whether to edit or retype depends on the length of the statement and the type
of error.

EXPLANATION _

You can use the ESC key and I, J, K, and M to edit a line on the Apple II Plus/lie. If you
have an Apple lie/lie, you can also use the four arrow keys.

To edit a line in a program:
1. List the program line. If the program is short you can list the program. If the program is

lengthy, it is easier to list only the line or set of lines to be edited.
2. Press the ESC key.
3. Press I to move up, J to move left, K to move right, and M to move down. If you have an

Apple lie/lie, you can use I, J, K, and M, or press the appropriate arrow key.
4. Move to the first digit of the number of the line to be modified.
5. Press the space bar to exit the mode that moves you around the screen.
6. Move over to the character to be changed using the right arrow key.
7. Change the character or characters and copy the rest of the line if necessary, or press the

right arrow key until you are at the end of the statement.
8. List the line to be sure that the error was corrected.

Tables 1-1 and 1-2 summarize the ESC key commands for editing. You only have to
press the ESC key once to get into the moving aspect of the editing mode. Use the
appropriate keys (I, J, K, or M) or the four arrows to move. Press any key other than I, J, K, or
Mon the Apple 11/11 Plus or any key other than l,J, K, M, E, F, or the four arrow keys on the
Apple lie/Ile, to get out of the moving mode and start editing the statement.

TABLE 1-1. ESC KEY
EDITING FOR

APPLE 11/11 PLUS
Key
ESC I
ESC J
ESC K
ESC M

Effect
Cursor moves up one line
Cursor moves left one character
Cursor moves right one character
Cursor moves down one line

CONTROL M

CONTROLS

CONTROL U

CONTROLX

Carriage return (er)
Same as RETIJRN key
Stops listing and sometimes program execution
Any key will continue listing or program
Moves cursor right one space/character
Same as right arrow
Deletes current line

ESC E Clears text from cursor to end of line
ESC F Clea rs text from cursor to end of page

6 ---------- APPLESOFT BASIC SUBROUTINES & SECRETS PROGRAM ENTRY ANO DISK ACCESS 7 ��----�-------

INITIALIZING A BIANK DISK WITH A
HELLO PROGRAM

This section provides a simple HELLO program and demonstrates how to initialize a
blank disk.

EXPLANATION _

Before a blank disk can be used, it must first be prepared to receive data. This
preparation is called initializing or formatting the disk. During initialization, whatever
program is in the computer's memory becomes the greeting or HELLO program.

In order for the computer to recognize disk drive commands and act upon them, a
special program called DOS, which stands for disk operating system, must be in the
computer's memory. When you insert an initialized disk in the disk drive and tum on the
computer, a copy of DOS is written into the computer's memory. Since different brands of
computers use different disk operating systems, the same disk cannot be used
interchangeably on any computer to save or run programs. Apple II, II Plus, lie, and lie all
use the same DOS, and the same disk can be used interchangeably with each of these
computers.

The following steps show you how to initialize a blank disk with a HELLO program.
I. Boot DOS. The process of loading a copy of DOS into the compute(s memory is called

"booting DOS." You can boot DOS by inserting an initialized disk or the System Master
into drive I, closing the door. and turning on the computer.

2. Insert the blank disk. Remove the initialized disk and insert the blank disk you want to
initialize.

3. HELLO program. Type in NEW to erase any program in memory and then enter the
following HELLO program. This program becomes your greeting program or HELLO
program when you boot the disk. since this is the first program that the computer runs after
it boots DOS.

5 REM === HELLO PROGRAM===
10 TEXT: NORMAL: HOME
20 PRINT CHR$ (4)"CATALOG"
30 NEW
99 END

Line 20 issues a CONTROL D command, which is represented by CHRS (4). in order to
execute the DOS command CATALOG from within a BASIC program.

4. INIT HELLO. When you initialize a disk, you are erasing the disk completely. Do not
initialize any disk containing programs that you want to save.

Do not run the program. Type INIT HELLO and press the REllJRN key. You will hear a
whirring and clanking noise. This is normal at this time. The in-use disk drive light will go
on. The INIT command puts a copy of DOS on the blank disk. Within a minute, the in-use
light will go out, the noise will stop, and the cursor will reappear on the screen to indicate
that the computer is waiting for your next command.

The name of the greeting program can be any legal name. but traditionally
programmers use the name HELLO.

5. Test HELLO program. Test the HELLO program by either typing PR#6 or RUN HELLO. If
you have an Apple lie/lie, you can also press the CONTROL (open apple) and RESET keys
simult.aneously for a warm boot. The disk should spin and produce a catalog of the disk
contents. At this time, only the HELLO program is present

8 ---------- APPLESOFT BASIC SUBROUTINES & SECRETS

6. LOCK HELLO. It is a good idea to lock your HELLO program so you do not accidentally
erase it at a later time. Type LOCK HELLO and press the REllJRN key. The cat.alog listing
will show an asterisk before the A (for Applesoft program).

CHANGING HELLO PROGRAM AT A LATER TIME

If you find a better HELLO program and want to change yours at a later time, unlock the
HELLO program, type NEW, enter or load the new HELLO program, and type SAVE
HELLO.

Do not type INIT HELLO. as this will.erase your entire disk. You cannot easily change
the name of your HELLO program once the disk is initialized, so future greeting programs
on that disk should also use the same name.

PROGRAM ENTRY ANO DISK ACCESS 9 --------------

PERSONALIZED DISK VOLUME HEADING

This routine replaces the name DISK VOLUME in the upper left corner of the screen
with a heading ofyourchoicewhenyou boot a disk, run HELLO, ortypeCATALOG. This
name can be your name or can indicate the contents of the disk such as TIPS/TRICKS,
GAMES, or UTILITIES.

EXPLANATION _

The routine at lines 1000-1030 personalizes the disk volume heading to a heading of
your choice that is I 2 characters or less.

5 REM === HELLO/CHANGE DISK HEADING===
10 GOSUB 1000
20 TEXT: NORMAL: HOME
30 PRINT CHR$ (4)"CATALOG"
40 NEW
99 END
995 REM === CHANGE DISK HEADING===
997 REM --- A$ HOLDS NEW HEADING OF 12 CHARACTERS OR L
ESS ---
1000 A$= "TIPS/TRICKS":L = LEN (A$)
1005 REM --- PAD A$ WITH SPACES FOR LENGTH OF 12 CHARA
CTERS ---
1010 A$= A$+ CHR$ {32):L = L + 1: IF L < 12 THEN 1010
1015 REM --- POKE HEADING INTO MEMORY ---
1020 FOR X = 45999 TO 46010: POKE X, ASC (MID$ (A$,L,l
)) + 128:L = L - 1: NEXT X
1030 RETURN

If you have used the HELLO program given earlier. then unlock your HELLO program,
enter the following program, and save it as your new greeting program with the
command SAVE HELLO.

The old HELLO program will be replaced with this program, which includes the
routine to change the volume heading. Lock the new HELLO program with LOCK
HELLO.

If you have a different HELLO program than the one presented, add a GOSUB
statement at the beginning of the HELLO program to insert this routine and add the
routine at lines I 000-1040.

Select any name of 12 characters or less for AS in line 10. The value of AS will then be
substituted for the standard name DISK VOLUME.

If the name is more than 12 characters, then the program will not work properly. If the
name contains less than 12 characters, then the program pads the name with blanks to
obtain a length of 12.

Line 20 pokes the new heading one character at a time into memory locations
45999-46010, which are reserved for the disk heading.

Be sure to run HELLO at least once in order to enter the proper POKE commands to
personalize your disk. Then you only need to type CATALOG to see your special heading
appear on the screen.

If you reboot a different disk, the heading will be of that new disk.

1 0 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

You can include this routine in your HELLO program when you initialize your disk or
you can add it to an existing HELLO program.

When you boot your disk or run HELLO, the following catalog listing will appear.

CATALOG
TIPS/TRICKS 254
*A 003 HELLO

PROGRAM ENTRY AND DISK ACCESS ------------ 11

-�-------�

TABLE 1-4. PARAMETERS FOR RENUMBERING

RENUMBERING A PROGRAM

You can use the RENUMBER program on your System Master disk to renumber all or
part of a BASIC program. The programs and subroutines in this book can be renumbered
to fit your programs.

EXPLANATION _

You can renumber the entire program or part of a program.
1. Run the RENUMBER program.
2. Load the program to be renumbered and list it

The first command must be the ampersand sign {&). Table 1-4 lists parameters to
consider.

5 N = l
7 A = N * 5
9 PRINT N,A

RENUMBER FIX FOR APPLE 11/11 PLUS
USERS ONLY

EXPLANATION---------------------

lfyour program has statements that multiply constants, with the constant to the right of
the asterisk, then unwanted renumbering may occur in the mathematical formula.

If the integer part of a constant that appears to the right of the asterisk is the same in
value as an "old" line number, then the constant is also changed when the line number is
changed.

Here's an example of the bug in RENUMBER. If you enter this program:

There is a small bug in the RENUMBER program on the System Master for the Apple II
Plus computer. If you have a System Master for lie or lie, then this bug has been remedied.
If you have the original System Master DOS 3.3 for an Apple II or II Plus, then the following
POKE commands will debug the RENUMBER program.

Default Value
10
0

10
63999

Explanation
First new line riumber of new program
Starting at this line number of old program
Incrementing by this number for the new program
Ending with this line number of old program

Parameters
For FIRST
Sor START
l or INC
E or END

ENTIRE PROGRAM TO DEFAULT PARAMETERS
and renumber it with the & command, you get

If you want to take the default parameters as listed in Table 1-4. then enter the
ampersand symbol and press the RETURN key.

&

PART OF A PROGRAM

You can renumber part of a program as well as the entire program. Press the RETURN
key after entering the ampersand symbol and the parameters needed.

&Fl00,Il0,S25,E490
The above command set the first new line number at 100. The numbering will be in

increments of 10 and start at line 25 of the old program and end at line 490 of the old
program.

Since you are taking the default of 10 for the increment the increment parameter can be
omitted:

&Fl00,S25,E490
The parameters can be in any order but must be separated by a comma. If you take the

default value, you need not enter that parameter. Do not press the RESET key during the
renumbering of a program or your program will be destroyed.

The line numbers can be any decimal number from O to 63999. RENUMBER will
change the line number references in commands such as GOTO, ON A ... GOTO, ON
A ... GOSUB, IF ... THEN, GOSUB, LIST. RUN, and DEL. RENUMBER will not renumber
any reference that is in a remark or enclosed in quotation marks.

&
10 N = l
20 A= N * 10
30 PRINT N,A

when what you really wanted is:

10 N = l
20 A= N * 5
30 PRINT N,A
Take the following steps to av0id this problem.
I. Load the RENUMBER program.
2. POKE 4789,172.
3. POKE 4 790.171.
4. Save the RENUMBER program to another disk. since System Master is write-protected.
5. Lock the RENUMBER program.
6. Run the RENUMBER program to test it.

1 2 --------- APPLESOFT BASIC SUBROUTINES & SECRETS PROGRAM ENTRY AND DISK ACCESS ����-��-���-13

MERGING TWo PROGRAMS CATALOG WITH &

The RENUMBER program also merges two separate programs into one. This is
intended for incorporating a subroutine into a program or merging two programs.

EXPLANATION _

You need to use two commands to merge two programs. The first command, &H.
stores the first program in a separate portion of memory. The second command, &M,
merges the first program with the second program. You can now save this new program
with any legal name.

To merge two files or programs, either on the same or separate disks, follow this
procedure:

1. Run the RENUMBER program.
2. Load the first program into memory.
3. List the program and renumber if necessary.
4. &H will put the first program on hold.
5. Load the second program into memory.
6. List and renumber if necessary.
7. &M will merge the two programs.
8. Save the merged program.

Do not press RESET during the merging or your program(s) will be destroyed. Avoid
duplicate line numbers. The program will list both line numbers if a duplicate occurs.

Include the following POKE commands in your HELLO program so &RETURN will
catalog your disk.

POKE 1013,76
POKE 1014,110
POKE 1015,165

LIST WITH &
These POKE commands will allow &RETURN to list the program.

POKE 1013,76
POKE 1014,165
POKE 1015,214

RUN WITH &
Put these three POKE commands in the beginning of a program so &RETURN will run

the program.

POKE 1013,76
POKE 1014,18
POKE 1015,217

AMPERSAND SHORTCUT TO CATALOG,
RUN, OR UST

PROTEC I ING FILES FROM UNAUTHORIZED
ACCESS

This procedure protects your files from unauthorized access.

MODIFICATION==------...:.:._------------

More than one control character can be used in the name.

(include a CONTROL key in the filename) SAVE MYSTERY

EXPLANATION----------------------

0,:1e method is to include a CONTROL key in the name of the file when you save it on
the disk. The control character will not show up on the screen when you catalog your disk.
Then you can load or run the program only if you enter the proper control character and at
the proper place in the filename.

POKE 1013,76: POKE 1014,88: POKE 1015,255

You can shorten the number of keystrokes for any of the system commands such as
CATALOG. LIST, or RUN to a one-character entry, namely the ampersand symbol.

1 4 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

EXPLANATION _

Three sets of POKE commands are provided for replacing the commands CATALOG,
LIST, or RUN with the ampersand. Since only one set of POKE commands can be used at a
time, decide which command you want to be represented by the ampersand symbol and
enter the appropriate POKE commands either in the immediate mode or in a program.

These commands can be added to your HELLO program as a permanent feature.
Remember to either boot your disk or run the HELLO program to activate the ampersand
utility.

If you want to deactivate the ampersand utility, return the three memory locations to
their default (standard) values. Enter the following line either in the immediate mode or
program mode.

FINDING CONTROL CHARAC I ER IN
FILENAME OR STRING VARIABLE

The following program helps you find the control character in a filename as well as
control characters in string variables. Perhaps you saved your program with a control
chraraaer and have now forgotten which control character you used or where you
placed it This program will enable you to locate the hidden charaaer.

PEEK(43634) + PEEK(43635) * 256
PEEK(43616) + PEEK(43617) * 256

> returns starting address
> returns length

First load the binary file with the command BLOAD filename. You do not need the
starting address or length when loading a file with the BLOAD command. The computer
will load the binary file starting at the same address at which it was previously saved with
a BSAVE command. Enter the following commands either in the immediate mode or
within a program.

EXPLANATION _

To find a control character in a file or program name or in a string variable, run the
following program, catalog the disk, and any control charaaers in a program name will
flash.

Load and list a program you suspect has control characters embedded in string
variables and the control characters will flash.

To reinstate the normal printout, type PR#O.

5 REM === FIND CONTROL CHARACTER
10 TEXT: HOME
20 FOR A= 768 TO 768 + 27
30 READ V: POKE A,V: NEXT A
40 POKE 54,0: POKE 55,3: CALL 1002
99 END
100 DATA 201,141,240,21,201,136
110 DATA 240,17,201,128,144,13
120 DATA 201,160,176,9,72,132
130 DATA 53,56,233,64,76,249
140 DATA 253,76,240,253

BINARY FILE ADDRESS

The following PEEK commands return the starting address and length of a binary file in
memory. This is useful if you are working with shape tables, graphic pictures. game
programs, or any other binary file and want to copy the binary file to another disk, but do
not have a System Master disk handy.

BACKGROUND _

In order to copy a binary file from one disk to another, you must know the starting
address and the length. The copy procedure cannot be done with the regular LOAD and
SAVE commands, since a binary file is a machine language file and is located at a specific
address. If you have the System Master handy, you can use FID. But there are times when
you may not have access to a System Master.

EXPLANATION _

The address and length of the binary file each requires two bytes. The following two
PEEK commands .return the starting address and length of any binary file in memory in
decimal form.

1 6 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

'

SAVING A BINARY FILE TO ANOTHER DISK

Do the following to save a binary file to another disk without using the program FID on
the System Master.

EXPLANATION _

Load the binary file with the command BLOAD filename and enter the PEEK
commands listed previously to find the starting address and the length. Then insert the
second disk and enter the following command to save the file, where the starting address
and the length are represented in decimal notation. The new name can have the same
name as the old filename or a different one.

BSAVE filename,Astarting address,Llength

PROGRAM ENTRY AND DISK ACCESS ------------ 1 7

--- ---

ALTERNATING DISK DRIVES

The following statement demonstrates how to alternate between two disk drives.

EXPLANATION----------------------

• If you have two disk drives, often you will want to access drive 2 wt,ile linked to drive 1
and the converse. When you boot your disk. you automatically access drive I. This is often
stated as "fogged onto" drive I. You can then log onto drive 2 to access programs on that
disk drive either in the immediate or program mode.

To access the "otner" drive in the immediate mode, add a comma and the letter D
followed by the number of the drive you want to access. This works with commands such
as CATALOG, RUN, LOAD. BRUN, BLOAD, and BSAVE. For example, the following
commands can access drive 2 when logged onto drive I, where filename represents the
name of the file or program you want to access.

RUN filename,02

If you want to use one of the commands listed above from within a BASIC program,
then you must add a CONTROL D orCHRS(4) and quotes. The comma, letter O, and drive
number (I and 2) must be enclosed in quotes.

The following statements present some examples on switching disk drives, where
filename represents the name of the file or program to be accessed, starting address
represents the starting address of the binary file, and length stands for the length of the
binary file.

If you are logged onto disk drive I and want to access drive 2, enter the following
statement

10 PRINT CHR$(4); ''RUN filename,02"

or

10 A$= "filename"
20 ? CHR$ (4) ; ''BLOAD" ; A$", 02"

or

20 PRINT CHR$ (4); ''BSAVE" ;A$;", As tarting address, Llength, 02"

If you are logged onto disk drive 2 and want to access drive I, enter the following
statement

10 PRINT CHR$(4);''RUN filename,01"

or

10 A$= "filename"
20 ? CHR$ (4) ; ''BLOAD" ; A$", 0 l"

or

20 PRINT CHR$ (4) ; "BSAVE" ;A$;", As tarting address ,Llength, 01"

1 8 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

'

CHANGING DISK DRIVES

This command changes the disk drive that the computer is logged onto.

EXPLANATION---------------------

The following command allows you to switch from drive 1 to drive 2 and vice versa. The
general format is the following command, where n is the number of the drive that you
want the computer to log onto:

POKE 43264,n

This command Is useful when you are logged onto a disk drive and want to access the
"other" drive: for example, if you load a program from one drive and it needs to load
binary files from the "other" drive. Instead of entering a disk command such as
CAT ALOG,Dn, where n is the number of the drive that you want to access, you can POKE
location 4 3264 with the number of the drive that you want. This command immediately
changes the drive that you are logged onto.

PROGRAM ENTRY AND DISK ACCESS ------------- 1 9

CHAPTER----------------2--

DATA ENTRY AND
ERROR TRAPPING

The term "user-friendly" has become a cliche these days. However, it conveys
an important programming concept. Your program should be written to enable
the user to enter the necessary data with few keystrokes and minimal effort.

The program should clearly explain what type of answer the computer is
, requesting from the user and attempt to trap errors before the program continues.

This chapter includes programs that aid in making data entry a user-friendly
process.

Do you want to avoid the EXTRA IGNORED reply when the user enters
commas or colons in his reply with the INPUT command? If you use the GET
command, you can allow the user to enter commas and colons as part of his
reply.

___ 21 _

The GET command is very useful but can cause problems when a DOS (disk
operating system) command follows. Several ways of avoiding this pitfall are
explained.

Have you ever wanted to disable the CONTROL C command or the RESET key
for program privacy? This chapter provides the necessary commands to protect
your program along with providing password protection.

EVEN/ODD NUMBER CHECK

The following program determines if a number is even or odd.

EXPLANATION _

The statements 30 and 40 divide a numberX by 2 and check for a remainder. If there is
no remainder, then the number is even. If a remainder exists, then the number must be
odd. The INT function returns only the whole number portion of a number.

5 REM === EVEN/ODD NUMBER===
10 HOME
20 INPUT "ENTER A NUMBER ";X
30 IF X / 2 - INT {X / 2) THEN PRINT X" IS EVEN"
40 IF X / 2 < > INT (X / 2) THEN PRINT X:" IS ODD"
99 END

TEST FOR FACTOR

This program determines if B is a factor of A.

EXPLANATION _

If A divided by B has no remainder, then Bis a factor of A. If a remainder exists, then Bis
not a factor of A.

5 REM === TEST FOR FACTOR===
10 HOME
20 INPUT "ENTER TWO NUMBERS ":A,B
30 IF A/ B - INT {A/ B) THEN PRINT B" IS A FACTOR O
F "A
40 IF A/ B < > INT {A/ B) THEN PRINT B" IS NOT AF
ACTOR OF "A
99 END

22 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

•

ONE-KEYSTROKE ENTRY AND ERROR
TRAPPING

Most replies from the user can be one-key answers such as Y for yes or N for no.
However, when the program asks a yes/no question, the user may be unsure whether he
should answer with a Y or YES or with an N or NO reply. Furthermore, the user may
mistakenly enter an inappropriate reply such as O or X.

The program must provide forth is dilemma by displaying the type of answer expected,
disregarding an incorrect answer, and repeating the question if an incorrect answer is
given.

Trap invalid entries before printing them to the screen if possible. If the program is
expecting a Y or N reply, don't even print an incorrect or inappropriate answer on the
screen or erase it after it is typed and ask the question again.

The next three programs offer a variety of ways of error trapping an invalid keypress and
only allowing the valid keypress to remain printed on the screen.

GET COMMAND

This program checks the validity of a one-character reply by using the GET command.

EXPLANATION _

The GET command accepts a one-character response but does not print it to the
screen. You can check the validity of the keypress and, if correct, you can print the
character. If an invalid key is entered, you can send the computer back to the GET
statement without printing the invalid response.

5 REM === CONTINUE WITH GET COMMAND===
10 HOME
20 VTAB 22
30 PRINT "CONTINUE Y/N? ":
40 GET A$
50 IF A$= "Y" THEN PRINT A$: GOTO 80
60 IF A$= "N" THEN 999
70 GOTO 40
80 HOME: PRINT "REST OF PROGRAM"
999 END

DAT A ENTRY ANO ERROR TRAPPING 23 -------------

INPUT COMMAND

This program checks the validify of a one-character keypress by using the INPUT
command and a CALL command.

Screen is numbered 1 2 3 4 40
PEEK (36) returns 0 1 2 3 39

0 1
1 2
2 3

Thi_s program prints a random set of blank lines to simulate the occurrence of the input
at vanous rows on the screen.

23 24
PEEK (37) returns t J
Screen is numbered

PRINT "WOULD YOU LIKE TO TRY AGAIN (Y/N) "�
CALL - 958

C = PEEK {36):R = PEEK (37): REM COLUMN AND ROW
INPUT A$
IF LEFT$ {A$,l) - "Y" THEN 10
IF LEFT$ (A$,l) - "N" THEN 100
VTAB R + 1: HTAB C + 1: GOTO 40
HOME: VTAB 12: HTAB 18: PRINT "THE END"
END

INT (RND (1) * 10) + 1: PRINT: NEXT
--- --- TRAP PEEK REM === ERROR

TEXT: HOME
FOR X = 1 TO

5
10
20
x
30
40
50
60
70
80
90
100
199

5 REM === CONTINUE WITH INPUT COMMAND===
10 HOME
20 VTAB 22: CALL - 868
30 INPUT "CONTINUE Y/N ";A$
40 IF LEFT$ (A$,1) = "Y" THEN 70
50 IF LEFT$ (A$,l) = "N" THEN 999
60 GOTO 20
70 HOME: PRINT "REST OF PROGRAM"
999 END

MODIFICATIONS _

I. The command CALL-875 orCALL-958 can be used in placeofCALL-868. CALL-875
clears the entire text line.

EXPLANATION _

The INPUT command and CALL -868 can be used instead of the GET command to
validate the keypress. The CALL -868 command is a machine language routine built into
BASIC that clears the line from the cursor to the right edge of the screen. This is useful for
erasing an invalid entry.

20 VTAB 23: CALL -875
2. The command CALL-958 clears the text line from the cursor to the bottom of the page.

This is useful if the entry takes more than one line.

20 VTAB 23: CALL -958

PEEKf371

This program uses the PEEK(37) command along with the INPUT command to check
the validify of the reply when the reply occurs at various positions on the screen.

EXPLANATION _

The PEEK(37J command identifies the vertical position of the cursor, since this entry
may not always occur at row23. It returns the current vertical position of the cursor in the
range 0-23 rather than the tabbing range of 1-24. The command PEEK(36) returns the
current horizontal position of the cursor in the range of 0-39 rather than the tabbing range
ofl-40. When you use the tab functions and PEEK(37), you must tab over or down one
more place than the value of the cursor position returned with PEEK(36) or PEEK(37)
commands.

'

24 --------- APPLESOFT BASIC SUBROUTINES & SECRETS PROGRAM ENTRY ANO DISK ACCESS ____________ 25

Y/N TRICK

This program makes it easy for the user to answer a yes/no question with a one
character response ofY for yes or N for no, by putting the cursor in a set of parentheses that
allows room for only a one-character reply. This idea works for true/false or north/south
type answers as well.

EXPLANATION _

The command PEEK(36) returns the horizontal position of the cursor in the range 0-39.
The screen is numbered in the range 1-40. See the Explanation in the PEEK(37) section.

The command CALL -875 clears the entire text line. This command is used to erase an
incorrect response and print the question again.

This program prompts the user to enter either a Y for yes or N for no and places the
cursor in parentheses while waiting for the keypress. It uses a GET command to .accept t�e
entry. If the entry is correct, the program prints the character pressed and con.t1nues �1th
the program. If the entry is incorrect, then the program erases the data entry lrne, repnnts
the line, and waits for the correct keypress.

Line 140 checks the current position of the cursor and stores that value as X. It then
subtracts one from X and tabs to that new position. Actually the program is adding 1 to X
for the tab position and subtracting 2 in order to get the cursor within the quotes. HT AB
X + 1 - 2 is the same as HT AB X - 1.

5 REM === YES/NO TRICK===
100 HOME
110 VTAB 23
120 CALL - 875
130 PRINT "ENTER YORN ()";
140 X = PEEK (36): HTAB X - 1: GET A$
150 IF A$< > "Y" AND A$< > "N" THEN PRINT: GOTO 1
10
160

26 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

WHICH I Fl IER7

This program uses a one-line mathematical technique to determine which subroutine
to execute. This idea can be used for a menu or set of selections within a game such as an
adventure game.

BACKGROUND _

Often a menu is used to list the options the user can choose from. The program must
identify the correct line to execute in order to carry out the requested selection. For
example, a menu of selections such as E-ENTER, C-CHANGE, S-SEARCH. P-PRINT, or
Q-OUIT can be presented to the user.

Rather than use a series of IF ... THEN statements that are space-and time-consuming,
you can use a one-line mathematical statement to determine which line is to be executed.

EXPLANATION _

In the following program, line 40 replaces four IF ... THEN statements. The expressions
on line 40 are evaluated as true or false. A true expression is converted to a 1, and a false
expression is converted to a 0. The program uses the GET command to accept only the
first letter of the selection.

If N is selected. then X = 1 + O + O + O
X = I

If S is selected. then X = O + I *2 + O + O
X=2

If E is selected, then X = O + O + I *3 + O
X=3

If W is selected. then X = O + O + O + I *4
X=4

DATA ENTRY ANO ERROR TRAPPING 27 ------------�

5 REM === WHICH LETTER? --- --- HTAB X - 1: PRINT A$ 10 HOME
20 PRINT "N)ORTH S)OUTH E)AST W)EST" 30 PRINT "WHICH DIRECTION: " . . GET 0$ ' . 40 X = (0$ = "N") + (0$ = "S") * 2 + (0$ - "E") * 3 + (D $ = "W") * 4
50 ON X GOTO 100,300,500,700 60 PRINT "NOT A VALID DIRECTION": PRINT • GOTO 20 • 99 END
100 HOME • PRINT "NORTH": END • 300 HOME • PRINT "SOUTH": END • 500 HOME • PRINT "EAST": END • 700 HOME • PRINT "WEST": END •

NULL OR EMPI Y' STRING<> BIANK STRING

This demonstrates the difference between the null or empty string and the blank string.

EXPLANATION _

The null or empty string AS is expressed as AS = "" with the two quotes immediately
next to each other. AS has a length of zero.

The blank string BS is expressed as BS = " " with a space between the two quotes. BS
has a length of 1. This is used for inserting a space.

The null or empty string is not the same as the blank string.

5 REM === NULL STRING<> BLANK STRING===
10 TEXT: HOME
20 A$=""
30 B$ =" " 40 IF A$= B$ THEN PRINT "THE EMPTY STRING EQUALS THE
BLANK STRING" 50 IF A$< > B$ THEN PRINT "THE EMPTY STRING DOES NOT
EQUAL THE BLANK STRING."

60 PRINT
70 PRINT "THE LENGTH OF THE NULL STRING A$ IS"; LEN (A
$)
80 PRINT "THE LENGTH OF THE BLANK STRING B$ IS"; LEN (
B$)
99 END

28 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

NULL ENTRY CHECK

Sometimes the user makes a null entry, that is, presses the RETURN key without first
answering the question. These routines only accept a nonempty reply.

EXPLANATION---------------------

The followinQ ro�ines represent two di�erent techniques for locating a null entry and
repeat the question 1f only the RETURN key 1s pressed. If a null entry is made, then NS is a
null string with a length of zero.

Line 20 generates a random number to place line 30 at a random row on the screen.
Line 30 requests the user to enter his/her name.

1. Check for empty string. Line 40 has two quotes next to each other with no space between
them. PEEK(37) returns the current vertical cursor position. CALL -958 clears the screen
from the cursor to the bottom of the page.

5 REM === NULL ENTRY CHECK (A) ===
10 TEXT: HOME
20 VTAB INT (RND (1) * 23) + 1
30 INPUT "ENTER YOUR NAME PLEASE ";N$
40 IF N$ =""THEN VTAB PEEK (37): CALL - 958: GOTO
30
50 PRINT "HI ";N$;" I AM HERE TO SERVE YOU"
99 END
2. Check for empty string with a length of zero. Line 40 checks the length of NS. An empty

string has a length of zero.

5 REM === NULL ENTRY CHECK (B) ===
10 TEXT: HOME
20 VTAB INT (RND (1) * 23) + 1
30 INPUT "ENTER YOUR NAME PLEASE ";N$
40 IF LEN (N$) = 0 THEN VTAB PEEK (37): CALL - 958: GOTO 30
50 PRINT "HI ";N$;" I AM HERE TO SERVE YOU" 99 END

DATA ENTRY AND ERROR TRAPPING------------- 29

ENTERING COMMAS IN DATA STATEMENTS

This program allows you to enter commas as part of the data in the DATA statement.

WITH INPUT COMMAND

This technique allows the user to enter commas and colons in his reply.

REM === COMMAS IN DATA STATEMENTS
HOME: PRINT
PRINT "NAME","ADDRESS": PRINT
READ N
FOR X = 1 TON
READ N$(X) ,A$(X)
PRINT N$(X) ,A$(X)
NEXT X
END
DATA
DATA
DATA
DATA

--- ---

EXPLANATION---------------------

To include commas and colons in a reply to any INPUT command, start the reply with a
leading quote. The commas and colons will then be included in the string. The trailing
quote can be omitted.

RUN
ENTER CITY AND STATE "CHICAGO, ILLINOIS
The disadvantage of this method is that it can only be used if the user is familiar with

computers or someone instructed him to use a leading quote when including commas
and colons in his reply.

WITH GET COMMAND

This program allows the user to enter commas and colons in his reply by using the GET
command.

• EXPLANATION _

Commas are used as separators of data items in the DATA statements. If you want to
include commas within the data elements, then enclose the elements in quotes.

3: REM NUMBER OF NAMES/ADDRESSES
JONES,"THOUSAND OAKS, CA"
SMITH,"SMITBTOWN, NY"
BROWN,"FREEHOLD, NJ"

5
10
20
30
40
50
60
70
99
100
110
120
130

-

ENTERING COMMAS AND COLONS IN
USER REPLY

A common programming problem is that of providing a way for the user to include
commas and colons in his reply. As you have probably found, the INPUT command will
not accept commas or colons. Instead. it returns an EXTRA IGNORED error message and
invalidates the comma or colon and everything thereafter. There are several techniques to
solve this problem. Two methods are presented: the first uses the INPUT command and a
leading quote; the second way uses the GET command. This is especially useful for
entering the city. state. and zip code for a mailing label.

30 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

EXPLANATION----------------------

This program uses the GET command in a routine that gets each character. one at a
time, and concatenates (adds to] the characters into one string that permits commas and
colons as valid entries.

It uses the CHRS(] 3), which is the RETURN keypress. to check for the end of the entry. It
then concatenates the individual characters into one string variable that can be stored and
printed to the screen.

You cannot back up when entering data in this manner for the computer will record
the extra keystrokes.

5 REM === COMMAS/COLONS OK=== 10 HOME
20 CS$="": REM NULL STRING 30 PRINT "ENTER CITY, STATE AND ZIP" 40 GET A$
50 IF A$= CHR$ (13) THEN 90 60 PRINT A$;
70 CS$= CS$+ A$ 80 GOTO 40
90 PRINT
100 PRINT "YOUR ADDRESS IS ";CS$

'

DATA ENTRY ANO ERROR TRAPPING ------------- 31

This tip avoids the pitfall of a DOS command after a GET command.

DOS COMMANDS AFTER A GET COMMAND

EXPLANATION _

The following programs offer three different methods to avoid the GET pitfall.

BACKGROUND _

The GET command is indeed very useful. However, it can cause problems when a DOS
command follows. A DOS command must be preceded by a carriage return. but the GET
command does not produce a carriage return. Of course, there are ways to av0id the
problem by adding a carriage return between a GET command and a DOS command.

5 REM === GET/DOS COMMAND (B) ===
10 TEXT: HOME
20 PRINT "PRESS <Q> TO QUIT"
30 PRINT "PRESS <C> TO CATALOG";
40 GET A$
60 IF A$= "Q" THEN END
70 IF A$= "C" THEN PRINT CHR$ (13); CHR$ (4);"CATALO
G": GOTO 90 80 IF A$< > "Q" AND A$< > "C" THEN 10
90 PRINT: PRINT "NEXT COMMAND GOES HERE"
Method 3: At the beginning of the program. define a string such as OS to represent the

carriage return concatenated to the CONTROL D command. Omit line 50, add line 7. and
change line 70.

5 REM === GET/DOS COMMAND (C) ===
7 0$ = CHR$ (13) + CHR$ (4)
10 TEXT: HOME
20 PRINT "PRESS <Q> TO QUIT"
30 PRINT "PRESS <C> TO CATALOG";
40 GET A$
60 IF A$ - "Q" THEN END
70 IF A$= "C" THEN PRINT D$;"CATALOG": GOTO 90
80 IF A$< > "Q" AND A$< > "C" THEN 10
90 PRINT: PRINT "NEXT COMMAND GOES HERE"

--- ---

"Q" THEN END "C" THEN PRINT CHR$ (4)"CATALOG": GOTO 90
> "Q" AND A$< > "C" THEN 10

PRINT "NEXT COMMAND GOES HERE"

REM === GET/DOS COMMAND (ERROR)
TEXT: HOME
PRINT "PRESS <Q> TO QUIT"
PRINT "PRESS <C> TO CATALOG";
GET A$
IF A$ -
IF A$ -
IF A$<
PRINT:

5
10
20
30
40
60
70
80
90
In this example, the word CATALOG will be printed to the screen rather than the

command C.ATALOG executed.
Method 1: Add line 50 to insert a carriage return between the GET command and the

DOS command.

5 REM === GET/DOS COMMAND (A) ===
10 TEXT • HOME • 20 PRINT "PRESS <Q> TO QUIT"
30 PRINT "PRESS <C> TO CATALOG n • ,
40 GET A$
50 PRINT
60 IF A$ - "Q" THEN END
70 IF A$ - "C" THEN PRINT CHR$ (4)"CATALOG": GOTO 90 -
80 IF A$ < > "Q" AND A$ < > "C" THEN 10
90 PRINT • PRINT "NEXT COMMAND GOES HERE" •

Method 2: Omit line 50 and precede the CONTROL D command with a carriage return,
which is represented by the character string of 13 in line 70.

70 IF A$= "C" THEN PRINT CHR$(13)CHR$(4)"CATALOG"

•

32 --------- APPLESOFT SASIC SUSROUTINES & SECRETS DATA ENTRY AND ERROR TRAPPING ------------- 33

ONERR GOTO COMMAND

When the computer encounters errors that it can recognize such as overflow, illegal
quantity error, or division by zero, the program stops execution and displays the
appropriate reply.

Some errors can be handled by the program if the the problem has been anticipated
and programming instructions have been provided. A range error such as plotting
outside of the legal screen limits or an overflow error such as a number too large for the
computer to handle can be handled by the ONERR GOTO command.

The ONERR GOTO command traps an error before the computer displays the error
message and abruptly halts the program execution.

5 REM === ONERR OVERFLOW DEMO
10 ONERR GOTO 1000
20 HOME
30 INPUT "ENTER A NUMBER ";N
40 PRINT 50 PRINT N"A2=";N A 2
60 PRINT N"A3=";N A 3
70 PRINT N"AlO=";N A 10
80 PRINT
90 GOTO 30
99 END
1000 E = PEEK (222)
1010 IF E = 69 THEN
GOTO 30
1020 RESUME

--- ---

PRINT "NUMBER TOO LARGE": PRINT:

10 ONERR GOTO 1000

Line 10 instructs the computer to branch or jump to line 1000 whenever an error occurs.
The ON ERR command is usually placed at the start of the program or the routine where an
error might occur.

When an error occurs, the computer places a numeric code in memory location 222.
This code corresponds to the type of error. You can examine this code with a single PEEK
command and act accordingly.

The RESUME command causes a branch back to the beginning of the statement
where the error occurred.

To disable the ONERR GOTO command and return the program to its automatic error
detection and halt method, use the statement:

POKE 216,0
The following programs demonstrate a few of the ways that the ONERR GOTO

command can be used to trap errors.

OVERFLOW ERROR

This program shows one way that the ON ERR GOTO command can be used to trap
and handle an error before the computer halts execution. It traps an overflow error when
calculating powers of an inputted number.

EXPLANATION _

Error code 69 represents an overflow error that occurs when the answer exceeds the
limits of the computer. Use the following program to determine the upper limits of the
computer.

•

Code
0

16
22
42
53
69
77
90

107
120
133
163
176
191
224
254
255

Error Message
NEXT without FOR
Syntax error
RETURN without GOSUB
Out of data
Illegal quantity
Overflqw
Out of memory
Undefined statement
Bad subscript
Redimensioned array
Division by zero
Type mismatch
String too long
Formula too complex
Undefined function
Bad response to INPUT statement
CONTROL C interrupt attempted; can't

continue error

Table 2-1 shows the error codes for Applesoft BASIC error messages.

APPLESOFT ERROR CODES

TABLE 2-1. APPLESOFT
ERROR MESSAGES

34 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
DATA ENTRY AND ERROR TRAPPING ------------- 35

,

DOS ERROR CODES

Table 2-2 shows the error codes for DOS error messages.

TABLE 2-2.
DOS ERROR
MESSAGES

199 END
995 REM --- ERROR HANDLING ROUTINE ---
1000 E = PEEK {222): REM IDENTIFY ERROR CODE
1010 IF E = 53 ORE= 254 THEN CALL - 1052: GOTO 110
1020 IF E = 255 THEN RUN
1030 RESUME

DISABLING CONTROL C
Code
l
2,3
4
5
6
7
8
9

10
11
12
13
14
15

Error Message
Language not available
Range error
Write-protected
End of DATA
File not found
Volume mismatch
1/0 error
Disk full
File locked
Syntax error
No buffers available
File type mismatch
Program too large
Not direct command

CONTROL C AND RESUME

This program disables the CONTROL C command to provide program protection and
prevent other users from seeing your program.

EXPLANATION---------------------

Pressing CONTROL C or CONTROL C RETURN stops the program execution. which
permits the user to I ist your program. One way to achieve program protection is to disable
the CONTROL C command with the ONERR GOTO command.

The following program prints numbers from I to JOO and their square roots. If you try to
stop the program with a CONTROL C command. the computer will respond with an
appropriate message and resume the program execution.

This program traps a range error in low resolution graphics.

EXPLANATION _

The ONERR GOTO command does not allow this program to be stopped with a
CONTROL C command. Instead, a CONTROL C entry reruns the program. If a number less
than O or greater than 39 is entered. the program asks for a reentry from the user and CALL
-1052 rings a bell. Only when 40,40 is entered will the program end.

5 REM === ERROR FOR ILLEGAL QUANTITY===
10 ONERR GOTO 995
20 GR: HOME
30 VTAB 21
40 PRINT "ENTER 40,40 TO QUIT PROGRAM"
50 VTAB 23
60 POKE 34,22
70 PRINT "PRESS ANY KEY TO BEGIN";
80 GET A$: PRINT
90 COLOR= 6
100 N = 1
110 VTAB 23: CALL - 958
120 PRINT N;". ENTER X,Y COORDINATES";
130 INPUT "";X,Y 140 IF X = 40 ANDY= 40 THEN POKE 34,20: HOME: GOTO
199
150 PLOT X,Y
160 N = N + 1
170 GOTO 110

36 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

•

5 REM === DISABLE CONTROL C AND RESUME===
10 ONERR GOTO 1000
20 HOME
30 FOR X = 1 TO 100
40 PRINT X, SQR (X)
50 NEXT X
99 END
995 REM --- DISABLE CONTROL C ---
1000 E = PEEK (222)
1010 IF E = 255 THEN HOME : VTAB 10: PRINT "CAUGHT YOU
TRYING THE CONTROL C COMMAND": FOR Z = 1 TO 1000: NEXT

Z: HOME: RESUME

CONTROL C AND GOTO N

By changing line 1010, the program can be restarted whenever your press the
CONTROL C command.

5 REM === DISABLE CONTROL C AND GOTO N ===
10 ONERR GOTO 1000
20 ROME
30 FOR X = 1 TO 100
40 PRINT X, SQR {X)
50 NEXT X
99 END
995 REM --- DISABLE CONTROL C ---
1000 E = PEEK (222)
1010 IF E = 255 THEN HOME: VTAB 10: PRINT "CAUGHT YOU
TRYING THE CONTROL C COMMAND": FOR z = 1 TO 1000: NEXT

Z: ROME : GOTO 30
DATA ENTRY ANO ERROR TRAPPING ------------- 37

DISABLING CONTROL C AND RESET KEYS
This program disables both the CONTROL C and the RESET keys.

BACKGROUND _

If you tried to break the previous two programs with a CONTROL C or CONTROL C
RETURN, you instead received a message from the programmer. However, you could
have passed the RESET key and broken into the program.

EXPLANATION _

By adding three POKE commands. you can also disable the RESET key, so that RESET,
instead of stopping the program, runs the program.

The POKE commands in line 15 should be used with care. First enter and run the
program without the POKE commands. Then enter the three POKE commands and save
the program on a disk before you run the program.

If you run the program and let it complete its loop, all is well. However, if you try to
interrupt with a RESET keypress, then the program will run from the beginning. Along
with this desired result comes an undesirable effect. You cannot access the disk unless
you reboot it.

To enable the RESET key, return the POKE commands to their default values by
entering the following three POKE commands either in the program or immediate mode.

POKE 1010,191: POKE 1011,157: POKE 1012,56

5 REM === DISABLE CONTROL C AND RESET===
10 ONERR GOTO 1000
13 REM --- DISABLE RESET ---
15 POKE 1010,102: POKE 1011,213: POKE 1012,112
20 HOME
30 FOR X = 1 TO 100
40 PRINT X, SQR (X)
50 NEXT X
60 PRINT: PRINT
70 PRINT "REBOOT DISK IF YOU PRESSED CONTROL RESET"
99 ENO
995 REM --- DISABLE CONTROL C ---
1000 E = PEEK (222)
1010 IF E = 255 THEN HOME: VTAB 10: PRINT "CAUGHT YOU
TRYING THE CONTROL C COMMAND": FOR Z = 1 TO 1000: NEXT

Z: HOME: GOTO 30

38 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

•

PASSWORD PROTEC I ION WITH RESET
DISABLED

These three programs provide password protection for a program. They are not
foolproof, since they work only when your program has been run. If someone is able to I ist
your program, they can find the necessary password.

SIMPLE PASSWORD

There is great concern about privacy of data and illegal access to programs or data.
You, of course, would like to protect your programs from unauthorized access after you
have slaved hours to get them debugged and running perfectly.

One method is to require the user to enter a password to start your program. The
CONTROL C and RESET keys must be disabled. so the user cannot press CONTROL RESET
to exit from your program and list it.

The following program provides some protection of your best program yet. Once the
program is run, no one can peek at the listing. However, once the program has ended or
has initially been loaded, rather than run from the disk, there is still the possibility of a
sneak preview of your hard work. At feast this is a start toward protecting your ideas.

EXPLANATION _

The GET command is used to request the correct password before entry into your
program. This program accepts a two-character password with a limit of three attempts,
and it traps CONTROL C or CONTROL RESET attempts to stop the program and perhaps
view the program or password.

CONTROL C REiURN is interpreted as a password attempt and counts as one of your
tries. CONTROL RESET restarts the program at the first line. It is like a RUN command.

The three POKE commands in line 10 should be used with care. Enter the program, test
it add line 10, but do not run the program. Save the program and then run it. If you try to
save the program or catalog your disk after running the program and interrupting it with a
RESET keypress, you will have difficulty as the computer hangs.

Change the password in line 20 from JS to a two-character password of your choice.

5 REM ===PASSWORD===
10 POKE 1010,102: POKE 1011,213: POKE 1012,112
20 PW$= "JS"
30 HOME
40 T = 0
50 VTAB 3: HTAB 1: CALL - 868
60 PRINT "ENTER PASSWORD TO CONTINUE: "; 70 GET P$,W$
80 A$= P$ + W$: IF A$= PW$ THEN 110
90 T = T + 1: IF T = 3 THEN 199 100 GOTO 50
110 HOME: PRINT "PAGE 2": END
199 VTAB 12: PRINT : PRINT "THE END": END

DATA ENTRY ANO ERROR TRAPPING ------------- 39

CONTROL CHARAC I ERS IN PASSWORD

Your password can be composed of any letter, digit. or special character such as an
asterisk(*), number sign(#), or exclamation mark (I). You may wish to use one or more
control characters in your password.

By changing line 20 of the previous program, you can use CONTROLJ and CONTROL
Sas the password. See Appendix A for the list of control characters and their respective
ASCII codes.

5 REM === PASSWORD/CONTROL CHARACTER===
10 POKE 1010,102: POKE 1011,213: POKE 1012,112
20 PW$= CHR$ (10) + CHR$ (19): REM CONTROL J CONTRO
L S
30 HOME
40 T = 0
50 VTAB 3: HTAB 1: CALL - 868
60 PRINT 8ENTER PASSWORD TO CONTINUE: ";
70 GET P$,W$
80 A$= P$ + W$: IF A$= PW$ THEN 110
90 T = T + 1: IF T = 3 THEN 199
100 GOTO 50
110 HOME: PRINT "PAGE 2": END
199 VTAB 12: PRINT: PRINT "THE END": END
To further protect your program. change line 199 to read:

199 VTAB 12: PRINT : PRINT : "THE END": NEW
Be sure to save your program before you change line 199 to avoid losing your program.
Now the user cannot complete your program and I ist it. He can still load your program

and list it if he has access to your disk.

40 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

ANY SYSTEM COMMAND RESUL 1S IN RUN

The command presented here causes any system command to run the program in
memory. This provides further protection by not allowing the listing of your program.

EXPLANATION _

The command POKE 214,255 causes any system command such as LIST, CAT f\LOG, or
PR#6 to run the program in memory. A listing of the program is not available.

Use this command with care. Do not run your program with this command until you
have first saved the program. Once you activate this command, the only way to deactivate
it is to turn off the computer. Test your program, debug it, add the POKE command. and
save it.

This command is added to the simple password program PASSWORD. It can be added
to any other program that you want to protect from being listed by a friend. foe. or
competitor.

5 REM === PASSWORD WITH AUTO-RUN===
10 POKE 1010,102: POKE 1011,213: POKE 1012,112
13 REM --- ANY SYSTEM COMMAND RUNS PROGRAM ---
15 POKE 214,255
20 PW$= •Js•
30 HOME
40 T = 0
50 VTAB 3: HTAB 1: CALL - 868
60 PRINT "ENTER PASSWORD TO CONTINUE: ";
70 GET P$,W$
80 A$= P$ + W$: IF A$= PW$ THEN 110
90 T = T + 1: IF T = 3 THEN 199
100 GOTO 50
110 HOME: PRINT "PAGE 2": END
199 VTAB 12: PRINT: PRINT "THE END": END

DATA ENTRY ANO ERROR TRAPPING 41 -------------

. - ----- :::=::::.--: -.-::.:::' ---., --.. ___, r= �-,

Another aspect of your program you may wish to make "user-friendly" is the
screen display. A screen that is clear and uncluttered can be easily viewed and
quickly understood. There are several ways of making an attractive yet functional
display. One way is to center or right-justify messages. Another way is to use two,
three, or four columns depending on the length of the data. Commas
automatically give three columns, so tab commands will be used to obtain

• different numbers of columns. A method for entering numbers down the screen
one column at a time is presented.

You will want the result of a mathematical calculation to be rounded off to
different places depending on the problem. For a score or grade, you might want
the answer to the nearest whole number, whereas, for a batting average, you will
want the answer rounded to the nearest thousandth. Methods of rounding off

___ 43 _

are not built into BASIC but must be added by the user. The formulas are
presented in this chapter.

There may be times when you wish to have the information in money format.
There is no automatic function to round off your answers to the nearest
hundredth of a cent, add the trailing zero or zeros on S25 or SJ2.5, or line up the
decimal points foreasyviewing of the results. Two different methods for aligning
numbers and adding trailing zeros are explained in this chapter.

Borders and various window sizes can add variety to the screen display so
certain items can be highlighted or outlined. Programs to obtain these effects are
given.

Once the user is ready for the next screen, there are also several ways of erasing
the old screen besides using the standard command to clear the screen.

AVOIDING ERROR WHEN RAISING
TOA POWER

DIVIDING Two NUMBERS
TO GET WHOLE-NUMBER REMAINDER

Th_is program shows you how to divide �o numb�rs and get the quotient and the
re�a1nder expressed as whole numbers. This rs useful 1n math quizzes that test division
skills.

EXPLANATION========--------------

Th_is program divides A by Band stores the answer as O with the whole number
remainder R.

5 REM === DIVIDE WITH INTEGER REMAINDER===
10 HOME
20 INPUT "ENTER A AND B ";A,B
30 Q = INT (A/ B)
40 R = A - (B * Q)
50 PRINT A"/"B" = "Q" REMAINDER "R
99 END

This technique shows you how to avoid a slight round-off error when raising to a
power.

EXPLANATION _

There are some slight inaccuracies when you use exponents in a BASIC program on the
Apple. For example. when you raise 7 to the second power, the computer returns
49.0000001 instead of the expected 49. This same problem occurs with other integers
raised to other powers and is a result of the way the computer handles exponents. The
inaccurate answer will always contain nine digits. This can cause inaccuracies in your
program or expected answers.

Table 3-1 shows some inaccuracies when the computer raises to a power.

TABLE 3-1. RAISING
NUMBERS TO A POWER

You �ill notice that semicolons were not used in line 50. The computer will default to
the semicolon_ format and squeeze the output together if the comma or semicolon are not
used. For clanty. you may choose to use some semicolons in your PRINT statements.

lfthere_is a possibi_litythatAand B might be mixed numbers, then add line45 to check
for a fractional remainder.

45 IF R < l THEN R - 0
MODIFICATION========---------------

lfyou want only the remainder, then you can combine lines 30 and 40 and omit line 40:

30 R = A - INT{A/B) * B
50 PRINT R

or

N = INT{X,.P)

N% = X--P

To GET FRAC I IONAL REMAINDER

Thisprog d' ·d ram 1v1 es two numbers and expresses the remainder as a decimal fraction.

EXPLANATION:----------------------

This program returns the decimal remainder R after dividing A by B.

io R��ME=== DIVIDE WITH FRACTIONAL REMAINDER===
20 INPUT "ENTER A AND B ";A,B 30 Q =A/ B 40 IF Q > = 0 THEN R 50 IF Q < 0 THEN R = = Q - INT (Q)
60 PRINT "REMAINDER "·�NT (Q) - Q
99 END '

Computer Ansvver
49.0000001
81.0000001

7776.00001

Expected Ansv.1er
49
81

7776

Problem
7"-2
3"-4
6"' 5

To avoid this error, use either of the following statements. where X is the number being
squared, P is the power or exponent. and NO,.u or N is the Pth power of X:

N% stores only the integer portion of the number and is called an integer variable.

44 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

NUMBERS COUNTING UP AND DOWN
SIMULTANEOUSLY

1TONANDNT01

When LEN(AS) = 7, then as X goes from J - 3 - s - 7
N goes from 6 - 4 - 2 - O

The IF ... THEN statement on line 70 is necessary, since you cannot take the ·d ·
of AS starting at 0. rm stnng

This program helps you count from J to N and from N to J simultaneously. This is useful
in graphics and in working with arrays.

EXPLANATION _

The loop counts from I to JO in the first column and from JO to 1 in the second column,
since N = JO.

5 REM --- COUNT 1-N AND N-1 --- --- ---
10 N = 10
20 HOME
30 FOR A - 1 TO N
40 B = (N + 1) - A
50 PRINT A,B
60 NEXT A
99 END

MODIFICATIONS _

1. Change the value of N on line 1 O to end the counting at a number other than 10.
2. The program can be modified to start counting at any number other than 1 by ·changing

the 1 in line 30 to the new starting number.

CRISSCROSS MESSAGE

This program prints every other letter of a message from left to right and fills in the
missing letters rrorn right to left simultaneously.

5 REM === COUNT 0-N AND N-0
10 N = 10
20 HOME
30 FOR A= 0 TON
40 B = N - A
50 PRINT A,B
60 NEXT A
99 END

--- ---

0 10 N AND N TO O

This program helps you count from O to N and from N to o simultaneously.

EXPLANATION========-------------

. The loop counts from Oto JO in the first column and from JO too in the second column
since N = 10. ·

5 REM === CRISSCROSS MESSAGE===
10 A$= "THIS MESSAGE WILL CRISSCROSS THE SCREEN"
20 EO = (LEN (A$) / 2 = INT (LEN {A$) / 2))
30 H = 20 - LEN (A$) / 2
40 HOME
50 FOR X = 1 TO LEN (A$) STEP 2
60 VTAB 12: HTAB H + X: PRINT MID$ (A$,X,l);
70 N = LEN (A$) - X + EO: IF N = 0 THEN 99
80 HTAB H + N: PRINT MID$ (A$ N l)·
90 NEXT X ' ' '
99 VTAB 23: END

EXPLANATION----------------------

This program uses the counting idea in the program count 1-N and N-1 and modifies it
to do some crisscross printing.

Enter your message as AS in line 10. The variable EO, which represents even/odd, is 1
when the length of AS is even and O when the length is odd. The center of the screen is
calculated and stored as H.

Line 60 prints every other character from left to right. At the same time, line 80 fills in the
missing letters from right to left as line 70 calculates the position of the missing characters.

The value ofX ranges from J to LEN(AS) in increments of 2. When the length of AS is an
odd number, the value of N ranges from LEN(AS) - J to 2 in increments of 2. When the
length of AS is an even number, the value of N ranges from LEN(AS) to O in increments of{·

For example, the following set of numbers represents the values ofX and N when the
length of AS is 8, which is even, and 7, which is odd.

When LEN(AS) = 8, then as X goes from 1 - 3 - 5 - 7
N goes from 8 - 6 - 4 - 2

46 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

MODIFICATIONS�����=��-������-�����

�· Change the value of Non line 10 to end the counting at a number other than JO
· :e g�og,�am can be modified to _start counting at any number other than o by changing

in me 30 to the new starting number.

X MARKS THE SPOT

This program craws an X in low resolution graphics.

EXPLANATION _

This program uses the idea in Count 0-N and N-0 to draw an X in low resolution
graphics.

The values of both the X and Y coordinates in line 50, and the value of the X coordinate
in line 60 increase from Oto 39. Simultaneously, the value of the Y coordinate in line 60
decreases from 39 to O. The colors alternate between red and blue.

5 REM === X MARKS THE SPOT===
10 GR: HOME
20 FOR X = 0 TO 39
30 IF X / 2 = INT (X / 2) THEN COLOR= 1
40 IF X / 2 < > INT (X / 2) THEN COLOR= 2
50 PLOT X,X
60 PLOT X,39 - X
70 NEXT X
99 END

RECTANGLES IN

This program draws rectangles starting from the outer edge and moving inward.

EXPLANATION _

This program uses the idea in Count 0-N and N-0 to draw progressively smaller
rectangles. The routine at line 40-100 determines the points to be plotted. The program
starts plotting in the upper left and lower right comers.

�ODIFICATIONS �--------�---���

I. You can change the step size by changing line 20:

20 S == 1

or

20 S == 3
2 For random colors. omit line 30 and add line 55:

55 COLOR== INT(RND(l)*l5) + 1

RANDOM NUMBER RANGE

The following statements enable the computer to generate any range of random
numbers.

O TO N - 1 RANGE

T�e f�llowing statement returns a random number from O to N - 1. where N is any
posmve integer.

R = INT(RND(l)*N)
1 TON RANGE

This statement returns a random number from 1 to N, where N is any positive integer.

R == INT(RND(l)*N) + l
A TO 8 RANGE

5 REM === RECTANGLES IN===
10 GR: HOME
20 S = 2
30 COLOR= 1
40 FOR Y = 0 TO 19 STEPS
50 FOR X = Y TO 39 - Y
60 PLOT X,Y
70 PLOT 39 - X,39 - Y
80 PLOT Y,X
90 PLOT 39 - Y,39 - X
100 NEXT X,Y
199 END

Range Desired
-I to I
13 to 19
12 to 44

Random Number Stat.ement
R = INT(RND(I)*3} - l
R = INT(RND(I)* 7) + I 3
R = INT(RND(J)*33) + 12

For example, to get the following ranges, use the following statements:

R = INT(RND(l)*(B-A+l)) + A

This statemen! returns random numbers from A to B, where A and B are integers and
A< B. The quantity B - A+ J represents the number of numbers in the range A to B and A
represents the starting number. '

48 --------- APPLESOFT BASIC SUBROUTINES & SECRETS OUTPUT FORMAT-------------------- 49

JUSTIFYING THE MESSAGE
CENTERING

This program centers any message of 39 characters or less a�d prints a series of dashes
above and below the message. This can be used for a heading or trtle.

EXPLANATION=..:._-------------------

Line 40 computes the starting tab position, where L represents the length of the
message.

5 REM === CENTER MESSAGE/DASHES
10 8$ = "-"
20 A$= "DREARY DUNGEON"
30 L = LEN (A$)
40 M = 20 - INT (L / 2)
50 HOME
60 HTAB M
70 FOR A= 1 TO L: PRINTS$:: NEXT A: PRINT
80 HTAB M
90 PRINT A$
100 HTAB M
110 FOR A - 1 TO L: PRINT 8$;: NEXT A: PRINT
199 END

MODIFICATION---------------------

The message for AS can be inputted by the user. Change line 20 and add the following
statements to enter the message and check that the message is 39 characters or less.

15 HOME
20 INPUT "ENTER MESSAGE ";A$
35 IF L = 39 THEN M = l:GOTO 50
37 IF L > 39 THEN PRINT "MESSAGE TOO LONG": PRINT:GOTO 20

•

50 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

RIGHT-JUSTIFYING

This program right-justifies a message and prints a series of dashes above and below
the message.

EXPLANATION----------------------=

The calculation of the tabbing position is done in line 50, where L represents the length
of the message.

5 REM === RIGHT JUSTIFY MESSAGE/DASHES===
10 S$ = "-"
20 A$= "DREARY DUNGEON"
30 L = LEN (A$)
40 HOME
50 H = 40 - L
60 HTAB H
70 FOR A= l TO L: PRINT 8$;: NEXT A: PRINT
80 HTAB H
90 PRINT A$
100 HTAB H
110 FOR A - l TO L: PRINTS$;: NEXT A: PRINT
199 END

MODIFICATION--------------------

The user can input the message. Change line 20 and add lines 15, 35, and 37. Lines35
and 37 check the length of the message.

15 HOME
20 INPUT "ENTER MESSAGE ";A$
35 IF L - 39 THEN H = l:GOTO 60
37 IF L > 39 THEN PRINT "MESSAGE TOO LONG": PRINT:GOTO 20

--- ---

____ �-

THREE COLUMNS ONE AT A nME

This program prints. the output one column at a time. This is useful if the data is in
alphabetical or numerrcal order.

EXPLANATION===============-------------

This program enters the nu,:nbers _1-60 into array A(X} and prints the output in three
columns down the page starting with the first column. Line JOO increments tne row
counter V. When the row counter equals 23, the row counter is reset to 3 and the
horizontal tab counter V is incremented by 13 for the next column.

Either PRlNTTAB() or HT� can = used. If more than 60 items are to be printed, you
will need a second page. Strrng varrables can be used by replacing A(X) with AS(X).

5 REM === THREE COLUMNS===
10 N = 60
20 DIM A(N)
30 FOR X = 1 TO N:A{X) = X: NEXT X
40 HOME
50 V = 3:H = 1
60 PRINT TAB(12)"THE RESULTS": PRINT
70 FOR X = 1 TON
80 VTAB V: HTAB H
90 PRINT A(X)
100 V = V + 1: IF V > 22 THEN V - 3:H - H + 13
110 NEXT X
120 VTAB 23
199 END

FOUR COLUMNS SIMULTANEOUSLY

5 REM === FOUR COLUMNS===
10 HOME
20 HTAB 14: PRINT 8THE NUMBERS•: PRINT 30 N = 80:NC = 4
40 DIM A{N}
50 FOR X = 1 TO N:A{X} = X: NEXT X
60 NN = N / NC
70 FOR X = 1 TONN
75 REM --- DETERMINES ELEMENT -
80 PRINT A(X):
90 HTAB 10: PRINT A(X + NN):
100 HTAB 20: PRINT A(X + 2 * NN);
110 HTAB 30: PRINT A{X + 3 * NN)
120 NEXT X
199 END

52 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SAMPLE OUTPUT
SAMPLE OUTPUT

THE NUMBERS THE RESULTS

1 21 41 61 1 21 41
2 22 42 62 2 22 42
3 23 43 63 3 23 43
4 24 44 64 4 24 44
5 25 45 65 5 25 45
6 26 46 66 6 26 46
7 27 47 67 7 27 47
8 28 48 68 8 28 48
9 29 49 69 9 29 49
10 30 50 70 10 30 50
11 31 51 71 11 31 51
12 32 52 72 12 32 52
13 33 53 73 13 33 53
14 34 54 74 14 34 54
15 35 55 75 15 35 55
16 36 56 76 16 36 56
17 37 57 77 17 37 57
18 38 58 78 18 38 58
19 39 59 79 19 39 59
20 40 60 80 20 40 60

EXPLANATION--------------------

N represents the number of items to be printed. NC represents the number of columns,
and NN stands for the number of items per column. Statements 80-110 determine which
data element is to be printed. Either PRINT TAB() or HT AB can be used.

This program prints an array of elements in four columns instead of the standard three
columns obtained by using commas. This can be used with output such as grades, scores,
or averages.

ALIGNING COLUMNS

PRINTING LIST OF MORE THAN 24 ITEMS ROUNDING OFF THE ANSWER

INT (RND (1) * 100) + 1: NEX

2. The value 20 in line 70 can be changed to another number provided it is less than 23.

70 IF PEEK(37) = 20 THEN VTAB 23: PRINT "PRESS ANY KEY TO
CONTINUE";:GET A$:HOME

This program prints a list of items 20 ata time and waits for the us�rtC? enter a ke.ypress
before continuing with the next 20 items. This is useful for v1ew1ng long lists of
information.

TO THE NEAREST DECIMAL
To tenths place: T = INT(X * 10 + .SJ/ 10
To hundredths place: H = INT(X * 100 + .5) / 100
To thousandths place: TH= INT{X * 1000 + .SJ/ 1000

DOLlAR-AND-CENT ALIGNMENT

EXPLANATION----------------------

Since BASIC has no built-in . function to round off numbers, you must use a
mathematical formula to round off to the appropriate place. After you have the numberX,
add one of the following lines to your program depending on how you want the number
x rounded off.

TO THE NEAREST INTEGER
To ones place: I= INT(X + .5)
To tens place: T = INT(X / 10 + .SJ * 10
To hundreds place: H = INT(X / 100 + .SJ * 100
To thousands place: TH= INT(X I 1000 + .5) * 1000

The following statements round X off to the nearest specified place.

When the numerical result is a number that represents money, you may want the
answer to be in money format The computer does not automatically round numbers off
to the nearest hundredth, retain the zero to print SJ 2.50, or align decimal points.

When the computer does a mathematical computation. it returns the answer with nine
or less signifi�nt digits and ignores any trailing zeros when storing and displaying the
final calculation. Thus, an answerof12.50 is stored and printed on the screen as 12.5. In
addition, it left-justifies all numbers.

There are subroutines that can be added to your program to round the answer off to
the nearest hundredth of a cent, allow the trailing zeros to be be added, and adjust the
output so the decimal points line up.

The programs below offer two different wa'jS of making sense out of cents. Use the
method that you prefer.

EXPLANATION---------------------

The following two programs ask you to enter five numbers. Each program rounds the
��mbers off to the nearest cent, pads the cents with zeros if necessary, and aligns the
�ber rn dollars-and-cents format at the top of the screen. You can change the

pos,t,on,ng of the output by changing the tabbing command.
Ihe number is entered as a numeric variable then converted and printed as a string variable. ·

23: PRINT "PRES

REM === LIST OF ITEMS===
N = 100
DIM A(N)
HOME
FOR X = 1 TO N:A(X) -

5
10
20
30
40
T X
50 FOR X = 1 TON
60 PRINT X;". ";A(X)
65 REM -- CHECKS FOR MULTIPLE OF 20 --
70 IF X / 20 = INT (X / 20) THEN VTAB
SANY KEY TO CONTINUE";: GET A$: HOME
80 NEXT X
99 END

MODIFICATIONS _

I. Line 70 can be replaced with the following PEEK command. which returns the vertical
position of the cursor in the range of 0-23.

EXPLANATION _

The following program fills an array of 100 elements with a random number from 1 t?
JOO. The routine at 50-80 prints the elements 20 at a time. When you press any key, rt
continues with the printout. The program segment starting _at line 5� can = use� with
any printout of numeric or string array elements. If your list contarns strrng variables.
change the numeric array AIX) to a string array ASIX).

BACKGROUND _

The screen display on the Apple holds a maximum of 24 ro�s <:>f information. T�is
poses a problem when printing more than 24 items. One anemanve rs to �eparate the lrst
into segments and display one section at a time, allowing the reader to view the data at
his own pace.

\

54 --------- APPLESOFT BASIC SUBROUTINES & SECRETS OUTPUT FORMAT-------------------- 55

PRINT USING SIMULAIOR

This program presents a method to round off a money answer to the nearest cent. add
trailing zeros. and align the decimal points and the dollar signs.

EXPLANATION _

This program lets the user enter five numbers and determines the largest number and
stores it as MAX. The subroutine from 1000 to 1080 puts the answer in money format and
prints the number at line 130.

A subroutine rounds off the answer to the nearest cent in line 1000 and converts the
number (array element} to a string MS in line 1010. Lines 1020-1060 determine the position
of the decimal point represented by DP and pads the number accordingly in lines 1040
and 1050. Lines 1070-1080 determine the number of spaces (SP) between the dollar sign
and the first digit of the number.

The tabbing in line J 30 can be changed by changing 20 to a different number.
The subroutine in I ines 1000-1080 can be replaced by the Dollars and Cents subroutine

presented in the next program.

5 REM === PRINT USING SIMULATOR===
10 MAX= 0:H = 20:H = H - 1
20 N = 5: DIM A(N)
30 HOME 40 PRINT TAB(lO)"PRINT USING SIMULATOR": PRINT
45 REM -- ENTER NUMBERS --
50 FOR X = 1 TON 60 PRINT "ENTER MONEY AMOUNT ";X;: INPUT" ";A(X}
70 IF A(X) > = MAX THEN MAX= A(X)
80 NEXT X
90 H$ = STR$ ·(INT (MAX))
100 PRINT: PRINT
105 REM --- FORMAT AND PRINT MONEY ---
110 FOR X = 1 TON
120 GOSUB 995"DOLLAR/CENT FORMATTER"
130 PRINT TAB(20 - LEN (H$))"$"; SPC(SP);M$
140 NEXT X
199 END 995 REM$$$$$$$$$$$$$$$$$$$$$$$$
996 REM$ DOLLAR/CENT FORMAT $
997 REM$$$$$$$$$$$$$$$$$$$$$$$$
998 REM -- ROUNDING TO NEAREST CENT --
1000 A(X) = INT (A{X) * 100 + .5) / 100
1010 M$ = STR$ (A(X)) 1015 REM --- FIND POSITION OF DECIMAL POINT ---
1020 FOR DP= 1 TO LEN (M$) •
1030 IF MID$ (M$,DP,1) < >"."THEN NEXT DP
1040 IF DP - 1 = LEN (M$) THEN M$ = M$ + ".00"
1050 IF DP+ 1 = LEN (M$) THEN M$ = M$ + "O"
1060 A$= STR$ (INT (VAL (M$)))
1065 REM --- DETERMINE t OF SPACES BETWEEN$ AND NUMBE
R --- 1070 IF VAL (A$) = 0 THEN SP= LEN (H$): RETURN
1080 SP= LEN (H$) - LEN (A$): RETURN

56 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SAMPLE OUTPUT==========---------------

PRINT USING SIMULATOR
ENTER MONEY AMOUNT 1 12.5
ENTER MONEY AMOUNT 2 .975
ENTER MONEY AMOUNT 3 1000
ENTER MONEY AMOUNT 4 43.976
ENTER MONEY AMOUNT 5 13.998

$ 12.50
$ • 98
$1000.00
$ 43.98
$ 14.00

or

PRINT USING SIMULATOR
ENTER MONEY AMOUNT 1 12.3333333
ENTER MONEY AMOUNT 2 10.6666667
ENTER MONEY AMOUNT 3 .996
ENTER MONEY AMOUNT 4 18500
ENTER MONEY AMOUNT 5 199.5

$ 12.33
$ 10.67
$ 1.00
$18500.00
$ 199.50

OUTPUT FORMAT ��-�-�-�-�-��-��-��-57

DOlf ARS AND CENTS l065 REM --- DETERMINE# OF SPACES BETWEEN$ AND NUMBE

This program presents another method to obtain the money format.
R --- 1070 IF
1080 SP=
2000 DATA

VAL (��$) = 0 THEN SP = LEN (H$):
LEN (H$) - LEN (A$): RETURN
25,19.98,.985,1234.4,99.997

RETURN

EXPLANATION _

The program reads in a list of five numbers from DATA statements in lines 30-60. uses
the subroutine at lines 1000-1080 to put the number in the money format, and prints the
number at line 120.

Line 50 finds the largest number of the list and stores it as MAX. Line 70 converts the
largest number to a string HS. The subroutine at lines 1000-1 O�O puts th.e num�� in
money format. It rounds off the number in line 1000 and converts ltto the stnng MS rn line
1010. Lines 1020-1060 find the position of the decimal point in the number to determine
whether it should add a decimal point. zero. or two zeros. Lines 1070-1080 determine the
number of spaces between the dollar sign and the first digit of the number.

The tabbing in line 120 can be adjusted to print in a different column by changing the
20 to a different number.

The PRINT USING simulator routine at lines 1000-1080 can be used interchangeably
with the Dollars and Cents subroutine in the previous program.

INSTANT INVERSE SCREEN

DOLLARS & CENTS
$ 25.00
$ 19.98
$ • 99
$1234.40
$ 100.00

5 REM === INSTANT INVERSE TEXT SCREEN=== 10 L = 768
20 FOR X = 0 TO 22: READ V: POKE L + X,V: NEXT
30 DATA 160,0,132,6,169,4,l33,7,162,4,169,32,145,6,200,
208,251,230,7,202,208,246,96 40 CALL L
50 VTAB 12: HTAB 18: PRINT "INVERSE" 60 VTAB 23
99 END

SAMPLE OUTPUT _

This program enters a machine language routine to quickly change the screen to full
inverse mode.

EXPLANATION----------------------

L represents the starting memo,y location for the machine language routine. since this
routine 1s relocatable. See the memory map in Appendix B for the free memory locations. 1

Line 20 reads the data items and uses the POKE command to place them into the memory
locations. The data items in line 30 represent the machine commands to instantly display
the screen in inverse. Once the routine is entered into memory it can then be called in
line 40.

•
GOTO 1

THEN 1060 " " •
LEN (M$) = 2 THEN 1050
MID$ (M$, LEN (M$) - 2,1) -
M$ + "0"
STR$ (INT (VAL (M$)))

$$$$$$$$$$$$$$$$$$$$$$
$ DOLLAR/CENT FORMAT$
$$$$$$$$$$$$$$$$$$$$$$
-- ROUNDING TO NEAREST DECIMAL -
= (INT (A(X) * 100 + .5)) / 100
STR$ (A (X))
--- FIND POSITION OF DECIMAL POINT --

INT (A(X)) = A(X) THEN M$ - M$ + ".00":
IF
IF

M$ -
A$=

REM === DOLLARS & CENTS===
MAX= 0:H = 20:H = H - 1
N = 5: DIM A(N)
REM --- READ MONEY INTO ARRAY --
FOR X = 1 TON
READ A(X)
IF A(X) > - MAX THEN MAX= A(X)
NEXT X

H$ = STR$ (INT (MAX))
REM --- FORMAT AND PRINT MONEY --
HOME
PRINT TAB(13)"DOLLARS & CENTS": PRINT
FOR X = 1 TON
GOSUB 996"DOLLAR/CENT FORMATTER"
PRINT TAB(20 - LEN (H$))"$"; SPC(SP);M$
NEXT X
END
REM
REM
REM
REM
A(X)
f-1$ =
REM
IF

5
10
20
25
30
40
50
60
70
75
80
90
100
110
120
130
199
995
996
997
998
1000
1010
1015
1020
060
1030
1040
1050
1060

58 --------- APPLESOFT BASIC SUBROUTINES & SECRETS OUTPUT FORMAT-------------------- 59

WINDOW ADJUSTMENT AND APPLICATIONS
WINDOW SIZE

Table 3-2 provides the ranges of the four POKE commands that adjust the size of the
text window. You can obtain special effects such as freezing a heading or simulating a
television screen or you can highlight messages with these POKE commands.

EXPLANATION _

Table 3-2 indicates the memory locations. explains which dimension on the screen is
affected. and lists the range of values that can be poked into each location along with the
default values.

Poking these locations with the default values returns the screen to the standard
dimensions. The command TEXT and the RESET key also return the screen to standard
format.

Use the command TEXT:HOME to first obtain a standard blank screen. Then issue the
desired POKE commands and again issue the HOME command to start the cursor in the
new home position.

TABLE 3-2. TEXT SCREEN POKE
COMMANDS

Command Explanation Range Default
POKE 32.l Left edge of window 0-39 POKE 32.0
POKE 33.W Window width 1-40 POKE 33.40
POKE 34.T Top edge of window 0-23 POKE 34.0
POKE 35.B Bottom edge of window 1-24 POKE 35.24

USING POKE 33,33 TO EDIT A LINE

The command POKE 33,33 can be used to edit a line containing a string in quotes. a
DAT A statement. or a REM statement without getting the extra spaces.

EXPLANATION _

To av0id the unwanted extra spaces when editing a program line that contains quotes.
a REM statement. or a DATA statement. first type POKE 33.33. This command reduces the
screen to 33 characters across instead of 40.

Then use the ESC key along with I. J. K. M, or the four arrow keys on the Apple lie/lie
and move up to the line to be edited and make the changes. Refer to '_'Editing Program
Statements" in Chapter 1 for an explanation of the editing commands if necessary. •

When you are through editing, type either POKE 33, 40 or TEXT to bring the screen size
back to 40 characters across. The RESET key will also return the screen to standard
dimensions.

SO --------- APPLESOFT BASIC SUBROUTINES & SECRETS

FREEZE INVERSE HEADING

This program highlights a message in a border and freezes the heading. The rest of the
screen scrolls up under the message.

EXPLANATION----------------------

L1ne JO sets the screen to standard values. L!ne.120 pokes in the value to change the top
margin of the screen. The command HOME m I me 120 sets the cursor to the new home
position. A message is scrolled under the title 100 times for demonstration purposes.

The percent (%) symbol in lines 30, 40, and 50 can be replaced by any symbol other
than quotation marks.

The POKE 32,0 command, the TEXT command, or the RESET key will return the screen
to normal format.

5 REM === FREEZE INVERSE HEADING===
10 TEXT: HOME
20 INVERSE
25 REM -- 40 SYMBOLS --
30 51$ = •1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%. 40 52$ = ., ,.
so 53$ = .,.
60 PRINT Sl$;S2$;
70 PRINT S3$; TAB(
1 80 PRINT S2$;
90 PRINT S3$; TAB(8)"BY THE GREATEST PROGRAMMER"; TAB(40)53$;
100 PRINT S2$;Sl$
110 NORMAL
120 POKE 34,8: HOME
130 FOR X = 1 TO 100: PRINT TAB(19)X: NEXT X 199 END

13)"PROGRAMS UNLIMITED"; TAB(40)S3$

BORDER SUBROUTINE

This subroutine draws a border on the screen.

EXPLANATION====--------------------

The subroutine starting at line 1000 draws a border around the screen. If you want to
write within the border, then you must use HT AB and VT AB commands. The command
PRINT TAB() will erase the left border.

5 REM === BORDER SUBROUTINE===
10 HOME 20 S$ = "%": GOSUB lOOO"BORDER SUBROUTINE"
30 VTAB 12: HTAB 16
40 PRINT "THE END"
50 VTAB 23: HTAB 1
999 END
1000 FOR X = 1 TO 40: PRINT SS;: NEXT X
1010 FOR X = 1 TO 21
1020 HTAB 1: PRINTS$;: HTAB 40: PRINTS$;
1030 NEXT X 1040 FOR X = 1 TO 40: PRINT SS;: NEXT X
1050 RETURN

SAMPLE OUTPUT===------------------

FROZEN BORDER SUBROUTINE

The previous Border subroutine is modified to freeze the border in place while the rest
of the text scrolls up the screen.

EXPLANATION--------------------

Line 1050 contains the four POKE commands to freeze the border. Line 1060 resets the
new home position.

Either the HTAB or PRINT T ABI } commands can be used with this program.
5 REM === FROZEN BORDER SUBROUTINE===
10 'l'EXT : HOME
20 S$ = "%": GOSUB lOOO"BORDER SUBROUTINE"
30 VTAB 12: HTAB 16
40 PRINT "THE END"
50 VTAB 20: HTAB 1
999 END
1000 FOR X = 1 TO 40: PRINT SS;: NEXT X
1010 FOR X = 1 TO 21
1020 HTAB 1: PRINTS$;: HTAB 40: PRINT SS;
1030 NEXT X
1040 FOR X = 1 TO 40: PRINT SS;: NEXT X
1045 REM -- ADJUST WINDOW SIZE --
1050 POKE 32,2: POKE 33,36: POKE 34,2: POKE 35,21
1060 HOME
1070 RETURN

%%
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% THE END %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
%%

•

CLEARING I EX I SCREEN FROM LEFT MIDDLE

This progran: clears the text screen from the left middle by using the window POKE
commands. This provides an interesting way of clearing the screen.

EXPLANATION----------------------

T� subroutine starting at line 1000 uses the window commands to clear the screen
starting at row 12, clearing up and down simultaneously.

5 REM === CLEAR TEXT LEFT MIDDLE===
10 TEXT: HOME
20 FOR X = 1 TO 23
30 PRINT X;" CLEAR TEXT FROM LEFT. MIDDLE" 40 NEXT X
50 GET A$
60 GOSUB 1000
99 END
995 REM --- CLEAR TEXT --- 1000 FOR X = 1 TO 12
1010 POKE 34,12 - X
1020 POKE 35,12 + X
1030 POKE 33,3 * X + 4 1040 HOME
l050 FORT= 1 TO 10: NEXT T 1060 NEXT X
1070 RETURN

OUTPUT FORMAT �-���--��---------��63
62 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

GR COMMANDS WITHOUT GR COMMAND

The graphics commands \/LIN, HLIN, and PLOT can be used in a text program without
the commands GR and COLOR=. You will not get the color but you will get a variety of
standard. flashing, and inverse characters on the text screen.

When the screen is in the GRaphic mode of low resolution graphics and you issue the
TEXT command. the screen prints characters in standard. flashing. and/or inverse mode.
The computer is trying to interpret the graphics commands as text. The following
programs will use this idea to draw borders easily and erase the screen in yet another way.

5 REM === POKE HLIN/VLIN DEMO===
10 HOME
20 FOR X = 0 TO 255
30 POKE 48,X
40 VTAB 8: HTAB 20
50 PRINT "X= ";X
60 HLIN 0,39 AT 20: HLIN 0,39 AT 21
70 VLIN 0,39 AT 30
80 GET A$
90 NEXT X
99 END

64 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

POKE HUN/VI.IN DEMONSTRATION

+
+
+
+
+
+
+

X= 171 +
+
+

++
+
+
+
+
+
+
+
+
+

$
$
$
$
$
$
$

X= 164 $
$
$

$$
$
$
$
$
$
$
$
$
$

SAMPLE OUTPUT====------------------

OUTPUT FORMAT �------------------�65

Text Screen Numbering

1 2 3 4 5 6 . . . 40
1

2

3

Graphics Screen Numbering

012345 ... 39
1
2
3
4
5
6

38 39--------�---------
You can display characters on the 24th row with the VLIN and HLIN commands but not

with the PRINT command, since the PRINT command issues a line feed instruction. If you
tab to the 24th row and print a message, the computer prints on the 24th row, issues a line
feed command to move everything on the text screen up one row, and displays the cursor
on the 24th row.

This program demonstrates the results of using HLIN and VLJN commands without the
commands GR and COLOR=. It draws a vertical line and two horizontal lines using the
255 possible values as characters.

EXPLANATION _

This program pokes a value into memory location 48 to determine which character
will be used in the horizontal and vertical lines. The values 0-255 are poked in one at a
time. Memory location 48 holds the value of the low resolution graphics color times 17.

Two horizontal lines must be drawn. since two HLINs of graphics equal one line of
text. The graphics screen is 40 dots across and the text screen is 40 characters across.
However, the graphics screen is 48 characters down, if you use full screen low resolution
graphics, while the text screen holds 24 rows of symbols or characters. Thus. it takes two
rows of the graphics screen to equal one row of text screen.

SS --------- APPLESOFT BASIC SUBROUTINES & SECRETS

Table 3-3 helps to determine which value to poke into location 48 for a particular
character.

THE END

$ $
$ $
$ $
s $
$ s
s $
s $
$ $
s $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
s $
$$

EASY INVERSE BORDER

This program draws a border around the text screen using some of the graphics
commands.

EXPLANATIDN---------------------

The graphics commands HLIN and VLIN without the GR and COLOR= commands
draw twO vertical and �o h<:>rizontal _lines to obtain a bo�der. Lines 30 and 50 draw a set
of adjacent horizontal lines ,n graphics to get one text line.

5 REM === TEXT BORDER WITH GR COMMANDS===
10 TEXT : HOME
20 K = 36: POKE 48,K
30 HLIN 0,39 AT 0: HLIN 0,39 AT 1
40 VLIN 0,47 AT 0: VLIN 0,47 AT 39
SO HLIN 0,39 AT 46: HLIN 0,39 AT 47
60 POKE 32,2: POKE 33,34: POKE 34,2: POKE 35,22
70 HOME
80 VTAB 12: HTAB 16
90 PRINT "THE END"
99 END

SAMPLE OUTPUT _

OUTPUT FORMAT-------------------- 67

'

Normal
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181
182
183
184
185
186
187
188
189
190

191

Flashing
96
97
98
99

100
I 01

102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119

120
121

122
123
124
125
126
127

Inverse
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

"

+

I
0
1
2
3
4
5
6
7
8
9

(
J

I

s

O/o
&

I

<
>
7

Text
Character

space
I

Normal
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149
150

151
152
153
154
155
156
157
158
159

Flashing
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Inverse
0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

SCREEN CHARAC I ERS

TABLE 3-3. SCREEN CHARACTER POKE VALUES

Text
Character

@
A
B
c
0
E
F
G
H
I
J
K
L
M
N
0
p
0
R
s
T
u
v
w
x
y
z
[
\
J

ERASING THE SCREEN WITH GRAPHICS COMMANDS
FROM UPPER LEFT CORNER

This program uses the HLIN and VLIN commands to fill and then to clear the text screen
starting at the upper left comer. The clearing routine can be used whenever you have a
screen full of text and want to clear the screen in a novel way.

EXPLANATION _

Lines 30-50 use HLIN and VLIN commands to quickly fill the screen with a character.
Refer to Table 3-3 for the values and their corresponding characters. Line 20 pokes in the
character M in inverse. The routine at lines 70-110 clears the screen by drawing horizontal
and vertical lines composed of the space character. The lines start at the upper left corner.

5 REM === CLEAR SCREEN LOWER-RIGHT===
7 REM -- FILL SCREEN
10 HOME
20 POKE 48,13
30 FOR X = 0 TO 39
40 VLIN 0,47 AT X: HLIN 0,39 AT X
50 NEXT X
60 GET A$
65 REM -- CLEAR SCREEN
70 POKE 48,160
80 FOR X = 47 TOO STEP - 1
90 VLIN 0,47 AT X * 39 / 47: HLIN 0,39 AT X
100 FOR Z = l TO 25: NEXT Z
110 NEXT X
199 END

5 REM === CLEAR SCREEN UPPER-LEFT
7 REM -- FILL SCREEN --
10 HOME
20 POKE 48,13
30 FOR X = 0 TO 39
40 VLIN 0,47 AT X: HLIN 0,39 AT X
50 NEXT X
60 GET A$
65 REM -- CLEAR SCREEN --
70 POKE 48,160
80 FOR X = 0 TO 39
90 VLIN 0,47 AT X: HLIN 0,39 AT X
100 FOR Z = 1 TO 25: NEXT Z
110 NEXT X
199 END

--- --- WARP ERASE

This proqram uses the HLIN and VLIN commands to fill the screen and then to erase
the screen wrth a warp effect The clear routine can be used whenever you have a screen
full of text to be erased and want a different effect.

EXPLANATION========---------------

Subroutine 100 fi�ls the screen with a random character. The routine from so to 70 clears
the screen by drawing rectangles of decreasing size. Line 40 selects the normal space as
the character to erase the screen.
. Line 60 adjusts for the rectangular screen by drawing 48 horizontal lines and 40 vertical

lines.

FROM lOWER RIGHT CORNER

This program uses the HLIN and VLIN commands to fill and then to clear the text screen
starting at the lower right comer. The clearing routine is a variation of the previous
program.

EXPLANATION _

This program also uses HLIN and VLIN commands to quickly fill the screen with the
character M in inverse at lines 20-50. The clearing routine at lines 70-11 O start drawing the
vertical and horizontal lines in the lower right corner.

SB --------- APPLESOFT BASIC SUBROUTINES & SECRETS

5 REM === WARP ERASE TEXT SCREEN===
10 HOME
20 GOSUB lOO"FILL SCREEN"
30 GET AS
35 REM --- ERASE SCREEN ---
40 POKE 48,160
50 FOR X = 0 TO 21
60 HLIN 0,39 AT X: HLIN 0,39 AT 47 - X: VLIN 0,47 AT X:
VLIN 0,47 AT (39 - X * 39 / 47) 70 NEXT X

99 END
lOO POKE 48, INT (RND (1) * 256): FOR X - 0 TO 47: HLI N 0,39 AT X: NEXT X: RETURN

SCROLLING THE TEXT SCREEN SCROWNG UP THE SCREEN

The standard way of clearing the screen for the next display is to instantly erase it with
the HOME or CALL -936 commands. This chapter has introduced several other
techniques to erase the screen. It is also possible to have the old display scroll up slowly for
another effect.

ERASING THE SCREEN STARTING AT BOTTOM LINE

This program scrolls the text up the screen and can be used as an end-of-text-page
routine.

EXPLANATION _

The program fills the screen on lines 20-40 and waits for the user to enter a keypress.
The routine at lines 60-80 uses the command CALL -912 to scroll up the screen. The
command CALL -912 moves the cursor down the screen one line.

70 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

This program erases one text line at a time starting at the bottom of the screen.

75 FOR Z = l TO 50:NEXT Z

5 REM --- SCROLL TEXT SCREEN --- --- ---
10 HOME
15 REM -- FILL SCREEN --
20 FOR X = 1 TO 20
30 PRINT X:" THIS IS AN EXAMPLE OF SCROLLING"
40 NEXT X
50 GET A$
55 REM ERASE SCREEN --
60 FOR X = 1 TO 24
70 CALL - 912
80 NEXT x
90 VTAB 1: PRINT "PAGE 2"
99 END

or

I. line 70 can be replaced by one of the following statements. CALL -922 moves the cursor
down the screen one line.

70 PRINT

70 CALL -922

2. The text can be scrolled up the screen at the desired speed by using a delay loop within
the scrolling loop to scroll slowly.

76 FOR Z = 1 TO 50:NEXT Z
. The SPEED command can be used to slow down the scrolling by adding the following

fines rather than the delay loop:

55 SPEED= 100
70 PRINT
85 SPEED= 255

'[:: �ED_command works in conjunction with a PRINT command and therefore cannot
With either CALL -912 or CALL -922. i.e .. line 70 must be a PRINT command.

MODIFICATIONS _

--- --- ERASE TEXT SCREEN FROM BOTTOM REM ===
HOME
REM -- FILL SCREEN -
FOR X = 1 TO 20
PRINT X:" THIS IS AN EXAMPLE OF SCROLLING"
NEXT X
GET A$
REM -- ERASE SCREEN -
FOR X = 1 TO 24
CALL - 868: CALL - 998
NEXT X
VTAB 1: PRINT "PAGE 2"
END

5
10
15
20
30
40
50
55
60
70
80
90
99

EXPLANATION _

The command CALL-868 clears the text line starting at the cursor. CALL -998 moves
the cursor up the screen one line.

MODIFICATION _

A delay loop can be added to adjust the scrolling effect

t((

___ 73 _

CHAPTER���������������,__-
SPECIAL EFFEC IS

Special effects can be obtained by using the tab commands, string functions
such as MIDS, the ASCII code to obtain special characters or keys, or by strobing
the keyboard.

This chapter introduces several ways to repeat the characters of a word in an
interesting fashion. Pyramids, diamonds, and mirror image designs are printed.

The characters obtained by using their ASCII code provide access to keys such
as the ESC key, space bar, arrow keys, and the DELETE and TAB keys on the Apple lie/lie.

There are times when you want the computer to execute a routine and
con�1nua11y check for an input from the user. The keyboard strobe provides this
servsce without printing the cursor to the screen. You can wait for a certain
amount of time for a reply from the user or you can wait indefinitely for a reply .

. T!1e tab commands and string functions can be used to animate the screen by
shd,ng words and characters across. A message can be printed repeatedly across
the screen to simulate a billboard effect.

STRING MANIPULATIONS FOR OUTPUT
REVERSE MESSAGE

This program reverses the order of any word, number. or message that is entered.

EXPLANATION _

Line 20 sets the string RS to the null or empty string. The loop at lines 50-70 steps
through the characters of the inputted string AS one character at a time starting at the last
character. Each character is then concatenated (added) to RS, which will hold the reverse
string.

5 REM === REVERSE MESSAGE===
10 HOME
20 R$ ="":REM NULL STRING
30 INPUT "ENTER A WORD OR NUMBER ";A$
40 PRINT
50 FOR X = LEN (A$) TO 1 STEP - 1
60 R$ = R$ + MID$ (A$,X,1)
70 NEXT X
80 PRINT A$,R$
99 END

5 REM ===PYRAMID===
10 HOME .
20 INPUT "ENTER A WORD ";A$
30 IF LEN (A$) > 19 THEN 20
40 HOME
43 REM --- PRINT ROUTINE ---
45 REM --- TOP TRIANGLE ---
50 FOR X = 1 TO LEN (A$)
60 FOR Y = 1 TO X
70 T = 20 - X
80 M$ = MID$ (A$,X,1)
90 PRINT TAB(T)M$;" ";
100 NEXT Y
110 PRINT
120 NEXT X
125 REM --- BOTTOM TRIANGLE ---
130 FOR X = LEN (A$) TO 1 STEP - 1
140 FOR Y = 1 TO X
150 T = 20 - X
160 M$ = MID$ (A$,X,1)
170 PRINT TAB{ T)M$;" ";
180 NEXT Y
190 PRINT
200 NEXT X
299 END

SAMPLE RUN _ SAMPLE OUTPUT======-----------------

74 APPLESOFT BASIC SUBROUTINES & SECREiS

]RUN
ENTER A WORD OR NUMBER ROBOT

]RUN
ENTER A WORD OR NUMBER REVERSE

R
E E

F F F
L L L L

E E E E E c c c c c c
T T T T T T T

I I I I I I I I
0 0 0 0 0 0 0 0 0

N N N N N N N N N N
N N N N N N N N N N
0 0 0 0 0 0 0 0 0
I I I I I I I I
T T T T T T T c c c c c c

E E E E E
L L L L
F F F
E E

R

ENTER A WORD REFLECTION

ESREVER

TOBOR

PYRAMID

ROBOT

REVERSE

This program prints a word in a pyramid shape that is formed by two triangles of
characters. The design is symmetric both vertically and horizontally. The length of the
message is limited to 19 characters or less.

EXPLANATION _

The string functions can be used to produce interesting designs with the characters of a
string or digits of a number. Two loops are needed: the outer loop steps through eath
character of AS one at a time. and the inner loop determines how many times the
particular character will be printed. The routine at 130-200 is similar to the routine at
50-120 except that it steps through the characters of AS in reverse order.

MIRROR IMAGE DIAMOND
DESIGN 1

This program prints a mirror image diamond. The design is symmetric both vertically
and horizontally. This program prints a space after each character. A maximum of 10
characters is permitted.

EXPLANATION----------------------

Line 80 takes the word or message MS apart and stores each character as an array
element. Line 90 prints the first character in the center of the screen. Lines 100-180 use
three loops to print out the characters. The outer loop steps through the remaining
characters one at a time. The first inner loop at lines 110-130 prints the left side of the
design and the second inner loop at Jines 140-160 prints the right side of the design. The
routine at lines 190-290 is similar to the routine at lines 70-180, but it steps through the
characters in reverse order.

5 REM === DIAMOND DESIGN 1 ===
10 DIM A$(20)
20 HOME
30 INPUT "ENTER A WORD ";M$
40 IF LEN (M$} > 10 THEN 30
50 HOME
60 T = 20
70 REM --- TOP ---
80 FOR X = 1 TO LEN (M$) :A$(X) - MID$ (M$,X,l): NEXT
x
90 PRINT TAB(T);A$(1)
100 FOR X = 2 TO LEN (M$)
110 FOR Y = 1 TO X
12 0 PR I NT TAB (T - (2 * (X - 1 })) ; A$ (Y) ; " " ;
130 NEXT Y
140 FOR Z = (X - 1} TO 1 STEP - 1
150 PRINT A$(Z);" ";
160 NEXT Z
170 PRINT
180 NEXT X
190 REM --- BOTTOM ---
200 FOR X = LEN (M$) TO 2 STEP - 1
210 FOR Y = 1 TO X
220 PRINT TAB(T - (2 * (X - l)});A$(Y);" ";
230 NEXT Y
240 FOR Z = (X - 1) TO 1 STEP - 1
250 PRINT A$(Z};" ";
260 NEXT Z
270 PRINT
280 NEXT X
290 PRINT TAB(20);A$(1)
299 END

76 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SAMPLE OUTPUT-------------------

ENTER A WORD COMPUTER

c
c 0 c

c 0 M 0 c
c 0 M p M 0 c

c 0 M p u p M 0 c
c 0 M p u T u p M 0 c

c 0 M p u T E T u p M O C
c 0 M p u T E R E T u p M O c
c 0 M p u T E R E T u p M O c

C O M P u T E T u P M O c
C O M p u T u p M O C

c O M p u p M O C
C O M p M O c

c 0 M O C
c 0 c

c

DESIGN 2

This program is similar to Design 1. However. it omits the space after each character
and allows a message of 20 characters to be printed to the screen.

EXPLANATION _

See the explanation for Design I. The spaces on lines 120, 150, 220, and 250 have been
omitted.

5 REM === DIAMOND DESIGN 2 ===
10 DIM A$(20)
20 HOME
30 INPUT "ENTER A WORD ";M$
40 IF LEN (M$) > 20 THEN 30
50 HOME
60 T = 20
70 REM --- TOP ---
80 FOR X = 1 TO LEN (M$):A$(X) - MID$ (M$,X,l): NEXT
x
90 PRINT TAB(T);A$(1)
100 FOR X = 2 TO LEN (M$)
110 FOR Y = 1 TO X
120 PRINT TAB(T - (X - l));A$(Y);
130 NEXT Y
140 FOR Z = (X - 1) TO 1 STEP - 1
150 PRINT A$(Z);
160 NEXT Z
170 PRINT
180 NEXT X
190 REM --- BOTTOM ---
200 FOR X = LEN (M$) TO 2 STEP - 1
210 FOR Y = 1 TO X
220 PRINT TAB(T - (X - l));A$(Y);
230 NEXT Y
240 FOR Z = (X - 1) TO 1 STEP - 1
250 PRINT A$(Z);
260 NEXT Z
270 PRINT
280 NEXT X
290 PRINT TAB(20);A$(1)
299 END

•

78 --------- APPLESDFT BASIC SUBROUTINES & SECRETS

SAMPLE OUTPUT

ENTER A WORD COMPUTER

c coc
COMOC

COMP MOC
COMP UP MOC

COMPUTUPMOC
COMPUTETUPMOC

COMPUTERETUPMOC
COMPUTERETUPMOC
COMPUTETUPMOC
COMPUTUPMOC
COMPUPMOC
COMPMOC
COMOC coc

c

SPECIAL EFFECTS-------------------- 79

HOLLOW DIAMOND

This program draws a mirror image of an inputted name. But the characters are outside
the diamond and the diamond is hollow. The name is limited to 20 characters.

EXPLANATION _

Lines 50-70 form a new string RS. which holds the reverse name. The routine at lines
100-160 prints the right side of the name NS and the left part of the reverse name RS. The
routine at lines l 70-220 is similar to lines 100-160 but prints the reverse.

5 REM === MIRROR IMAGE===
10 HOME
20 INPUT "ENTER YOUR NAME: ";N$
30 IF LEN (N$) > 20 THEN PRINT "PLEASE LIMIT YOUR NAM
E TO 20 LETTERS OR LESS": GOTO 20
40 HOME
45 REM --- FORM REVERSE STRING ---
50 FOR X = LEN (N$) TO 1 STEP - l
60 RN$= RN$+ MID$ (N$,X,1)
70 NEXT X
80 L = LEN (N$)
90 H = 20 - L
95 REM --- TOP ---
100 FOR N = L TO 1 STEP - 1
110 HTAB H
120 PRINT RIGHT$ (N$,N);
130 HTAB 20 + L - N
140 PRINT LEFT$ (RN$,�)
150 HTAB H
160 NEXT N
165 REM --- BOTTOM ---
170 FOR N = 1 TO L
180 HTAB H
190 PRINT RIGHT$ (N$,N);
200 HTAB 20 + L - N
210 PRINT LEFT$ (RN$,N)
220 NEXT N
299 END

80 --------- APPLESOFT BASIC SUBROUTINES & SECREiS

SAMPLE OUTPUT _

ENTER YOUR NAME: SULLIVAN

SULLIVANNAVILLUS
ULLIVAN NAVILLU
LLIVAN NAVILL
LI VAN NAVIL
IVAN NAVI
VAN NAV
AN NA
N N
N N
AN NA
VAN NAV
IVAN NAVI
LI VAN NAVIL
LLIVAN NAVILL
ULLIVAN NAVILLU
SULLIVANNAVILLUS

or

ENTER YOUR NAME: APPLE II

APPLE III! ELPPA
PPLE II II ELPP
PLE II II ELP
LE II II EL
E II II E
II II

II II
I I
I I
II II
II II

E II II E
LE II II EL
PLE II II ELP
PPLE II II ELPP
APPLE !III ELPPA

SPECIAL EFFECTS -------------------- 81

CONTROL J USES

The following ideas show you how to print a message on the diagonal and how to
add spaces to a REM statement.

EXPLANATION _

CONTROL J is a line feed command with no carriage return. It is represented by the
ASCII code 10. If you define a string or number and enter CONTROL J after each charaaer,
the result will be a word or number on the diagonal.

CONTROL J can be used in the assignment statement. DAT A statements, or REM
statements.

Enter the first character and press CONTROL J to move down a I ine without adding the
carriage return (crJ. Continue entering each character desired followed by CONTROL J
until the message is complete.

Some commonly used characters are given in Table 4-l.

.
To check on the CHRS of any number from O to 255, use the following command.
General: PRINT CHR$ (ASCII code)
Specific ex.: PRINT CHR$ (91)

see Appendix A for the ASCII code chart.

COMMONLY USED ASCII CODES

ASCII CODE APPLICATIONS

h character on the keyb�ard, �long �ith the CONTROL commands,. has a unique
Eac ber associated with 1t This code ,s called the ASCII code (American Standard code num ·

Code for Information Interchange).
rrese codes enable you to access such keys as ESC, space bar, RETURN, left, right up,

and down arrows, a.nd the D�LETE and TAB keys on the Apple lie. The codes are useful
for accessing the pnnter or disk from a BASIC program.

You can access the ASCII code of the character or keypress with the ASC (str_ing vari�bl�)
command. conversely, each ASCII code from O to 255 has a character associated wrth n,
Yi can access the character with the CHRS(ASCII code) command.
0�e INPUT command will not access all the keys, so use the GET command with ASCII

or (HRS commands. .
To check on the ASCII code of any inputted character, use the following command.

General: PRINT ASC (string variable)
Specific ex: PRINT ASC ("Z")

PRINT ASC (A$)

K, DRIVE

Y"

10 A$= "F
L

0
p

p

100 DATA D
I

s
100 REM

Assignment statement

DATA statement:

REM statement:

SORTING
Space listing: 100 : TABLE 4-1. COMMONLY USED

ASCII CODES

(20 CONTROL J's)

110 next program line

ASCII Code
7
8
9*

10*
11 *

13
21
27
32
34
91
93
95

127*

Character
Bell
Left arrow
TAB key
Down arrow
Up arrow
RETURN key
Right arrow
ESC key
Space bar
Quote
Left bracket
Right bracket
Underline
DELETE key

._ Available on Apple lie/lie only.

82 --------- APPLESOFT BASIC SUBROUTINES & SECRETS SPECIAL EFFECTS-------------------- 83

The next two statements will let you print quotes to the screen.

OUOTES IN OUIPUT

BACKING Up AND ERASING A CHARAC I ER

LEN (M$) -

CHECK FOR CARRIAGE RETURN --
CHR$ (13) THEN 150
CHECK FOR BACKSPACE ---
> CHR$ (8) THEN 110
(36) = H THEN GOTO 50
BACKSPACE ---

(32) CHR$ (8);: IF

STROBING THE KEYBOARD

The INPUT and GET commands stop the program while waiting for the respons:.
Sometimes you want a routine to continue while waiting for the user �o press _a k�y. This
can be accomplished by strobing the keyboard for a keypress while contmumq the
program. The strobe, like the GET command, only accepts one character and does not
display that character on the screen. You can determine which key was pressed and act
accordingly. .

The keyboard strobe loads a character from the keyboard into memory locat10�
-16384 (or its equivalent 49152}. That character stays there �nt(I the keyboard strobe is
reset. You can tellwhetherornota key has been pressed byprmtinq PEEK (-16384). lfthe
value of that location is greater than 127, then a key was pressed. If you subtract l 28 from
the value found, you will get the ASCII code for the key pressed.

The address -16384 or49l52 always contains the ASCII code of the last key p�es�ed
plus l 28 unless the keyboard strobe is cleared. Clear the keyboard strobe at the beg1nn1ng
of the p�ogram. After a key has been pressed. clear the keyboard strobe again so it will be
ready for the next strobing.

There are two ways to clear the keyboard strobe. You can either poke a O into the strobe
address such as POKE -16384,0 or its equivalent, POKE 49152,0. Or you can poke another
address, which' has the net result of clearing address -16384 by issuing the command
POKE -16368,0 or its equivalent, POKE 49168,0.

The strobe command does not show a blinking cursor while waiting for the response
as does GET AS. Once a key has been pressed, you can use _GET AS to capture the keypress
and check the value of the string variable. Another method 1s to use K=PEEK(-16384) and
then check the value of K - 128 for the ASCII value of the key pressed. _Use the'(AL and
STRS commands if needed to convert a string to a numeric or a numeric to a string. Any
valid string or numeric variable name could be used in place of AS or K.

cept the next character. Line 90 checks for an empty entry and sends the rne so to ac
�omputer to line 50.

S REM === ERASE CHARACTER===
10 HOME M$ ="":REM NULL STRING ;� PRINT "ENTER YOUR MESSAGE";
40 H = PEEK (36)
50 GET A$
55 REM ---
60 IF A$ =
65 REM ---
70 IF A$ <
80 IF PEEK
85 REM --- 90 PRINT CHR$ (8) CHR$
l THEN M$ ="":GOTO 50
100 M$ = LEFT$ (M$, LEN (M$) - 1): GOTO 50
110 M$ = M$ + A$
120 PRINT A$;
130 GOTO 50
140 PRINT 150 PRINT: PRINT "YOUR WORD IS ";M$
199 END

•

-- APPLE][

This statement allows you to display APPLE][on any Apple computer.

EXPLANATION---------------------

The �haracters associated with ASCII codes 93 and 91 are the right and left brackets.
respectively. These characters can be concatenated to the string APPLE to print APPLE][wherever you desire.

10 A$= "APPLE"+ CHR$(93) + CHR$(91)
20 PRINT A$

10 Q$ = CHR$(34)
20 PRINT "HE SAID "; Q$; "NO COMMENT"; Q$;" WHEN QUESTIONED."
RUN
HE SAID "NO COMMENT" WHEN QUESTIONED.

EXPLANATION----------------------

Normally, you cannot use quotes within quotes to print a quoted message. However,
you can use the CHRS command to insert the quotes where needed. You can either use
CHRS(34J or you can assign a string such as OS to be equal to CHRS(34J and use OS
whenever needed.

MOOIFICATION---------------------

You can call a subroutine in machine code to print the APPLE][message centered on
the top of the screen by using CAl..l -1184 or CALL 64352.

This program erases the characters when the user backs up while making an entry.

EXPLANATION----------------------

This program uses the CONTROL H with an ASCII code of 8 to allow the user to
backspace while maki�g an entry ��d have the computer erase as it backs up. PEEK(36J
returns the current honzontal posmon of the cursor in the range 0-39. Since the GET
�ommand needs no carriage return, you remain on the same line, unless you are at the
nght edg� of the screen. The carriage return is detected on line 60 as a signal that the
message rs complete and sends the computer to line 150.

Line 70 �hecks for the left arrow keypress. If the left arrow has not been pressed, the
co�puter (I me 11 OJ concatenates the new character to MS, which represents the message
being entered, and prints the character entered. If the left arrow has been pressed, the
computer backs up one space, erases the most recent character of MS, and is then sent to

84 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

CHR$ (32): 8$ +
=== DICE ROLLER===

6: REM NUMBER OF SIDES OF DIE
- 1 TO LEN { STR$ {N)):S$ =

5 REM
10 N =
20 FOR X
NEXT X 30 POKE - 16368,0: REM CLEAR STROBE
40 HOME SOX= INT (RND {1) * N) + 1
60 FORD= 1 TO 5: NEXT D
70 VTAB 12: HTAB 19
80 PRINT X
85 REM --- STROBE KEYBOARD ---
90 IF PEEK (49152) > 127 THEN 120
100 VTAB 12: HTAB 19: PRINTS$
110 GOTO 50
120 GET A$
130 VTAB 20: PRINT "YOU HAVE ROLLED A ";X
199 END

EXPLANATION-----------------------

Line 10 clears the keyboard strobe. The routine at lines 30-70 prints PAGE Pon the
screen, where P ranges from 1 to 5. The subroutine at lines J 00-140 uses a delay loop that
also strobes the keyboard for a keypress. If no key is pressed, it continues the timing loop
from 1 to 500 and checks 500 times for a keypress. This is the reason that a timing loop of
500 takes so long. If a key is pressed, then line 110 recognizes the presence of the keypress
and sets the ending value for the timing loop, so the subroutine will terminate and return
to the main program at line 60.

This program demonstrates how strobing the keyboard works. It prints PAGE Jon the
screen and waits either for a keypress (any keypress) or for the completion of a timing loop
of 500 before it continues with printing PAGE 2 on the screen. It continues this for five
pages.

5 REM === STROBE DEMO===
10 POKE - 16368,0: REM CLEAR STROBE
20 HOME
30 FOR P - 1 TO 5
40 PRINT "PAGE "P
50 GOSUB lOO"DELAY LOOP WITH STROBE"
60 HOME
70 NEXT P
99 END
100 FORT= 1 TO 500
105 REM --- STROBE KEYBOARD ---
110 IF PEEK (- 16384) > 127 THEN T = 500
120 NEXT T
130 POKE - 16368,0
140 RETURN

DICE ROLLER

This program simulates an automatic dice roller. It prints numbers J-6 on the screen in
random order and stops rolling the dice when any key is pressed.

EXPLANATION-----------------------

This program selects a random number from 1 to N and prints the number on the
screen in line 80. In this program. N equals 6, but the dice do not have to be limited to a
six-sided die. You can select other values for N. The program selects and prints random
numbers at column 19, row 12. until the user presses any key, and then it displays the last •
number selected.

If no key is pressed, the computer blanks out the random number printed by printing SS
at row 19, column J 2. SS holds X blank spaces, where Xis the number of digits in N. SS is
necessary when the value of N is greater than 9. Change the value of N to a number
greater than 9 and omit line J 00 to see why it is needed.

RANDOMIZED RANDOM NUMBERS

This routine starts the series of random numbers at a quasi-random starting position.
This is useful when you are dealing cards in a card game or generating the numbers for a
math or logic game and want a different set of numbers each time you initially run the
program or play the game.

EXPLANATION _

When your computer generates a series of random numbers, the set of numbers is not
truly random. You will get different numbers for each run of the program but the same
sequence of numbers initially when you tum on the computer and run the program.

To randomize your number sequence, have the computer generate a series of
numbers that will be discarded. This subroutine uses a strobe to continually generate
random numbers, until you press a key to begin the program.

Try running the program without the subroutine. Run the program, record the
numbers, tum off the computer. and run the program again. When you compare the series
of numbers, they should be the same. Add the subroutine and it is very unlikely that you
will obtain the same sequence of numbers twice in a row.

5 REM === RANDOMIZED RANDOM NUMBERS===
10 POKE - 16368,0
20 N = 13: REM HIGHEST RANDOM NUMBER
30 GOSUB lOOO"RANDOMIZE NUMBERS"
40 HOME: PRINT "RANDOM NUMBERS": PRINT
50 FOR X = 1 TO 10
60 R = INT (RND (1) * N) + 1
70 PRINT R
80 NEXT X
899 END
995 REM --- RANDOMIZER ---
1000 HOME
1010 PRINT "PRESS ANY KEY TO BEGIN";
1020 IF PEEK (- 16384) < 128 THEN R - INT (RND (1)
* N) + 1: GOTO 1020
1030 GET K$: RETURN

86 --------- APPLESOFT BASIC SUBROUTINES & SECRETS SPECIAL EFFECTS --------------------- 87

PRESS ANY KEY nME LIMIT

To impress on the user that any key can be pressed, you could put the word !WY in
INVERSE or FLASH mode. There is another alternative. This program prints the word ANY
and then blacks it out and continues this process until the user presses any key.

This program allows t�e user a ce�ain amount of .tin:e to a�swer a question. The
elapsed nrne is displayed ,n the upp�r nght comer. The nrrunq device stops when any key
is pressed. This can be used for quizzes or adventure games.

=== STROBE TIME LIMIT===
- 16368,0: REM CLEAR STROBE

EXPLANATION _

Lines 60, 70. and 80 are used to calibrate the count down to clock seconds. If you want
30 seconds. change line 60 to:

60 T = 30

If you add more statements within the timing loop ?0-170. then you will have to adjust
the calibration in lines 70 and 80 and change 40 to a different number. Use a stopwatch or
a watch with a second hand to make the proper adjustment.

A$: GOTO 200
A$: GOTO 200

H + 1
PRINT
PRINT

5 REM
10 POKE
20 HOME
30 VTAB 10
40 PRINT "PLAY AGAIN {Y/N) ": ·so H = PEEK (36) :V = PEEK (37)
60 T = 10: REM NUMBER OF SECONDS
65 REM --- TIMING LOOP ---
70 FOR X = T * 40 TO 1 STEP - 1
75 REM --- CALIBRATE WITH SECONDS ---
80 IF X / 40 = INT (X / 40) THEN VTAB 1: HTAB 35: PRI
NT X / 40: CHR$ (32)
85 REM --- STROBE KEYBOARD ---
90 K = PEEK { - 16384)
100 IF K < 128 THEN 170
105 REM --- CAPTURE AND CHECK KEYPRESS ---
110 POKE - 16368,0
120 K = K - 128
130 A$= CHR$ (K)
140 VTAB V + 1: HTAB
150 IF A$= "Y" THEN
160 IF A$= "N" THEN
170 NEXT X
175 REM --- RESPONSE TOO SLOW ---
180 POKE - 16368,0
190 VTAB 23: HTAB 1: PRINT "TOO SLOW": GOTO 200
200 END

5 REM === PRESS ANY KEY===
10 T = 25
20 POKE - 16368,0
30 HOME
40 T = 25
50 VTAB 23: HTAB 8
60 PRINT "PRESS KEY TO CONTINUE"
65 REM --- STROBE KEYBOARD ---
70 FOR Z = 1 TO T:K = PEEK (- 16384): IF K < 128 THEN NEXT Z
80 IF K > 127 THEN 120
90 VTAB 23: HTAB 8
100 PRINT "PRESS ANY KEY TO CONTINUE"
105 REM --- STROBE KEYBOARD ---
110 FOR Z = 1 TO T:K - PEEK { - 16384): IF K < 128 THE N NEXT Z: GOTO 50
120 POKE - 16368,0
130 HOME
140 PRINT "NEXT PAGE"
199 END

EXPLANATION----------------------

Line 60 prints the message with a blank space where the word !WY should be. It
strobes the keyboard for a keypress. If a key has been pressed, it branches to line J 20. If no
keypress is made, it prints the message with the word ANY filled in and again waits for a
keypress. If a key is pressed, it executes line 120. If, however, no key is pressed, it loops back
to line 50 to start the process again.

MODIFICATION _

You can use a GET command to capture the keypress by deleting lines 11 O. 120, and I 30
and adding the following line 110.

110 GET A$

88 --------- APPLESOFT BASIC SUBROUTINES & SECRETS SPECIAL EFFECTS-------------------- 89

CALL-756

This program will continue with the space bar and end with the ESC key. Any other key
is ignored by the program.

EXPLANATION _

This program strobes the keyboard and uses the CALL-756 command to wait for the
keypress in line 70. CALL -756 can only be interrupted by the RESET key.

5 REM === CALL-756 FOR KEYPRESS ===
10 POKE - 16368,0
20 HOME
30 PRINT "PAGE l"
40 VTAB 22
50 PRINT "PRESS <SPACE BAR> TO CONTINUE"
60 PRINT "PRESS <ESC> TO END":
65 REM --- STROBE KEYBOARD ---
70 CALL - 756
80 IF PEEK (- 16384) = 27 THEN HOME: GOTO 199
90 IF PEEK (- 16384) < > 32 THEN 70
100 POKE - 16368,0
110 HOME: PRINT "PAGE 2"
199 END

WAIT COMMAND

This program waits for any key to continue but will end when the O key is pressed.

EXPLANATION _

It strobes the keyboard and uses the WAIT command to wait for a keypress in line 50.
The command WAIT checks memory location -J 6384 and continues when the eight bits
represent the decimal number 128. The WAIT command can only be interrupted by the
RESET key.

5 REM === WAIT FOR KEYPRESS ===
10 HOME
20 PRINT "PAGE l"
30 VTAB 22
40 PRINT: PRINT "HIT ANY KEY TO CONTINUE OR (Q) TO QUI
T"
45 REM --- STROBE KEYBOARD ---
50 WAIT - 16384,128
60 IF PEEK { - 16384) - 128 = 81 THEN POKE - 16368,0
: HOME: GOTO 99
70 POKE - 16368,0
80 HOME
90 PRINT "PAGE 2"
99 END

90 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

MOVING MESSAGE

This program moves a message across the screen in a bill boar? fashion .. The message is
printed on one line, s�r�lls to the left. and wraps around to be prrnted again. Any keypress
will terminate the prrnt1ng.

EXPLANATION _

AS holds the message to be scrolled. Line 40 prints the first39 characters of the message
at row 24. Line 50 shifts the contents of AS by putting the first character at the end of the
string and moving all the other characters up one position in the string.

Lines 60 and 70 strobe the keyboard. Line 70 checks the strobe memory location. If it
finds a value less than 128, then no key has been pressed and it continues with the
scrolling and strobing. If a key was pressed, the value of K will be> 128 and the scrolling
stops.

5 REM=== MOVING MESSAGE===
10 HOME
20 VTAB 24
30 A$= "THIS IS A MOVING MESSAGE FOR YOU TO READ AND DE
CIPHER ••• "
40 HTAB 1: PRINT LEFT$ (A$,39):
45 REM --- SHIFT CONTENTS OF A$ ---
50 A$= MID$ (A$,2) + LEFT$ (A$,l)
55 REM --- STROBE KEYBOARD ---
60 K = PEEK (- 16384)
70 IF K < 128 THEN FORK= 1 TO 150: NEXT K: GOTO 40
80 GET R$
90 PRINT
100 HOME
110 PRINT "PAGE 2"
199 END

SPECIAL EFFECTS -------------------- 91

MOVING MESSAGE WITH DUMMY CURSOR

This program prints a scrolling message while waiting for the user to enter a reply. It
can be used as an interesting way to present a menu and wait for the user's response.

EXPLANATION---------------------

The strobe feature does not produce a cursor, so a dummy cursor is printed on I ine 170.
Lines 200-210 store the scrolling message and pad it with spaces if necessary to obtain a
message AS with a length of 39 characters.

This program uses the strobe feature to wait for a keypress at lines 250-320 and scrolls a
message at lines 220-240 while waiting. Line 230 prints the left 39 characters of AS.

Line 260 checks the strobe memory location. When a key is pressed the value ofK will
be> l 28. Line 270 captures the keypress before printing it to the screen. It does this so it
can check that the keypress is a digit. Line 290 converts the string RS to a numeric variable
R. Lines 300-310 verify that R is within the range 1-5. Line 330 branches to desired
subroutine.

Insert your subroutines at lines 1000, 2000, 3000. 4000. and 5000.

O=QUIT

SELECT:

PRESS ANY NUMBER 1-5

<<< PJ�OCRAMS AVAILABLE >>>

1) HANGMAN
2) CONCENTRATION
3) NUMBER GUESS
4) SEVEN-ELEVEN
5) FLIP

250 K = PEEK (- 16384)
260 IF K < 128 THEN FOR Z = 1 TO 50: NEXT Z: GOTO 220
270 GET R$
275 REM --- CHECK FOR DIGIT ---
280 IF ASC (R$) < 48 OR ASC (RS) > 57 THEN 220
290 R = VAL (R$)
295 REM --- CHECK THAT R IS WITHIN RANGE 1-5 ---
300 IF R = 0 THEN 340
310 IF R > 5 THEN 220
320 VTAB 18: HTAB H: PRINT R$
330 ON R GOTO 1000,2000,3000,4000,5000
340 TEXT: HOME: VTAB 12: HTAB 17: PRINT "THE END"
399 END
995 REM --- SUBROUTitJES ---
1000 HOME: PRINT A$(1): END
2000 HOME: PRINT A$(2): END
3000 HOME : PRINT A$(3): END
4000 HOME: PRINT A$(4): END
5000 HOME: PRINT A$(5): END

SAMPLE OUTPUT---------------------

MODIFICATION---------------------

The program can be modified to run programs on your disk. Omit lines 1000-5000 and
change line 330 to the following statement.

330 PRINT:HOME:VTAB 12:HTAB 10:PRINT"LOADING "A$(R):
PRINT CHR$(4)"RUN "A$(R)

Be sure to add the names of your programs in the DATA statement on line 30.
--- 23

--- PRINT SCROLLING MESSAGE
1: PRINT LEFT$ (A$,39):
--- SHIFT CONTENTS OF A$ --
MID$ (A$,2) + LEFT$ (A$,l)
--- STROBE KEYBOARD ---

VTAB
REM
HTAB
REM

A$=
REM

5 REM === MOVING MESSAGE DUMMY CURSOR===
10 N = 5: DIM A$(N)
15 REM --- READ DATA INTO ARRAY ---
20 FOR X = 1 TON: READ A$(X): NEXT X
30 DATA HANGMAN, CONCENTRATION, NUMBER GUESS, SEVEN-EL
EVEN, FLIP
35 REM --- DISPLAY SCREEN ---
40 H = 10
50 HOME
60 VTAB 2
70 INVERSE
80 HTAB 5: PRINT"<<< PROGRAMS AVAILABLE>>>"
90 NORMAL
100 PRINT
110 VTAB 6
120 FOR X = 1 TON
130 HTAB H
14 0 PRINT X: ") ": A$ (X) : PRINT
150 NEXT X
160 HTAB H - 7: PRINT "SELECT:":
165 REM --- DUMMY CURSOR ---
170 FLASH: PRINT CHR$ (32):
180 NORMAL
190 VTAB 24
195 REM --- SCROLLING MESSAGE ---
200 A$= "PRESS ANY NUMBER 1-5 O=QUIT"
205 REM --- PAD SCROLLING MESSAGE ---
210 IF LEN (A$) < 39 THEN A$= A$+ CHR$ (32): GOTO 2
10
220
225
230
235
240
245

92 ---------APPLESOFT BASIC SUBROUTINES & SECRETS SPECIAL EFFECTS --------------------93

TWIRLING CURSOR

The next two programs twirl the cursor until a key is pressed.

FOR APPLE 11/11 PLUS

This program will simulate a twirling cursor. The twirling will stop when any key is
pressed. This is useful for a different cursor when waiting for a user reply. This program
works on any Apple computer but was specially written for the Apple II and II Plus.

EXPLANATION---------------------

The forward slash is not available on the Apple II Plus keyboard. so you need to use the
character string to print special characters that are not available on the keyboard.

Lines 30 and 40 form a string variable CS that contains four different positions of the
cursor. Rapidly displaying these four characters in order simulates a twirling cursor. The
variable C holds the position of the character of CS that will be printed next.

Lines 80-90 check for a keypress. If a key was pressed, it continues with line 100. lfthere
is no keypress. then it determines which character of the string CS should be printed next.

5 REM === TWIRLING CURSOR II+===
10 POKE - 16368,0
20 TEXT: HOME
30 B$ = CHR$ (92}: REM REVERSE OF BACKSLASH
35 REM --- CHARACTERS OF CURSOR ---
40 C$ = "!/-" + B$
50 C = l:L - LEN (C$}
60 HOME: VTAB 12: PRINT TAB(8)"PRESS ANY KEY TO CONT
INUE."
65 REM --- PRINT CHARACTER ---
70 VTAB 12: PRINT TAB(5} MID$ (C$,C,l)
75 REM --- STROBE KEYBOARD ---
80 KEY= PEEK (- 16384)
90 IF KEY< 128 THEN C = C + 1 - L * (C =
100 GET A$
110 VTAB 23
120 HOME
130 PRINT "LET'S CONTINUE"
199 END

94 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

•

FOR APPLE lie/lie

This program twirls the cursor until a key is pressed and works only on the Apple lie
or lie.

EXPLANATION _

The Apple lie has more keyboard characters available than the Apple II Plus and they
can be accessed directly in line 40.

see the explanation in the previous section for the Apple II Plus.

5 REM === TWIRLING CURSOR IIE/C ===
10 POKE - 16368,0
20 TEXT: HOME
35 REM --- CHARACTERS OF CURSOR ---
40 C$ = "!/-\"
50 C = l:L = LEN (C$)
60 HOME: VTAB 12: PRINT TAB(8}"PRESS ANY KEY TO CONT
INUE."
65 REM --- PRINT CHARACTER ---
70 VTAB 12: PRINT TAB(5) MID$ (C$,C,l)
75 REM --- STROBE KEYBOARD ---
80 KEY= PEEK (- 16384)
90 IF KEY< 128 THEN C = C + 1 - L * (C = L): GOTO 70
100 GET A$
110 VTAB 23
120 HOME
130 PRINT "LET'S CONTINUE"
199 END

MODIFICATION _

Experiment with different combinations of characters for the cursor. Other possibilities
for CS (without concatenating BS) are:

SPECIAL EFFECTS-------------------- 95

L} : GOTO 70 C$ "*<>*,, -
C$ - "ZNZN"
C$ - "X+X+"
C$ - "HIHI"

SAMPLE OUTPUT==========-------------

PRESENTING

1 TO X

SET VARIABLES FIRST MESSAGE ---

TAB(Y) MID$ (N$,L,l)
FOR Y =
\'TAB V
PRIN'l'
NEXT Y

L = L - 1
NEXT X
RETURN

5 REM === SLIDE 2 WORDS BY CHARACTER=== 10 HOME
20 INPUT "ENTER FIRST WORD ";N1$
30 Ll = LEN (N1$)
40 IF Ll > 20 THEN 20
50 INPUT "ENTER SECOND WORD ";N2$
60 L2 = LEN (N2$)
70 IF L2 > 20 THEN 50
80 HOME
85 REM ---
90 L = Ll
100 LL= Ll
110 N$ = Nl$
120 V = 7
130 GOSUB 1000
135 REM --- SET VARIABLES SECOND MESSAGE ---
140 L = L2
150 LL= L2
160 N$ = N2$
170 V = 9
180 GOSUB 1000
189 END
195 REM --- PRINT CH,ARACTER BY CHARACTER ---
1000 FOR X = (20 +LL/ 2) - 1 TO (20 - LL/ 2) STEP

1
1010
1020
1030
1040
1050
1060
1070

SUDING/CENTERING Tvvo-WORD MESSAGE
BY CHARAC I ER

This program slides a two-word message from the left edge of the screen to the center
of the screen one character at a time.

EXPLANATION----------------------

The first and second messages are entered and checked for a maximum of 20
characters. Lines 90-120 set the variables for the first message. Lines 140-170 set the
second message variables. The subroutine at lines l 000-1070 prints the message one
character at a time. The message is reprinted to the right of the original message, giving
the effect of a sliding message. The previous message is erased. Line I 000 determines the
starting and ending tab positions for each message so the message will start at the left
edge and end when it is centered on the screen.

L and LL hold the length of the message for subroutine l 000-l 070. L decreases by l in
line 1050 while LL remains stable. NS represents the string to be printed, and V stands for
the vertical printing position. The value of V can be changed to print the messages at
different rows.

SPECIAL EFFECTS-------------------- 97

•

1

- -
-

PRESENT I - -

" REM --- PRINT MOVING MESSAGE
FOR X = 1 TO LEN (M$)
VTAB 10: HTAB 15
PRINT MID$ (M$,X,8)
FOR Z = 1 TO 150: NEXT Z
NEXT X
END

5 REM ===PRESENTING-->===
10 HOME
15 REM --- DRAW BOX ---

8 B lo PRINT n ------------": REM 20 VTAB : HTA : ------
8 DASHES
30 FOR X = 8 TO 12
40 VTAB X: HTAB 10: PRINT"-";: HTAB 28: PRINT"-"
50 NEXT X n. REM 60 VTAB 12: HTAB 10: PRINT"------------------ •
18 DASHES

70 FOR Z = 1 TO 500: NEXT Z 80 M$ =" PRESENTING THE GREATEST PROGRAM ON EARTH
YET
85
90
100
110
120
130
199

96 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

MODIFICATIONS======---------------

!. The characters that form the text box can be cha�ged to other symbols such as asterisks
{*). equal signs {=), or the u�derline (_). The sides of the box can also be changed to
exclamation marks {I) or vertical bars (I).

2. The vertical position can be changed on lines 20 and 100, and the length of the box can
also be modified in routine 20-60.

3. You may wish to print more or J�ss_than 8 characters at a time. The size of the box should
be changed along with the 8 rn lrne 110.

EXPLANATION============---------

Lines 20-60 print the box for the message. The string variable MS hold� the message to
be printed. The routine at 90-130 prints 8 characters of the message at a �,m�.h�h��eb�;:
spaces at the beginning and end of MS are necessary to start and en wr rn ·

This program prints a message in a small box in the center of the screen. On'y 8
characters are present at any one time. The message is presented one character at a time
moving from right to left.

SLIDING CHARACTERS ACROSS THE SCREEN

SLIDING/CENTERING 1\No MESSAGES FROM
OPPOSITE DIREC I IONS

This program slides a word or message from the left edge of the screen to the center of
the screen and then slides a word or message from the right edge of the screen and
centers that message.

EXPLANATION----------------------

5$ represents the space character and is used to erase the used portion of the message.
M stands for the starting tab position to center the word AS. Lines 70-l 20 slide the
message from left to right whereas lines 140-190 slide the message from right to left.

5 REM === SLIDE TO CENTER FROM EDGES===
10 HOME
20 INPUT "ENTER FIRST WORD ";A$ -
30 INPUT "ENTER SECOND WORD ";Z$
40 HOME
50 S$ = CHR$ (32): REM SPACE
55 REM --- DETERMINE TAB TO CENTER MESSAGE ---
60 M = 20 - LEN (A$) / 2
65 REM --- SLIDE RIGHT-> LEFT ---
70 FOR X = 41 - LEN (A$) TOM STEP - 1
80 VTAB 10
90 HTAB X
100 PRINT A$;S$
110 FOR Z = 1 TO 100: NEXT Z
120 NEXT X
125 REM --- DETERMINE TAB TO CENTER MESSAGE ---
130 M = INT (20 - LEN (Z$) / 2)
135 REM --- SLIDE LEFT-> RIGHT ---
140 FOR X = 1 TOM - 1
150 VTAB 14
160 HTAB X
170 PRINT S$;Z$
180 FOR Z = 1 TO 100: NEXT Z
190 NEXT X
199 END

5
10
20
30
35
40
50
60
70
80
90
100
105
110
120
130
140
150
155
160
170
180
190
200
210
220
999

REM === MESSAGE LR AND RL ===
HOME

A$= "THIS IS THE FIRST MESSAGE"
B$ = "THIS IS THE LAST MESSAGE"
REM --- PRINT FIRST MESSAGE L->R -- VTAB 1
FOR X = 1 TO LEN (A$)
SPEED= 150
PRINT MID$ (A$,X,l);
NEXT X
PRINT
FOR Z = 1 TO 200: NEXT z
REM --- ERASE FIRST MESSAGE L->R --
VTAB 1
FOR X = 1 TO LEN (A$)
SPEED= 150
PRINT SPC(l);
NEXT X
REM --- PRINT SECOND MESSAGE R-L -- VTAB 23

H = 39
FOR X = LEN (B$) TO 1 STEP - 1
HTAB B: PRINT MID$ (B$,X,l);

H = H - 1
NEXT X
SPEED= 255
END

LEFT IO RIGHT AND RIGHT IO LEFT

. This prog_ram prints a message from left to right at the top of the screen and then erases
,t. It then pnnts a message at the bottom of the screen from right to left but leaves that
message on the screen.

EXPLANATION======----------------

Lines 50�80 print the fir.st message AS from left to right. Lines 120-150 erase the first
message. Lrnes 180-210 pnnt the second message ZS from right to left.

You can omit line 160 for the second message to be printed immediately below the first
message.

98 --------- APPLESOFT BASIC SUBROUTINES & SECRETS SPECIAL EFFECTS-------------------- 99

... _

MOVING CHARAC I ER

This program prints a message to the screen and a random character bounces through
the word until a key is pressed.

EXPLANATION _

S represents the number of screen spaces to the left of the first character of the
message. AS holds the message to be printed. H ranges from I to the length of the
message AS and represents the horizontal tab position. Line 80 adds S to the value of H so
the HTAB position starts at the leftmost character of AS. Line 90 selects a random number
from 26 to 90, and line 100 prints the character that corresponds to the ASCII code. (See
Appendix A for the ASCII code chart.)

The strobe is used on lines 140-150 to check for a keypress. If no key was pressed, the
computer continues printing the message with a random letter bouncing throughout the
message AS. If. however, a key is pressed, then the computer goes to line 160 and prints
the original message again. If the keypress was the ESC key, the program ends. If any
other key was pressed, the program continues with line 190.

5 REM === MOVING CHARACTER===
10 A$= 8PRESS ANY KEY TO CONTINUE" 20 H = l:S = 6:L = LEN (A$)
30 POKE - 16368,0
40 HOME
50 VTAB 23: HTAB S + 1
60 PRINT A$
65 REM --- DETERMINE WHERE TO PRINT BOUNCING CHARACTER ---
70 H = R + 1 - L * (H = L)
80 VTAB 23: HTAB H + S
90 R = INT (RND (1) * 26) + 65: REM RANDOM LETTER A-Z
95 REM --- PRINT BOUNCING LETTER ---
100 PRINT CHR$ (R)7
110 HTAB H + S
115 REM --- REPLACE CHARACTER OF STRING A$ ---
120 FOR Z = 1 TO 10: NEXT Z
130 PRINT MID$ (A$,R,1)
135 REM --- STROBE KEYBOARD ---
140 K = PEEK (- 16384)
150 IF K < 128 THEN 70
160 VTAB 23: HTAB 5: PRINT A$
170 POKE - 16368,0
180 IF K - 128 = 27 THEN END
190 HOME: PRINT "PAGE 2"
199 END

MODIFICATION _

You can select a particular character to be bounced through the word. Omit line 90 and
change line I 00 to the following line if you want an asterisk to do the bouncing:

100 PRINT"*";

1 00 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

CHAPTER !!i SOR I IN_G_,_S_F A_R_C_H_I_N_G_ ,___ -
AND SCRAMBLING

The "Information Age" made possible by the computer has produced volumes
?f facts, names, and numbers. However, information is meaningful only when it
rs categorized or sorted.

Sorting means pla�ing a set of data elements in order. There are various
methods of sorting data. The method you use depends on the arrangement of
your data and the number of data items to be sorted. Most of the time you will

_start with a list that is partially in order.
. The sort routines presented provide an alphabetical sort of words, names, or
items. In �e following sort explanations, the phrase "largest value" refers to the
alphabetical value. When comparing SMITHE and SMYTH, SMYTH has the
largest value because it is closer to the end of the list when arranged
alphabetically from A to Z.

___ 101 _

--

SORTING, SEARCHING. AND SCRAMBLING ---------- 1 03

5 REM === BUBBLE SORT===
10 READ N: REM NUMBER OF ITEMS
20 DIM A$ (N)
30 HOME
35 REM --- READ ITEMS INTO ARRAY AND PRINT TO SCREEN -

BACDEF
�BC DEF
ABCDEF

2nd outer loop:

3rd outer loop:

5th outer loop:

4th outer loop:

Sorted list

40 FOR X = 1 TON: READ A$(X): PRINT A$(X): NEXT X
50 GOSUB lOOO"SORT ROUTINE"
55 REM --- PRINT SORTED LIST ---
60 VTAB l
70 FOR X = l TON: HTAB 20: PRINT A$(X): NEXT X
99 END
995 REM --- SORT ROUTINE ---
1000 FOR Y = 1 TON - 1
1010 SW= 0: REM FLAG
1020 FOR X = 1 TON - Y
1025 REM --- COMPARE ---
1030 IF A$(X) < = A$(X + 1) THEN 1050
1035 REM --- SWITCH ---
1040 T$ = A$(X):A$(X) = A$(X + l):A$(X + 1) = T$:SW - l
1050 NEXT X
1060 IF SW= 0 THEN 1080
1070 NEXT Y
1080 RETURN
2000 DATA 20: REM NUMBER OF ITEMS
2010 DATA T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A
The following shows how the Bubble sort routine sorts six elements. Each inner loop

compares adjacent elements and switches if necessary to get the largest element to the
end of the set of items.

Original list F E D C B A
I st outer loop: F_,E D C B A

E F,_,.D C BA
EDFCBA
E D CF,_,.B A
EDCBFA
EDCBAF
EDCBAF
DECBAF
DCEBAF
D C s"-"E A F
D C B A__.E F

Q_,,C 8 A E F
C � A E F
CBDAEF
C 8 ATI E F

CBADEF
Ef""U DEF
BACDEF

This program presents a subroutine to perform an alphabetical sort for a list of names,
words. or items. ft can easily be modified to sort in decreasing order or to sort numbers
either in increasing or decreasing order.

1 02 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

BUBBLE SORT

BACKGROUND _

The Bubble sort is the easiest to understand but is inefficient for large lists and performs
noticeably slower as the list gets longer. ft is adequate for a list of up to 100 items.

There are several versions of the Bubble sort. You can use either one or two loops. On
an increasing sort, you can shift the largest value to the right with each pass or you can
shift the smallest value to the left. The net result is the same: a sorted list.

EXPLANATION _

The following Bubble sort uses two loops to sort a list of words in increasing order. It
scans the list and compares the items two at a time starting with the first word and
switches whenever the words are not in increasing or alphabetical order.

To sort a list of N elements, only N - 1 passes are needed on the outer loop at lines
1000-1070. On an increasing sort, the first pass places the largest item at the end of the list.
After the second pass, the second largest item is in place. This continues until all the items
are in place. The inner loop at lines 1020-1050 controls the interchange process between
pairs of words, ensuring that the largest value is to the right. The switching is performed at
line 1040.

The variable SW acts as a flag to signal that the list may be in order before the entire sort
has been completed. This increases the efficiency of the sort when the original list is
already partially in order.

SORTING

Each sort routine can easily be modified to sort numbers. The routines sort in
increasing order and can be modified to sort in decreasing order.

The Linear or Sequential search is a straightforward, but time-consuming
search. The Binary search is a more time-efficient method but requires that the list
be in order.

Since searching and sorting are among the most time-consuming operations
of any program, display a message so the user will be patient and stand by for the
result. A message such as PLEASE ST AND BY, ONE MOMENT PLEASE, SORTING,
or SEARCHING in the inverse or flashing mode can be printed when the program
search or sort is being performed.

Sometimes, however. you may want to shuffle the data items instead of sorting
them. This would be useful for a spelling test in which you want the data
presented in a different order each time the program is run. The sort and shuffle
routines can be modified to sort and scramble the letters of words. This can be
used in a word guessing game. This chapter will help you sort, search, shuffle,
and scramble your data.

You can use any inputting routine of your choice. The words �a� be inp�tted by the
user, read from DATA statements, or read in from Text files. The pnnt1ng routine can also
be modified according to your needs.

In a list of 20 items. the maximum number of passes of the outer loop is I 9120- I}, and
the maximum number of switches is 19 + 18 + 17 + 16 + 15 + ... + 1 = 190.

The following list of letters indicates the arrangement of the letters after e�ch pas� of
the outer loop. On each pass one more letter is shifted to its correct place 1n the list.

Original list T S R Q p O N M L K J I H G F E D C B A

Aft.er I st pass: S R O p O N M L K J I H G F E D C B A T
Aft.er 2nd pass: R O P O N M L K J I H G F E D C B A S T
After 3rd pass: 0 P O N M L K J I H G F E D C B A R S T
After 4th pass: P O N M L K J I H G F E D C B A O R S T
Aft.er 5th pass: 0 N M L K J I H G F E D C 8 A P O R S T
Aft.er 6th pass: N M L K J I H G F E D C B A O P O R S T
Aft.er 7th pass: M L K J I H G F E D C 8 A N O P O R S T
After 8th pass: L K J I H G F E D C 8 A M N O P O R S T
After 9th pass: K J I H G F E D C B A L M N O P O R S T
After 10th pass: J I H G F E D C 8 A K L M N O P O R S T
Aft.er 11th pass: I H G F E D C 8 A J K L M N O P O R S T
After I 2th pass: H G F E D C 8 A I J K L M N O P O R S T
After 13th pass: G F E D C 8 A H I J K L M N O P O R S T
After 14th pass: F E D C 8 A G H I J K L M N O P O R S T
After 15th pass: E D C 8 A F G H I J K L M N O P O R S T
Aft.er 16th pass: D C 8 A E F G H I J K L M N O P O R S T
After 17th pass: C 8 A D E F G H I J K L M N O P O R S T
After 18th pass: 8 A C D E F G H I J K L M N O P O R S T
Aft.er 19th pass: A 8 C D E F G H I J K L M N O P O R S T

Sorted list A 8 C D E F G H J K L M N O P O R S T

MODIFICATIONS _

1. To sort in descending or decreasing order, change the inequality sign on line 1030. Line
I 030 should then read:

1030 IF A$(X) > = A$(X+l) THEN 1050
2. To use the sort for numbers. simply change all the string array variables AS(J to numeric

variables A() . Try entering numbers (with different numbers of digits) in a string array sort
to see how the computer interprets them.

ANOTHER SORT (SHELL)

The Bubble sort is easy to understand but operates slowly on long lists that are out of
order, since many time-consuming switches must be performed. The Shell sort is an
alternate sort routine that minimizes the number of switches. although more comparisons
may be made. However, comparisons can be performed faster than switches.

LOGARITHMS

In order to understand the Shell sort. you must know how the built-in function LOG
works, since logarithms are used. A log of a number N base 10 is the power of 10 that
produces a number equal to N. For example, Log,o 1000 = 3, since 10 to the third power
equals 1000. In base 2, the 1092 32 = 5, since 2 to the fifth power is 32.

1 04 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

..

You may already be familiar with logs to the base 10 or base 2. These are called
common logs. However, the computer works with natural logarithms rather than logs to
base JO or 2. A natural log is a log to the base e, where e is Euler's number and is
approximately2.71828. ln mathematical notation. the natural log is represented by In N. In
BASIC, the natural log is written as LOGIN) and uses a base of e.

The following formula converts the natural log of N with base e to the common log of
N where:

B is the base desired
LOG(N) represents the natural log of N base e
LOG(B) represents the natural log of B base e
L represents the common log of N base B

L = LOGCN) / LOGCBl

SORTING, SEARCHING. ANO SCRAMBLING ---------- 1 05

FS R OPONMLKJIHGTEDC BA - - - FER OPONMLKJIHGTS DC BA - - - FEDOPONMLKJIHGTS RC BA - - -
FEDC PONMLKJIHGTS R OBA - - - FEDC BONMLKJIHGTSR OPA - - - FEDC BA NMLKJlHGTS R OPO - - - FEDC BAGMLKJIHNTSR OPO
FEDC BA GMLKJIHNTS R OPO

I I I

6
7

Group I: TM F
Group 2: .S L E
Group 3: R K D
Group 4: 0 J C
Group 5: P I 8
Group 6: O HA
Group 7: N G
After I st pass:

5 REM === SHELL SORT===
10 HOME
20 READ N: DIM A$(N)
25 REM --- READ DATA INTO ARRAY ---
30 FOR X = 1 TON: READ A$(X): PRINT A$(X): NEXT X
40 GOSUB 995
45 REM ===PRINTOUT SORTED LIST===
50 VTAB 1
60 FOR X = 1 TON: HTAB 20: PRINT A$(X): NEXT X
99 END
995 REM === SHELL SORT===
997 REM --- CALCULATE NUMBER OF GROUPS ---
1000 G = (2 A INT (LOG (N) / LOG (2))) - 1
1010 G = INT (G / 2)
1020 IF G < 1 THEN 45
1025 REM --- STEP THROUGH GROUPS ---
1030 FOR J = 1 TOG
1040 FORK= J + G TON STEP G
1050 M = K:T$ = A$(M)
1055 REM --- COMPARE ELEMENTS ---
1060 IF A$(M - G) < = T$ THEN 1090
1070 A$(M) = A$(M - G) :M = M - G
1080 IF M > G THEN 1060
1085 REM --- SWITCH ELEMENTS ---
1090 A$ (M) = T$
1100 NEXT K,J
1110 GOTO 1010
1120 RETURN
2000 DATA 20: REM NUMBER OF ITEMS
2010 DATA T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A
The following list of items represents the arrangement after each completion of the

outer loop. The elements of each group are sorted. At line 1010, G = 15, where N = 20.
Original list T S R O P O N M L K J I H G F E D C B A

The first pass of the outer loop divides the list of 20 elements into seven groups and
sorts the elements in each group (G = 7).
Before 1st pass: T S R O P O N M L K J l H G F E D C B A

Group I
Group 2

Group 3
Group 4

Group 5
Group

Group
Elements to be sorted: List during I st pass of outer loop:

..

This subroutine demonstrates the Shell sort, which is faster than the Bubble sort when
the list is in general disorder. However, if the list is generally in order. this sort takes more
time than the Bubble sort.

SHELL SORT

EXPLANATION---------------------

There are several variations of the Shell sort. Each one essentially divides the list into a
large number of small partitions and sorts the words within each partition by switching
elements that are out of order.

The number of groups decreases while the number of items per group increases as the
sort progresses.

Lines I 000-1010 determines the number of elements in each group. Line I 000 can be
interpreted as:

1 000 G = 2INT (:� �)- 1
G = 21NTClog2Nl _ 1
G = 21NTClog220l - 1 where N = 20
G = 2tNTC4.32192B1 l _ 1
G = 24 -1
G=16-1
G=15

Line I 01 O then divides G by 2 and takes the integer portion.
1010 G = INTCG/2)

G = INTC15/2) where G = 15
G=7

The first time through this routine the number of elements per group is G. After these
groups are sorted, the computer computes a new value for G by again executing I ine l 01 O.
This is continued until G < 1. at which time the sort is complete. For a list of 20 elements
the values of G start at 7 and are then computed as 3 and I.

With a list oflOO elements. the value of G is evaluated at line 1000 to two to the sixth
power minus one, or 63. Line 1010 computes G to the following values: 31, 15, 7, 3. and 1,
successively. The 100 items would thus be divided into groups of 31 elements, then 15
elements per group, then 7, 3, and 1 elements per group.

SORTING, SEARCHING, AND SCRAMBLING ---------- 1 07

1 06 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
b

Group I: F C G K H S P
Group 2: E 8 M J N R O
Group 3: D A L I T O

1 08 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

5 REM === LINEAR/SEQUENTIAL SEARCH===
10 READ N: DIM A$(N)
15 REM --- READ ELEMENTS INTO ARRAY ---
20 FOR X = 1 TON: READ A$(X): NEXT X
30 HOME
40 PRINT TAB(8)"LINEAR/SEQUENTIAL SEARCH": PRINT
50 INPUT "ENTER ITEM FOR SEARCH ";S$
60 PRINT
65 REM --- PRINT ELEMENTS TO SCREEN ---
70 FOR X = 1 TON/ 2
80 PRINT TAB(S);X; SPC(l);A$(X); TAB(20);X + 13; SP
C(1) ;A$(X + 13)
90 NEXT X
100 GOSUB lOOO"SEARCH ROUTINE"
199 END
995 REM --- SEARCH ROUTINE ---
1000 FOR X = 1 TON
1010 VTAB 20: HTAB 1: PRINT "TESTING ENTRY t ";X
1020 IFS$= A$(X) THEN 1050
1030 NEXT X
1040 PRINT: PRINT "ITEM NOT FOUND": RETURN
1050 PRINT "ITEM FOUND AT ";X: RETURN
2000 DATA 26: REM NUMBER OF ITEMS
2010 DATA Q,W,E,R,T,Y,U,I,O,P,A,S,D,F,G,H,J,K,L,Z,X,C,
V,B,N,M

EXPLANATION _

The following subroutine presents a Linear or Sequential search for a particular item in
a set of elements.

SEARCHING

The Linear or Sequential search searches through a list of items one at a time until the
desired element is found or it reaches the end of the list. The items do not have to be in any
order.

The items being searched could be anywhere from the 1st to the Nth element in a list of
N elements. On the average, N/2 searches will be made to find the element.

The subroutine at lines 1000-1050 searches the items of the list one at a time. Line 1010 is
not necessary for the search. It is used to demonstrate how the computer searches
through the elements one at a time.

You can omit lines 65-90 and 1010 when you use the Linear search routine in your
programs. They are used here solely for demonstration purposes.

SORTING, SEARCHING, AND SCRAMBLING ---------- 1 09

..

ABCDEF GHIJ K LMNOPORST
ABCDEFGHIJ K LMNOPORST

CBAF EDGJ IHMLK NOPOTSR

List during 3rd pass of outer loop:
CBAFEDGJ IHMLK NOfO.I_iE. ---- ---- ----

I I I I I I I

Before 3rd pass:
Elements to be sorted:
Group I

(All the elements)
After 3rd pass:
Sorted list

1060 IF A$(M - G) > = T$ THEN 1090
2. To change the string sort to a numeric sort replace the string variables TS and array

elements AS(J with numeric variables T and numeric elements A().

MODIFICATIONS _

1. To sort in descending order. change the inequality sign in line 1060 so the statement reads:

CEDFBAGMLHJ I KNT PR o s o
CBDFEAGJ LHMI KNT POOSR
CBA FEOGJ I HKi1LKNOPOT SR - - -

After 2nd pass: C 8 A F E D G J I H M L K N O P O T S R

The third and final pass of the outer loop takes all the elements as one group and sorts
them (G = 1).

The second pass of the outer loop divides the partially sorted list into three groups and
sorts the elements of each group (G = 3).
Before 2nd pass: F E D C B A G M L K J I H N T S R O P O

Group 1
Group 2

Group 3
Elements to be sorted: List during 2nd pass of outer loop:

A,B,C,D,E,F,G,H, I,J,K,L,M
N,O,P,Q,R,S,T,U,V,W,X,Y,Z

SORTING, SEARCHING, AND SCRAMBLING ----------- 1 1 1

The formula INT(LOG(S)/LOG(2)} + I is useful in determining the maximum number of
guesses allowed in a number guessing game where the user is guessing a number that
the �omputer has randomly selected from I to S. Binary search should be used to
continually guess the middle number of the range until the number is guessed.

Max. No. of Comparisons
4
7

10
14

INT(LOG(SJ/LOG/2})+ 1

THEN L = M + 1: GOTO 1020
THEN H = M - 1: GOTO 1020
NUMBER OF ITEMS

List Size
10

100
1000

10000
s

BINARY SEARCH===
ENTER ELEMENTS INTO ARRAY
DIM A$ {t-l)
1 TON: READ A${X): NEXT X

> A$(M) < A$(M)
26: REM

5 REM ===
7 REM ---
10 READ N:
20 FOR X -
30 HOME
40 PRINT TAB(14)"BINARY SEARCH": PRINT: PRINT
50 INPUT "ENTER NAME YOU ARE SEARCHING: ";N$ 60 PRINT
65 REM --- PRINT OUT LIST ---
70 FOR X = 1 TON/ 2
80 PRINT TAB(5);X; SPC(l);A$(X); TAB(20);X + 13; SP C(1) ;A$(X + 13)
90 NEXT X
100 PRINT
110 GOSUB lOOO"SEARCH ROUTINE"
199 END
995 REM --- SEARCH ROUTINE ---
1000 L = 1: REM LOW
1010 H = N: REM HIGH
1020 IF H < L THEN PRINT N$;" NOT IN LISTING": RETURN
1030 M = INT ((L + H) / 2)
1040 IF N$ - A$(M) THEN PRINT N$;" FOUND AT POSITION" ;M: RETURN
1050 IF N$
1060 IF N$
2000 DATA
2010 DATA
2020 DATA

A Linear search will search each item sequentially until a match is made or the end of
t�e list is reached. On t�e average, it will find a target item in a fist after searching half the
lrst. Thus, a search requires a maximum of N searches and averages N/2 attempts, where
N is the number of items in the fist.

The Binary search looks at the midpoint of the list and reduces the numbers of items to
�heck by half on each such comparison. It thus requires only the number of attempts that
1t takes to reduce the number of items in the list to I by dividing it successively by 2.

Mathematically, the Binary search requires a maximum of INT(LOG(N}/LOG(2} l+ 1
searches, where LOG(NJ/LOG(2) returns the common log ofN base 2 and N represents
the number of items in the list. For large arrays. this is very efficient. The maximum number
of comparisons is represented by the power of 2 that results in a number equal to the
number of items in the list plus one.

,

0 0 0 0 0 0 0 0 0 1 1 1 1 1 I 1 1 l 1 2
I 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
A 8 c DE F G H I J KLMNOP ORST

1 M = 10 L M H

2M= 5 L M H

3M= 3 L M H

4M=2 L MH
�

5 M = 1 M

BINARY SEARCH

The following subroutine provides a Binary search for items in an ordered list.

The elements to be sorted are entered into an array at I ines 10-20. Line 50 requests the
name of the item you are searching for. Lines 70-90 print the list in two columns so you
can verify that the item is in the list and if so at which position. These lines are used soley
for verification and can be omitted from the program.

The routine at I 000-1060 performs the Binary search. L represents the position of the
lowest value of the list H represents the position of the highest value. and M indicates the
middle value in the range L-H. If the item exists in the list the value of M eventually equals
the position of the item being searched and that position is printed at line 1040. If the item
is not in the list the value of H will be less than the value of L, and line 1020 will report that
the item is not in the list.

1 1 O --------- APPLESOFT BASIC SUBROUTINES & SECRETS

EXPLANATION _

A Binary search is a method of searching for an entry in an ordered list by dividing the
list successively by half. Each pass of the outer loop eliminates half of the remaining list.

After 1st pass: 1/2 list eliminated and 1/2 list remains.
After 2nd pass: 3/4 list eliminated and 1/4 list remains.
After 3rd pass: 7 /8 list eliminated and 1/8 list remains.

The middle element of an array is looked at and determined if it is the desired element.
If not then a determination ·is made as to whether the element being searched is before or
after the middle one. Then the remaining half is searched by examining the middle
element of that half. This method eliminates half of the remaining records. This process is
continued until the item is found or you run out of elements.

H represents the high position. L represents the low position, and M the middle
position.

Each pass will eliminate half of the remaining list. You will converge quickly to the
desired record.

This diagram illustrates how the computer searches the list of letters A-T to locate the
letter A.

BACKGROUNO---------------------

lf you have a short list then you can do a Linear or Sequential search and search
through the list one item ata time until the item is found. But if the list is lengthy or you will
do many searches, then sort the list first and do a Binary search to save time.

•

SHUFFLING AND SCRAMBLING
SHUFFLING ITEMS IN A LIST

This program provides a routine to shuffle the items of a list. It produces a different
arrangement of the list each time the program is run. In a game or educational program,
you might want to scramble the items of a list so the words do not always appear in the
same order.

EXPLANATION _

Line 40 reads the items into the array. The routine at 1000-1050 does the shuffling and
forms a new array SS() of the scrambled list.

Line 1000 sets the elements of a flag array to zero. The flag array F() is used to indicate if
an item in the original list has been placed in the scrambled list. Then a loop of N
executions is performed to select a random number from 1 to N, where N is the number of
data items. If the flag array indicates a J in that position, the computer selects another
random number from I to N. If, however, the flag element is zero, then the Rth rtem of the
original list is selected to be the Xth element of the new shuffled list SS(J and the flag is
set to I.

5 REM === SHUFFLE LIST===
10 CLEAR: HOME
20 READ N: REM NUMBER OF ELEMENTS
30 DIM A$(N),F(N),S$(N)
40 FOR X = 1 TON: READ A$(X): PRINT A$(X): NEXT X
50 GOSUB lOlO"SHUFFLE"
60 VTAB 1
70 FOR X = 1 TON: RTAB 20: PRINT S$(X): NEXT X
199 END
995 REM --- SHUFFLE ROUTINE ---
997 REM --- SET FLAG TO ZERO ---
1000 FOR X = l TO N:F(X) = 0: NEXT X
1010 FOR X = 1 TON
1020 R = INT (RND (1) * N) + 1
1030 IF F(R) = 1 THEN 1020
1035 REM --- SELECT ITEM/ SET FLAG TO 1 ---
1040 S$(X) = A$(R):F(R) = 1
1050 NEXT X
1060 RETURN
2000 DATA 20: REM NUMBER OF ITEMS
2010 DATA A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T

1 1 2 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

..

MOOIFICATION---------------------

The Shuffle routine can be used to shuffle a deck of 52 cards and deal them out one at a
time without duplicates. One way to arrange such data would be the following set of
statements.

2000 DATA 52
2010 DATA AS,AD,AH,AC
2020 DATA 2S,2D,2H,2C
2030 DATA 3S,3D,3H,3C
2040 DATA 4S,4D,4H,4C
2050 DATA SS,SD,SH,SC
2060 DATA 6S,6D,6H,6C 2070 DATA 7S,7D,7H,7C
2080 DATA 8S,8D,8H,8C
2090 DATA 9S,9D,9H,9C
2100 DATA lOS,lOD,lOH,lOC
2110 DATA JS,JD,JH,JC
2120 DATA QS,QD,QH,QC
2130 DATA KS,KD,KH,KC

SORTING, SEARCHING, AND SCRAMBLING ---------- 1 1 3

SCRAMBLING LE 11 ERS OF A WORD

The following program scrambles the letters of the word inputted by the user. It
produces L versions of the scrambled word, where L is the number of letters of the original
word. This can be used in a word guessing game. spelling test. or special effect.

EXPLANATION _

The scramble routine is similar to the shuffle routine in the previous program.
The scramble routine at lines t 000-l l 20 produces L arrangements of the letters of NS.

The arrangements are not unique and duplicates may appear. especially on shorter
words.

Line 1020 sets the flag array to zero. The flag array determines if the letter has been
selected. The inner loop from 1030-1070 selects random numbers from 1 to L. where L is
the number of letters in the word. It checks the flag array to see if the letter at the original
position of R has been selected yet. If the flag element is 1, then another random number
from 1 to N is generated. If the flag element is zero, however. the letter at that position in
the original word is chosen for the Xth letter of the scrambled word and the flag is set to 1.

5 REM === SCRAMBLE LETTERS===
10 DIM F(239),L$(239)
20 TEXT: HOME
30 PRINT TAB(15)"THE SCRAMBLER": PRINT: PRINT
40 PRINT "TO QUIT TYPE" CHR$ (34)"END" CHR$ (34): PRIN
T: PRINT
50 POKE 34,5: HOME
60 INPUT "ENTER A WORD ";N$
70 PRINT
80 IF N$ = "END" THEN TEXT: GOTO 199
90 GOSUB lOOO"SCRAMBLE ROUTINE"
100 PRINT: GOTO 60
199 END
995 REM --- SCRAMBLE LETTERS OF WORD ROUTINE ---
1000 L = LEN (N$)
1010 FORS= 1 TO L
1015 REM --- SET FLAG TO ZERO ---
1020 FOR X = 1 TO L:F(X) = 0: NEXT X
1030 FOR X = 1 TO L
1040 R = INT (RND (1) * L) + 1
1045 REM --- CHECK IF LETTER USED ---
1050 IF F(R) = 1 THEN 1040
1055 REM --- SELECT LETTER, SET FLAG TO 1 ---
1060 L$(X) = MID$ (N$,R,1):F(R) = 1
1070 NEXT X
1075 REM --- CONCATENATE LETTERS ---
1080 S$ ="":REM NULL STRING
1090 FOR X = 1 TO L:S$ = S$ + L$(X): NEXT X
1100 PRINTS". ";S$
1110 NEXT S
1120 RETURN

1 1 4 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

•

-

MODIFICATIONS---------------------

I. This program can be modified to produce only one scrambled word. If you run the routine
often with short words such as NO, YES. or OK, you might get the original word back. To
avoid this when outputting only one scrambled word, check the scrambled word so it
does not equal the original word.

Delete line 1010 so the scramble routine is performed only once. Change line 1110 to
read:

1110 PRINTS$
and change line 1100 to verify a truly scrambled word:

1100 IF S$ = N$ THEN 1000
2. The words can be read from DATA statements as well as be inputted by the user.

5 REM === SCRAMBLE LETTERS ONCE===
10 DIM F(239),L$(239)
20 TEXT: HOME
30 PRINT TAB(15)"THE SCRAMBLER": PRINT: PRINT
40 PRINT "TO QUIT TYPE" CHR$ (34)"END" CHR$ (34): PRIN
T: PRINT
50 POKE 34,5: HOME
60 INPUT "ENTER A WORD ";N$
70 PRINT
80 IF N$ = "END" THEN TEXT: GOTO 199
90 GOSUB lOOO"SCRAMBLE ROUTINE"
100 PRINT: GOTO 60
199 END
995 REM --- SCRAJ.1BLE LETTERS OF WORD ROUTINE ---
1000 L = LEN (N$)
1015 REM --- SET FLAG TO ZERO ---
1020 FOR X = 1 TO L:F(X) = 0: NEXT X
1030 FOR X = 1 TO L
1040 R = INT (RND (1) * L) + 1
1045 REM --- CHECK IF LETTER USED ---
1050 IF F(R) = 1 THEN 1040
1055 REM --- SELECT LETTER, SET FLAG TO 1 ---
1060 L$(X) = MID$ (N$,R,1):F(R} = l
1070 NEXT X
1075 REM --- CONCATENATE LETTERS ---
1080 S$ ="":REM NULL STRING
1090 FOR X = 1 TO L:S$ = S$ + L$(X): NEXT X
1100 IFS$= N$ THEN 1000
1110 PRINTS$
1120 RETURN

SORTING, SEARCHING, ANO SCRAMBLING ---------- 1 1 5

ALPHABE I IZING I E 11 ERS OF A WORD

This program alphabetizes the letters of a word entered into the computer. This often
makes it harder to guess a word in a spelling quiz or guessing game.

EXPLANATION _

The subroutine at lines 1000-1090 uses the Bubble sort routine to sort the letters. Lines
J 000-101 o take the letters of the word apart and store them as separate array elements in
LS(). The Bubble sort routine is at lines 1020-1090. Once the letters are alphabetized, the
computer concatenates the letter to form a new string AS that represents the alpha
betized word.

5 REM === ALPHABETIZE LETTERS OF WORD===
10 DIM L$(239)
20 HOME
30 PRINT TAB(8): PRINT "<THE GREAT LETTER SORTER>": P
RINT
40 PRINT "ENTER <DONE> TO QUIT"
50 PRINT : PRINT
60 POKE 34,4
70 HOME
80 INPUT "ENTER A WORD ";W$
90 IF W$ = "DONE" THEN 199
100 PRINT: PRIW.1'
110 GOSUB lOOO"BUBBLE SORT"
120 PRINT W$,A$
130 PRINT: PRINT
140 GOTO 80
199 END
995 REM --- SEPARATE WORD INTO LETTERS ---
1000 L = LEN (W$)
1010 FOR X = 1 TO L:L$(X) = MID$ (W$,X,1): NEXT X
1015 REM --- BUBBLE SORT ---
1020 FOR J = 1 TO L - 1
1030 SW= 0
1040 FORK= 1 TO L - J
1050 IF L$(K) < = L$(K + 1) THEN 1070
1060 T$ = L$(K):L$(K) = L$(K + 1):L$(K + 1) - T$:SW = 1
1070 NEXT K
1080 IF SW= 0 THEN 1100
1090 NEXT J
1095 REM --- CONCATENATE LETTERS ---
1100 A$="": REM NULL STRING
1110 FOR X = 1 TO L:A$ =A$+ L$(X): NEXT X
1120 RETURN

MODIFICATION _

The words can be read from DATA statements as well as be inputted by the user.

1 1 6 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

CHAPTER 6,--- LOW RE_S_O_L_�_ IO_N ----l

GRAPHICS

Low resolution graphics allows you to draw pictures and designs on a 40 X 40
grid. Full screen graphics can be used to obtain an additional eight rows in place
of the text window.

The standard method of getting a background is to execute a loop 40 times to
draw40 vertical and/or horizontal lines. This is effective but slow. A background
can be achieved more quickly by using a machine language routine to fill the
screen, since assembly language programs can be executed much faster than
programs in BASIC.

Interesting designs can be drawn with vertical and horizontal lines and
symmetric dots. Warps and spirals can add to the graphics effect. Mosaic designs
can be used to sparkle a program. ·

___ 117 _

The lo-res screen can be erased immediately with the GR command. However,
if you want to add variety to your programs, you can clear the screen with a
program that erases from a comer or center of the screen.

There will be pictures or designs that you will want to use in other programs.
You will be shown how to save and load graphics pictures so that they can be
used in slide shows and adventure games or quizzes.

Machine language routines will be given to switch the colors of a graphics
picture, flip a picture upside down or left to right and scroll a picture left, right, up,
or down.

The machine language routines in this book will be entered as numbers in
DAT A statements that get poked into unused memory locations. Save the
program and you are ready to either BLOAD or BRUN the routine and cal I it when
needed.

FULL SCREEN GRAPHICS

This program displays full screen graphics in the low resolution mode. The text
window will hold graphics dots instead of text.

EXPLANATION _

The screen grid is 40 X 40 with a four-line text window at the bottom. Full screen
graphics displays a grid 40 dots across by48 dots down and no text window. The screen is
numbered 0-39 across and 0-4 7 down.

The command POKE -16302,0 instructs the computer to use full screen graphics. Line
30 fills in the top 40 rows with the desired color. Line 40 fills in the bottom 8 lines with the
same color.

Some problems may occur, since the Applesoft text screen and the lo-res graphics
screen use the same memory block. As soon as you enter some text, the bottom of the
screen represents the text in graphics dots and ruins the effect of the picture. You will have
no problem with full screen lo-res graphics provided you avoid using text at the same
time.

The strobe command is used to avoid the presence of the cursor on the screen. After
the keyboard strobe is cleared on line 60. line 70 strobes the keyboard. The computer
waits for a keypress before continuing with the program. The variable AS on line 80 holds
the key pressed.

5 REM === FULL SCREEN GRAPHICS===
10 GR: HOME
20 COLOR= 6
30 FOR X - 0 TO 39! HLIN 0,39 AT X: VLIN 0,39 AT X: NEX
T X
40 POKE - 16302,0
50 FOR Y = 40 TO 47: HLIN 0,39 AT Y: NEXT Y •
60 POKE - 16368,0
70 IF PEEK (- 16384) < 128 THEN 70
80 GET A$
90 TEXT: HOME: PRINT "NEXT PAGE"
99 END

1 1 B -------- APPLESOFT BASIC SUBROUTINES & SECRETS

FILLING IN BACKGROUND
FOR ••• NEXT LoOP FILL

You have probably been using a program similar to the following program to fill the
screen with a solid color. It fills the screen with 40 horizontal and vertical lines.

5 REM ===BACKGROUND===
10 GR: HOME
20 COLOR= 6
30 FOR X = 0 TO 39: HLIN 0,39 AT X: VLIN 0,39 AT X: NEX
T X
99 END
There is a faster way to fill the screen using a machine language program.

LOW RESOLUTION GRAPHICS --------------- 1 1 9

This routine will fill the full screen background quickly with your selected color.

EXPLANATION=---------------------

The following program uses a subroutine to load a machine language program =
memory locations 768-812. The values in the DATA statements are codes for machrne
language instructions and must be copied exactly for this routine to work correctly. Once
the machine code is set up, the routine can be accessed with a CALL command.

Line lo executes the subroutine starting at line l 000. Line 20 sets the graphics mode and
clears the text window. The POKE command on line 30 sets full screen graphics. Line 40
calls the machine code subroutine starting at address 768 and fills the screen with color
number 12. Line 50 strobes the keyboard. This waits for a keypress and prevents the cursor
from appearing on the screen.

The routine starting at line 1000 enters the values from the DATA statements into
memory locations 768-812. Line 1010 contains values for machine instructions. Line 1020
returns to the main program. The machine language routine at 1000-1020 needs to.be
executed only once in the program to set up the machine program at memory location
768. Whenever you want a different color background, simply use CALL 768 followed by
a comma and the color number.

The value for the color on line 40 can be any integer from O to 255 or any numeric
variable or expression that represents a number from Oto 255.

5 REM === INSTANT BACKGROUND 1 ===
10 GOSUB 1000
20 GR: HOME
30 POKE - 16302,0
40 CALL 768,12
50 IF PEEK (- 16384) < 127 THEN 50
60 TEXT: HOME: PRINT "NEXT PAGE"
99 END
995 REM --- DATA FOR MACHINE LANGUAGE ROUTINE ---
1000 FOR X = 0 TO 36: READ V: POKE 768 + X,V: NEXT X
1010 DATA 32,76,231,138,41,15,133,254,10,10,10,10,5,
254,160,4,132,7,160,0,132,6,145,6,200,208,251,166,7,232,
134,7,224,8,144,242,96
1020 RETURN

1 20 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

INSTANT BACKGROUND 2

This subroutine fills the background quickly with the desired color and does not affect
the text window. You may want to include text at the bottom of the screen rather than
have full screen graphics or you may already have text in the text window and want the
text to remain when the background is changed.

EXPLANATION _

This program works in similar manner to Instant Background 1. (See the explanation for
that routine.} The subroutine starting at line 1000 writes a slightly different machine
language program so text can be included below the background.

The strobe is riot needed, since you can write directly to the text window. Use the VTAB
command to start the message at the top of the text window.

5 REM === INSTANT BACKGROUND 2 ===
10 GOSUB 1000
20 GR: HOME
30 CALL 768,12
50 VTAB 22: HTAB 13: PRINT "FAST BACKGROUND"
99 END
995 REM --- DATA FOR MACHINE LANGUAGE ROUTINE ---
1000 FOR X = 0 TO 63: READ V: POKE 768 + X,V: NEXT X
1010 DATA 165,38,141,63,3,165,39,141,64,3,32,76,231,13
8,41,15,133,254,10,10,10,10,5,254,l33,254,160,0,l52,170,
32,71
1020 DATA 248,165,254,145,38,200,192,40,144,249,160,0,
232,224,20,176,3,138,208,234,173,63,3,133,38,173,64,3,l3
3,39,96,234
1030 RETURN

AMPERSAND VARIATION OF INSTANT BACKGROUND

The following statement allows you to use the ampersand symbol (&J to call the
machine language subroutine.

EXPLANATION _

If you want to use the ampersand command instead of CALL 768, then add the
following three POKE commands at line 1015 for Instant Background I or line 1025 for
Instant Background 2.

Instant Background 1:

1015 POKE 1013,76: POKE 1014,0: POKE 1015,3

Instant Background 2:

1025 POKE 1013,76: POKE 1014,0: POKE 1015,3

Now you can enter &,C instead of CALL 768,C, where C is the value of the color.

LOW RESOLUTION GRAPHICS --------------- 1 21

SAVING AND LOADING INSTANT BACKGROUND ROUTINES

BSAVE
You probably do not want to include the subroutine in every program to obtain a

fast-fill background. The following two programs will save the Instant Background
routines as binary files.

EXPLANATION _

Instant Background I: This program enters the first machine language routine in
memory and saves it as a binary file called FULL BACKGROUND. Y?u can replace the
filename FULL BACKGROUND with any legal filename of your chorce.

1000 FOR X = 0 TO 36: READ V: POKE 768 + X,V: NEXT X
1010 DATA 32,76,231,138,41,15,133,254,10,10,l0,10,5,254,

160,4,132,7,160,0,132,6,l45,6,200,208,251,166,7,232,
134,7,224,8,144,242,96

1020 PRINT CHR$(4)"BSAVE FULL BACKGROUND,A768,L37"
Instant Background 2: This program enters the second machine language routine in

memory and saves it as a binary file called PARTIAL BACKGROUND. You can also change
this filename.

1000 FOR X = 0 TO 63: READ V: POKE 768 + X,V: NEXT X
1010 DATA 165,38,141,63,3,165,39,141,64,3,32,76,231, ·

138,41,15,133,254,10,10,10,l0,5,254,133,254,160,0,lS2,
170,32,71

1020 DATA 248,165,254,145,38,200,192,40,144,249,l60,0,
232,224,20,176,3,138,208,234,173,63,3,133,38,173,64,
3,133,39,96,234

1030 PRINT CHR$(4)"BSAVE PARTIAL BACKGROUND,A768,L64"

1 22 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

BLOAD

When you want to use one of the background routines in a program, BLOAD it into
memory and issue a CALL 768,C, where C is the value of the color desired. As long as the
routine is in memory, you do not have to BLOAD it every time you use it.

Do not BRUN the routine, since the results can be disastrous and you may have to
reboot the disk.

RELOCATABIUTY OF INSTANT BACKGROUND

These two fast-fill background subroutines are relocatable. That is, they can be put at
other memory locations and still run the same. This is not always true of machine
language programs.

EXPLANATION-----------------------

lfyou need to use the memory space at 768 for music or a shape table, then relocate the
routine by BLOADing it to a different memory address. For example, you can use 24576 as
the starting address of the routine as one option. Then lines I 020 and I 030 in the previous
programs would read as follows:

1020 PRINT CHR$(4) "BLOAD FULL BACKGROUND,A24576,L37"

or

1030 PRINT CHR$ (4) "BLOAD PARTIAL BACKGROUND, A24576, L63"

Remember to use CALL n (n is the address where you loaded it} or unpredictable things
can occur. Check the memory map in Appendix B for available space.

LOW RESOLUTION GRAPHICS --------------- 1 23

WARP IN/OUT
The next two programs produce a three-color warp that moves inward and outward.

EXPLANATION _

These programs draw two vertical and two horizontal lines moving in and out from the
center to create a warp effect similar to opening and closing a shutter. The effect is not a
perfect square, since each dot is wider than it is high.

Boolean logic is used to alternate the color value between a color I through I 5 and
black, which is the color 0. It does this by alternating the value of A between O and I. When
A= O. then the random color at line 40 is O or black; and when A= I, then the color is a
random number that ranges from I to 15.

Line 20 sets the variables: N stands for 20 executions of the loop, S indicates a step size
of 1, and A = O initializes variable A to have a starting value of 0.

Line 50 uses a value of A to determine the starting, ending, and step size of the
FOR ... NEXT loop. If A = O, then (A=l} is evaluated as 0, which is false, and the
expression (A=O) is evaluated as 1, which is equivalent to true. The converse holds for
A= 1.

The horizontal and vertical lines are drawn at lines 70 and 80. The value of A is switched
from 1 to O or from Oto 1 in line JOO. If A is O, then (A=O) is true and is evaluated as 1. Since
1 X I = I, the value of A has switched to I. The converse holds true for A= I initially. If A is I
at line 100, then (A=O} is false and is evaluated as 0. Since 1 XO= 0, then the value of A has
been switched from 1 to 0.

Line 85 provides a delay statement. Change the amount of delay to suit your needs.

WARP IN/OUT 1
The variable A on line 40 determines if the color will be a random number I to 15 or 0.

which is black. A loop is set up on lines 30-1 l Oto loop six times. The first time through the
loop a color is selected. while the next time through the loop the color is black to erase the
screen.

WARP IN/Our 2
This program lets you select your own three colors rather than letting the computer

randomly select the colors. It is a modification of Warp In/Out 1.
Lo�d Warp In/Ou� 1 and modify by adding line 25 and changing line 40 to use your

selection of colors. Line 25 selects red (I}, white (I 5), and blue (6). On the even times
through the loop (30-1 JO}, black is used. On the odd times, your selected colors are used.

5 REM === WARP IN/OUT 2 ===
10 GR: HOME
20 N = 20:S = l:A = 0
25 C(l) = 1:C(3) = 15:C(S) - 6
30 FORT= 1 TO 6
40 COLOR= C(T) * (A= 0)
50 FOR X = N * (A - 1) TON* (A - 0) STEPS* (A - 0)
- S * (A = 1)
60 Y = 39 - X
70 HLIN Y,X AT Y: VLIN Y,X AT X
80 HLIN Y,X AT X: VLIN Y,X AT Y
85 FOR Z = 1 TO 50: NEXT Z
90 NEXT X
100 A= 1 * (A= 0)
110 NEXT T
199 END

5 REM === WARP IN/OUT 1 ===
10 GR: HOME
20 N = 20:S = l:A = 0
30 FORT= 1 TO 6
40 COLOR= (INT (RND (1) * 15) + 1) * (A= 0)
50 FOR X = N * (A= 1) TON* (A= 0) STEPS* (A= 0)
- S * (A= 1)
60 Y = 39 - X
70 HLIN Y,X AT Y: VLIN Y,X AT X
80 HLIN Y,X AT X: VLIN Y,X AT Y
85 FOR Z = 1 TO 50: NEXT Z
90 NEXT X
100 A= 1 * (A= 0)
110 NEXT T
199 END

•

MODIFICATION _

If you want only one color. then delete lines 30 and 110.

1 24 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

•

LOW RESOLUTION GRAPHICS --------------- 1 25

... ------�---

1 26 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

RECTANGUIAR SPIRAL IN/ OUT
SAMPLE OUTPUT=----------------------

MODIFICATION===--------------------

Vary the step size and the speed of the delay statement.

LOW RESOLUTION GRAPHICS --------------- 1 27

- 2:C(6) - 7:C(S)

=== REM === RECTANGULAR SPIRAL IN/OUT
GR: HOME

HC = 19:VC = 19:N = 18:S = 2
C(l) = 14:C(2) = 6:C(3) = ll:C(4) -

5
10
20
30

1
40 FORT= 1 TO 6
50 GOSUB 1000
60 FOR X = N * {A= 0) TON* (A - 1) STEPS* (A - 1)
- S * (A= 0)
70 Hl = BC - X:H2 = HC + X + 1
80 Vl = VC - X:V2 = VC + X + 1
90 HLIN Hl,H2 AT Vl: GOSUB 1000
100 VLIN Vl + 1,V2 AT H2: GOSUB 1000
110 HLIN H2 - l,Hl AT V2: GOSUB 1000
120 VLIN V2 - l,Vl + 1 AT Hl: GOSUB 1000
130 NEXT X
140 A= 1 * (A= 0)
150 NEXT T
299 END
995 REM --- SELECT COLOR & DELAY ---
1000 COLOR= C(T)
1010 FOR Z = 1 TO 10: NEXT Z
1020 RETURN

This program draws a set of concentric rectangles in six selected colors while creating
the illusion that it is drawing a spiral in and out.

EXPLANATION _

This program is a modification of the Warp In/Out programs. However, it draws the
vertical and horizontal lines in the form of a spiral rather than a rectangle. Line 20 initializes
the variables: HC represents horizontal center, VC stands for vertical center, N determines
the number of times through the FOR ... NEXT loop, and S indicates a step size of 2. since
you want every other line drawn to create a spiral effect.

Line 30 fills a five-dimensioned array C() to hold the five selected colors for the spiral.
The variable A determines if a color (2. 6. 7. 3, or 11) or black (OJ will be used.

The variables HJ. H2. VJ. and V2 determine the row or column of the horizontal and
vertical lines. respectively.

The subroutine at lines 1000-1020 selects the color and provides a delay loop. The color
used depends on the value of T.

1 28 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SPIRAL IN/COLOR OUT /BlACK

120 NEXT X

16 N = 5
18 FOR X - 1 TON

LOW RESOLUTION GRAPHICS --------------- 1 29

MOOIFICATION---------------------

For a continual spiral of varied colors. delete the reverse routine at lines 115-210 and
add an outer loop, where N equals the number of times that the spiral should be drawn.

SAMPLE OUTPUT---------------------

--- --- 5 REM === SPIRAL IN/COLOR OUT/BLACK
10 GR: HOME
15 REM --- SPIRAL IN/COLOR ---
20 COLOR= INT (RND (1) * 15) i l
30 FOR B = 0 TO 18 STEP 2
40 E = 39 - B
50 IF B > 0 THEN BB= B
60 IF B = 0 THEN BB= 1
70 HLIN BB - l,E AT B: GOSUB 1000
80 VLIN B,E ATE: GOSUB 1000
90 HLIN B,E ATE: GOSUB 1000
100 VLIN B + 2,E AT B: GOSUB 1000
110 NEXT B
115 REM --- SPIRAL OUT/BLACK ---
120 COLOR= 0
130 FOR B = 18 TOO STEP - 2
140 E = 39 - B
150 VLIN B + 2,E AT B: GOSUB 1000
160 HLIN B,E ATE: GOSUB 1000
170 VLIN B,E ATE: GOSUB 1000
180 IF B > 0 THEN BB= B
190 IF B = 0 THEN BB= 1
200 HLIN BB - l,E AT B: GOSUB 1000
210 NEXT B
299 END
1000 FOR Z = 1 TO 50: NEXT Z: RETURN

This program draws a colored spiral inward in a clockwise direction and then erases
the spiral in the reverse direction.

EXPLANATION _

The loop at lines 20-1 JO draws the spiral in a random color starting at the position 0.0.
The spiral is drawn in a clockwise direction ending in the center of the screen.

Lines I 20-21 O draw the spiral in reverse direction in black. giving the effect of erasing
the spiral. It starts at the center of the spiral and ends at position 0,0.

Lines 40-60 determine the beginning. ending. and row or column values of the vertical
and horizontal lines for the colored spiral. Lines 140 and 180-190 determine these same
values for the horizontal and vertical lines that erase the spiral.

The speed of the program can be adjusted by changing the constant 50 in the delay
loop subroutine at line 1000.

MOSAIC DIAMOND DESIGN

This program draws a mosaic design in a diamond shape. There are many
kaleidoscopic effects that you can get with low resolution graphics.

EXPLANATION _

C is initialized to 1 and cs holds the colors of the design expressed as two-digit
numbers. The outer loop is executed five times for a variety of colors. The inner loops J and
K determine the color and position of the dots to be drawn.

The subroutine at lines l 000-1050 selects a new color from CS. After a color number is
used, the contents of cs are shifted so the used value goes to the end of the list and the
next value in line is now in the beginning. The actual plotting is done within this routine.
The four plots are symmetric for a balanced effect.

The keyboard is strobed after each completion of the inner loop J. You can stop the
design whenever you like and save it as a binary file. See the next example.

5 REM === MOSAIC DIAMOND DESIGN===
10 C = 1
20 C$ = "020406081012141618202224262830"
30 POKE - 16368,0: REM SET STROBE TO ZERO
35 REM --- MAIN ROUTINE ---
40 GR: HOME
50 FORT= 1 TO 5
60 FOR J = 0 TO 19
70 IF J / 2 = INT (J / 2) THEN GOSUB 1000
80 COLOR= C
90 FORK= 0 TO J
100 X = K:Y = J - K: GOSUB 1000
110 X = 19 - K:Y = 19 - J + K: GOSUB 1000
120 NEXT K,J
130 IF PEEK (- 16384) > 127 THEN 199
140 NEXT T
199 END
995 REM --- COLOR SELECTION & PLOT DOTS ---
1000 C$ = MID$ (C$,3) + LEFT$ (C$,2)
1010 K$ = LEFT$ (C$,2)
1020 C = VAL (K$)
1030 PLOT X,Y: PLOT 38 - X,Y
1040 PLOT X,38 - Y: PLOT 38 - X,38 - Y
1050 RETURN

1 30 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

•

SAMPLE OUTPUT=-------------------------

MOOIFICATION======------------------

Change the co�tents of CS to color numbers of your choice. The first example runs
through all the available colors, while the second example uses only red, white, and blue.

C$ - "00010203040506070809101112131415"
or

C$ - "011506"

•

LOW RESOLUTION GRAPHICS --------------- 1 31 ... _

PADDLE ADJUSTMENTS

The following statements adjust the paddles from a range of O to 255 to any desired
range.

5 REM === PADDLE ADJUSTMENT A-N --- ---
10 HOME
20 N = 19:A = 13
30 PO= INT (POL (0) I 255 * (N - A)) + A
40 Pl= INT (POL (1) I 255 * (N - A)) + A
50 PRINT PO,Pl
60 GOTO 30

RANGE OTO N

The following two examples demonstrate another technique in general format to
easily obtain any range.

EXPLANATION----------------------

The standard range of the paddles is Oto 255. Often, you need a different range such as
1 to 100, 13 to 19. 0 to 39, 0 to 279. Oto 159, or Oto 191 for number games or etch-a-sketch
programs in low and high resolution graphics.

If you want to change the range of the paddle readout from Oto 255 to a new range O
to N, where N is the highest number in the new range, use the following technique.

Divide the highest number available on the paddle (255) by 255. This produces the
range O to l. Multiply this value by the highest number in your new range (N). This
produces a new range of Oto N.

This program demonstrates this technique. The integer of the paddle readout is
needed to return a whole number in the desired range.

5 REM === MOVE LORES DOT 1 --- ---
10 GR • HOME •
20 B = 0:E = 39:R = 10
30 FOR X = B TOE
40 COLOR= 1
50 PLOT X,R
60 FOR Z = 1 TO 50: NEXT Z
70 COLOR= 0
80 PLOT X,R
90 NEXT x
99 END

The following program moves a dot across the screen without leaving a trail.

MOVING A DOT ACROSS 'THE SCREEN

EXPLANATION---------------------

lfyou want to make a candle on a cake look as if its flame is flickering, you would draw
the dot orange, pause with a delay loop, draw the dot black. red, or yellow, and then
replot the original orange dot.

In order to move a dot on the screen, you would perform a similar set of commands.
Dr�w the dot at the desired location, execute a delay loop or ring a bell to stall for time,
qu,c�ly erase the dot by drawing it in the background color, and redraw it at the new
location.

I� this P:ogram, B represents the starting (beginning) horizontal position, E is the
ending honzontal position, and R is the row or vertical position .

ANIMATION

MODIFICATION---------------------

ln order to move the dot from right to left, change line 30 to read to the following,
where S has been defined in line 20 as the step value:

20 B = 30: E = 5: R = 10: S - -2
30 FOR X = B TOE STEPS

•

•

--- --- 5 REM === PADDLE ADJUSTMENT 0-N
10 HOME
20 N = 39
30 PO= INT (POL (0) / 255 * N)
40 Pl= INT (POL (1) / 255 * N)
50 PRINT PO,Pl
60 GOTO 30

RANGE ATON
.

If you want the new range to start at some number other than 0, use the following
technique to obtain a range of A to N, where A is the starting value and N is the highest
value in the new range.

Divide the paddle readout by 255 to produce a new range of O to 1. Multiply this
number by N-A, where N is the highest number in the new range and A is the starting
number. Add the starting value A to this number to produce the new range A to N.

The following program demonstrates this technique.

BACKGROUND---------------------

lf you want to use the paddles for a low resolution etch-a-sketch program, you have
probably used the following statements to obtain a range of Oto 39. The 6.5 was obtained
by dividing 255 by 39.

X = PDL(0)/6.5
Y = PDL(l)/6.5

1 32 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
LOW RESOLUTION GRAPHICS --------------- 133

MOVING A DOT UP AND DOWN THE SCREEN

This program moves a dot down the screen.

The following statements illustrate how to label the horizontal and vertical lines using
X and Y.

lil,IN x-1,x+1 AT Y
VLIN Y-1,Y+l AT X

EXPLANATION _

This program is a modification of the previous program. The dot can move down the
screen by switching the order of the X and Y coordinates on lines 50 and 80 and changing
the R to a C, where C represents the column or horizontal position.

5 REM === MOVE LORES DOT 2 ===
10 GR • HOME • 20 B = 5:E = 30:C - 20 -
30 FOR X = B TOE
40 COLOR= 1
50 PLOT C,X
60 FOR Z = 1 TO 50: NEXT z
70 COLOR= 0
80 PLOT c,x
90 NEXT x
99 END

MODIFICATION _

The dot can move up the screen by changing the values of B, E, and S in line 20.

20 B = 35: E = 5: C = 20: S = -2
30 FOR X = B TOE STEPS

MOVING AN OBJECT WITH FOR ••• NEXT LOOP

The following three programs demonstrate how to move an object on the screen
using either a FOR ... NEXT loop or the keyboard.

BACKGROUND _

The object for the following three programs is a simple plus sign, although you can
design any object of your choice. The larger the object, however, the slower it will move.

Draw the object to be moved. Select a central point and label itX,Y. Then identify the
end points of the dots, horizontal lines, and vertical lines with respect to X and Y. The
starting point of X and Y could also be located in a comer such as upper left.

X-1 X x-i

•
•

5 REM === MOVE LORES OBJECT/LOOP 1
10 GR: HOME
20 B = l:E = 38:Y = 5
30 FOR X = B TOE
40 COLOR= 1: GOSUB 1000
50 FOR Z = 1 TO 50: NEXT Z
60 COLOR= 0: GOSUB 1000
70 NEXT X
199 HOME: END
995 REM --- DRAW ---
1000 HLIN X - l,X + l AT Y
1010 VLIN Y - l,Y + 1 AT X
1020 RETURN

--- ---

ACROSS THE SCREEN

To move the object left and right, set the Y as a fixed value and change the value ofX.
Conversely, to move the object up and down, setX as a fixed value and change the value
of Y.

You mus.t c�eck for screen f?oundaries to avoid an illegal quantity error message. The
bou�dary l!mrts vary depending on your design and which point you identify as the
starting point X,Y.

This program moves a plus sign from left to right without leaving a trail.

EXPLANATION---------------------

The �ub:outin� 1000-1020 is used to plot the dots or lines. The advantage of the
s�broutine IS that 1t saves you from retyping the same PLOT, HUN, and VLIN commands.
Simply change the color and execute the subroutine for animation.

The program could easily be modified to move the dot from right to left. See Moving a
Dot Across the Screen for an example of switching the starting and ending points of the
FOR ... NEXT loop and adding a STEP command.

1 34 APPLESOFT BASIC SUBROUTINES & SECRETS LOW RESOLUTION GRAPHICS --------------- 135

UP AND DOWN THE SCREEN

This program is a variation of the previous program. It moves the plus sign up and
down the screen.

EXPLANATION _

The subroutine at lines 1000-1020 draws the horizontal and vertical lines. The program
could easily be changed to move the object from right to left.

5 REM === MOVE LORES OBJECT/LOOP 2 ===
10 GR: HOME
20 B = 10:E = 30:X = 20
30 FOR Y = B TOE
40 COLOR= 1: GOSUB 1000
50 FOR Z = 1 TO 50: NEXT Z
60 COLOR= 0: GOSUB 1000
70 NEXT Y
199 HOME : END
995 REM --- DRAW ---
1000 HLIN X - l,X + 1 AT Y
1010 VLIN Y - l,Y + 1 AT X
1020 RETURN

MOVING AN OBJECT WITH THE KEYBOARD

This program uses the keyboard to move the plus sign up, down, left. and right

EXPLANATION _

The keys A and Z move the plus sign up and down, respectively, while the arrow keys
move the object left and right. Line 60 checks illegal keypress.

If you have an Apple lie/lie, then you can use the up and down arrow keys in place of A
and Z. Change lines 60, 80, and 90.

60 IF A$ <> CHR$ (11) AND A$ <> CHR$ (10) AND A$ <> CHR$ (21)
AND A$<> CHR$(8) THEN 40

80 IF A$= CHR$(11) THEN Y = Y - 1
90 IF A$= CHR$(10) THEN Y = Y + 1
The subroutine at lines 1000-1060 checks the end points of the plus sign to av0id an

illegal quantity error. When the object reaches the edge of the screen it is drawn on the
other side creating a wraparound effect. The commands to draw the plus sign are at
1040-1050.

1 36 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

5 REM === MOVE LORES OBJECT/KEYBOARD===
10 GR: HOME
20 X = 20:Y = 20
30 COLOR= 1: GOSUB 1000
35 REM --- GET AND VERIFY KEYPRESS ---
40 VTAB 22: PRINT "ENTER COMMAND: ";: GET A$: PRINT
50 IF A$= CHR$ (27) THEN 199
60 IF A$< > CHR$ (65) AND A$< > CHR$ (90) AND A$
< > CHR$ (21) AND A$< > CHR$ (8) THEN 40
70 COLOR= 0: GOSUB 1000
80 IF A$= CHR$ (65) THEN Y = y - 1
90 IF A$= CHR$ (90) THEN Y = y + 1
100 IF A$= CHR$ (21) THEN X = X + 1
110 IF A$= CHR$ (8) THEN X = X - 1
120 GOTO 30
199 HOME: END
995 REM --- CHECK BOUNDARIES & DRAW ---
1000 IF X < 1 THEN X = 38
1010 IF X > 38 THEN X = 1
1020 IF Y < 1 THEN Y = 38
1030 IF Y > 38 THEN Y = 1
1040 HLIN X - l,X + 1 AT Y
1050 VLIN Y - l,Y + l AT X
1060 RETURN

POKING THE GRAPHICS COLOR

This program demonstrates how memory location 48 can be used to poke in color
values. (See Appendix C for color chart.}

EXPLANATION----------------------

The program pokes in values from Oto 255 into location 48. Different combinations of
colors appear as alternating horizontal lines. The standard low resolution colors are
represented as their value, which ranges from Oto 15 times l 7. Line 30 is used to print the
val�e of the number poked divided by 17. When the standard colors appear, the value is
an integer.

5 REM === POKE ALL GR COLORS --- --- 10 GR • HOME • 20 FOR C = 0 TO 255
30 VTAB 22: PRINT c,c / 17;" n

40 POKE 48,C
50 FOR X = 0 TO 39: HLIN O,X AT X: VLIN O,X AT X: NEXT x
60 VTAB 22: PRINT c,c / 17;" n

70 GET A$ • • 80 NEXT C
99 END

LOW RESOLUTION GRAPHICS --------------- 1 37

SCRN COMMAND
SCRN DEMONSTRATION

This program demonstrates the SCRN command.

EXPLANATION==---------------------

The SCRN(X,Y) command returns the color number of the dot plotted at coordinates
X,Y. The general form is the following statement where X and Y represent the X and _Y
coordinates of the point plotted. The variable C can be replaced by any legal numenc
variable name. C will return a number from O to 15.

C = SCRN(X,Y)
This command can be used to locate enemy ships, targets, stars, et cetera. If there are

several target objects, each of which is composed of various colors, you can test for the
background color instead of the target colors.

The color of the target should differ from the object doing the shooting or moving.
The program draws 40 horizontal tines of random colors at lines 20-50 and asks for a

row number at lines 60-80. It then uses the SCRN command to return the number of the
color of that row at lines 90-110.

The subroutine at lines 1000-1040 clears the indicated row to black and replots the row
one dot at a time while ringing a bell.

5 REM === SCRN DEMO===
10 GR: HOME
20 FOR Y = 0 TO 39
30 COLOR= INT (RND (1) * 16)
40 HLIN 0,39 AT Y
50 NEXT Y
55 REM --- DETERMINE COLOR ---
60 VTAB 23
70 INPUT "ENTER ROW (0-39) ";R
80 IF R > 39 THEN 199
90 C - SCRN(R,R)
100 VTAB 23: HTAB 22
110 PRINT "COLOR NUMBER IS ";C
120 GOSUB 1000
130 GOTO 70
199 HOME: END
995 REM --- PLOT DOTS ALONG ROW ---
1000 COLOR= 0: IF C = 0 THEN COLOR= 15
1010 FOR X = 0 TO 39: PLOT X,R: FOR Z = 1 TO 50: NEXT Z
: NEXT X
1020 COLOR= C
1030 FOR X = 0 TO 39: PLOT X,R: CALL - 198: NEXT X
1040 RETURN

1 38 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

..

TEST FOR COWSION

This program draws IO random dots along the right edge of the screen and you t,y to
hit the targets using the zero paddle.

EXPLANATION---------------------

As lines 50-110 loop from Oto 299, 10 dots are randomly drawn along the right edge of
the screen. The routine at 2000-2040 draws the JO targets and rings a bell.

Line I 00 checks if the button on paddle O is pressed. When the button is pressed, the
routine at 1000-1070 is executed. This routine checks if there is a dot lit at the end of the
laser and shoots the laser. lfthe dot is not lit then the loop continues at I 10. lfthe dot is lit
then a sound is made at routine 3000-3020.

The program ends when al I IO target dots are plotted and the loop at 50-11 O terminates.
The final score is printed.

5 REM === LASER SHOOT===
10 GR : HOME
20 NT= 0:H = 0:F = 0
30 PRINT TAB(16)"USE PADDLE O"
40 HOME
45 REM --- MAIN ROUTINE ---
50 FORT= 0 TO 299
60 IF T / 30 = INT (T / 30) THEN GOSUB 2000"DRAW TARG
ET"
70 X = 0: COLOR= 0: PLOT X,Y
80 Y = PDL (0) / 6.5
90 COLOR= 10: PLOT X,Y
100 IF PEEK (- 16287) > 127 THEN GOSUB lOOO"DRAW LAS
ER"
110 NEXT T
120 HOME: PRINT "YOU HIT "H" TARGETS OUT OF A POSSIBLE
"NT

199 END
995 REM --- CHECK SCREEN POSITION & SHOOT LASER ---
1000 IF SCRN(39,Y) = 6 THEN H = B + 1:F = 1
1010 FOR L = 1 TO 39: COLOR= 9: PLOT L,Y: NEXT L
1020 FOR L = 1 TO 39: COLOR= 0: PLOT L,Y: NEXT L
1050 IF F = 1 THEN GOSUB 3000
1070 RETURN
1995 REM --- DRAW TARGET ---
2000 TY= INT (RND (1) * 40)
2010 COLOR= 6: PLOT 39,TY
2020 NT= NT+ 1
2030 PRINT CBR$ {7)
2040 RETURN
2995 REM --- SOUND ---
3000 FOR B = 1 TO 10:S = PEEK { - 16336):SOUND = S + S
+ S + S: NEXT B

3010 F = 0
3020 RETURN

LOW RESOLUTION GRAPHICS --------------- 1 39

FROM LOWER RIGHT CORNER

FROM UPPER LEFT CORNER

ERASING THE GRAPHICS SCREEN

This program resembles the program of the same name in Chapter 3. Forty black
vertical and horizontal lines are drawn starting at the lower right comer.

- X AT 39 - X
- X AT 39 - X

(1) * 15) + 1
X: VLIN 0,39 AT X: NEX

(1) * 15) + 1
X: VLIN 0,39 AT X: NEX

HLIN 0,39 AT 39 - X
VLIN 0�39 AT 39 - X

ROUTINE ---

GET A$
GOSUB 1000
END
REM --- ERASE
COLOR= 0
FOR X = 0 TO 19
HLIN 0,39 AT X:
VLIN 0,39 AT X:
NEXT X
RETURN

GET A$
GOSUB 1000
END
REM --- ERASE ROUTINE --
COLOR= 0
FOR X = 19 TOO STEP - 1
HLIN X,39 - X AT X: HLIN X,39
VLIN X,39 - X AT X: VLIN X,39
NEXT X
RETURN

REM === ERASE GR WARP IN===
REM --- GRAPHIC PROGRAM --
GR: HOME : COLOR= INT (RND
FOR X = 0 TO 39: HLIN 0,39 AT

REM === ERASE GR WARP OUT===
REM --- GRAPHIC PROGRAM --
GR : HOME : COLOR= I?lT (RND
FOR X = 0 TO 39: HLIN 0,39 AT

•

5
7
10
20
T X
30
40
499
995
1000
1010
1020
1030
1040
1050

5
7
10
20
T X
30
40
499
995
1000
1010
1020
1030
1040
1050

WITH WARP IN

This routine is a modification of the program Warp Erase in Chapter 3. The subroutine
at 1000-1050 draws rectangles from the edges toward the center creating a warp effect.

WITH WARP OUT

This program is also a modification of Warp Erase in Chapter 3. The subroutine at lines
1000-1050 draws the warp starting in the center. extending it to the screen edges.

..

•

X: NEX

AT X

GET A$
GOSUB 1000
END
REM --- ERASE ROUTINE --
COLOR= 0
FOR X = 39 TOO STEP - 1
VLIN 0,39 AT X: HLIN 0,39
NEXT X
RETURN

GET A$
GOSUB 1000
END
REM --- ERASE ROUTINE --
COLOR= C
FOR X = 0 TO 39
VLIN 0,39 AT X: HLIN 0,39 AT X
NEXT X
RETURN

REM === ERASE GR UPPER LEFT CORNER===
REM --- GRAPHIC PROGRAM ---
GR: HOME: COLOR= INT (RND (1) * 15) + 1
FOR X = 0 TO 39: HLIN 0,39 AT X: VLIN 0,39 AT X: NEX

REM === ERASE GR LOWER RIGHT CORNER===
Rfil1 --- GRAPHIC PROGRAM ---
GR: HOME: COLOR= INT (RND (1) * 15) + 1
FOR X = 0 TO 39: HLIN 0,39 AT X: VLIN 0,39 AT

5
7
10
20
T X
30
40
499
995
1000
1010
1020
1030
1040

5
7
10
20
T X
30
40
499
995
1000
1010
1020
1030
1040

The next four subroutines demonstrate different methods of erasing the low resolution
graphics picture. These routines can be used at the end of a graphics picture that is to be
erased or they can be used as subroutines to be reused throughout the program. In each
program, the screen is filled with a solid color for demonstration purposes.

This program is similar to the program of the same �ame in Cha.pter3. T_he subro.utine
at 1000-1040 sets up a loop that will draw40 black vertical and honzontal lines starting at
the upper left corner.

1 40 -------- APPLESOFT BASIC SUBROUTINES & SECRETS
LOW RESOLUTION GRAPHICS --------------- 1 41

1 42 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SA YING A GRAPHICS PICTURE
IN THE PROGRAM MODE

Either of the two sets of the following statements can be used alone in the immediate
mode or added to the program as the last line. If you are saving the picture from within a
BASIC program, the BSAVE command must be preceded by a CONTROL D command,
which is represented by CHRS(4J.

The HOME command clears the screen so only the picture is saved and the text
window is blank. These pictures can then be used in an adventure game, where you will ..
add text to the picture after it is loaded.

890 HOME
900 PRINT CHR$(4) "BSAVE picturename,A$400,L$400"

890 HOME
900 PRINT CHR$(13)+CHR$(4)"BSAVE picturename,A$400,L$400"

WITH TITLE

890 HOME
900 PRINT CHR$(4) "BSAVE pioturename,Al024,Ll024"

AFTER GET WITH BLANK TEXT WINDOW

I� a GET command has been used before you BSAVE the picture, then concatenate a
carnage return before the CHRS(4} command, since all disk drive commands must be
preceded by a carriage return.

890 HOME
895 VTAB 22: HTAB 13: PRINT"THE BEST YET"
900 PRINT CHR$(4); ''BSAVE picturename,A$400,L$400"

or

If y�u. want a title or some writing at the bottom of the screen to identify the picture
'-"'.'hen 1t rs l?aded back: then place. the title or message on the screen before you save the
�,ctu�e. T�,s way the picture and title or message are saved together. This can be used to
1dent1fy pictures, scenes, or the person who drew the picture for a slide show.

. This c�n also be done in the immediate mode by using the following commands
without line numbers. Either the hexadecimal or decimal notation can be used.

LOW RESOLUTION GRAPHICS ---------------- 1 43

• WITH BLANK TEXT WINDOW

EXPLANATION _

Draw the picture on the screen. Type in one of the following statements, where
picturename is the name of your picture. Follow the same rules for selecting a name for
your binary file as you would when you save any other file or program.

If you try to BSAVE a picture in the immediate mode, the statement used to BSAVE the
picture will be saved along with the picture in the text window. Therefore, use a short
program to clear the text screen and save the file.

This shows you how to save a low resolution graphics picture to disk using the
command BSAVE. You may have a design or picture that you would like to keep and use
in other programs. Perhaps you only want the design and do not care to see the design
being created. You can save the picture as a binary file and load that picture whenever
needed.

This can be used in a quiz. adventure game. simulation. demonstration, slide show
presentation of your artwork, or as the first display when your disk is booted.

BACKGROUND _

Saving a binary picture involves saving that portion of memory that holds the picture.
The command BSAVE saves the binary image. You must specify the picture name,

starting address. and length. The lenQth specifies the number of b}'.tes in the i_mage. You
can express the address and length m either decimal or hexadecimal notation.

With low resolution graphics, the memory locations and addresses are always the
same. unless you have changed some memory locations at the start of the program or are
using page 2 of graphics. The standard starting address is 5400 in hexadecimal notation or
1024 in decimal notation. The length is 5400 in hexadecimal or 1024 in decimal. Hexa
decimal notation is base 16. and the dollar sign is the signal to the computer that the
number is a hexadecimal number.

The disk drive will save the picture as a 8 file. A binary file is not a program itself. It is the
binary image of the low resolution graphics screen. A binary file can be locked, unlocked,
renamed, and deleted just as an Applesoft. Integer. or Text file.

Binary files allow you to use graphics pictures without having to watch them being
drawn and they permit the same pictures to be easily used in different programs.

WITH VARIABLE NAME

You can write a program that lets the user draw interesting designs with an etch-a
sketch type of format. The user can use the keyboard, paddles, or a combination of
keyboard and paddles to draw the picture. You can use the CONTROLS command to
indicate that the user wants to save the picture. Ask the user for the name of the picture,
center the title, and save the picture. The player can continue drawing on the picture or
can erase the picture.

The following statements can be added to the program to indicate that the picture is to
be saved as a binary file. The line numbers may differ in your program.

Line 300 gets your command to move the dot or draw a line. If a CONTROLS, which is
equivalent to CHRS(19), is pressed, then branch to the subroutine at 1000. The subroutine
at 1000-1040 asks for the filename and verifies that a filename has been entered, saves the
program, and returns to the main program.

The quotes are used on line 1060 to enclose the command. The string variable FS
represents a string variable that holds the name of the picture and is not the name of the
picture itself. So FS must not be included in quotes or the computer will interpet it literally.

You can add a title to the picture or leave the text window blank. If a title is added, then
line I 050 centers the title automatically.

290 PRINT "ENTER COMMAND:";
300 GET A$
310 IF A$=CHR$(19) THEN GOSUB 1000
320 rest of program

•
•
•
• 995 REM=== SAVE BINARY FILE===

1000 HOME: VTAB 22: INPUT "ENTER FILENAME>>> ";F$
1010 IF A$="" THEN 1000
1020 INPUT "ENTER TITLE (RETURN IF NONE) ";T$
1030 HOME
1040 IF T$="'' THEN 1060
1050 VTAB 22: HTAB 20-LEN(T$)/2: PRINT T$
1060 PRINT CHR$(13)+CHR$(4);"BSAVE";F$;",Al024,Ll024"
1070 RETURN

1 44 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

...

MOOIFICATIONS===------------------

You might wan� to. add a check that the filename begins with a letter of the alphabet,
has �o c?mmas within the name, and has 30 characters or less. You can also check that
the title rs 39 characters or less.

1. Add this line to check the length of the filename.

1002 IF LEN(F$) > 30 THEN 1000

2. Add this statement to check that the first character is a letter of the alphabet

1004 IFASC{LEFT(F$,l,l) <640RASC{LEFT$(F$,l,l) >90
THEN 1000

3. The following loop will check for a colon or quote.

1005 FOR X = 1 to LEN{F$)
1006 M$ = MID${F$,X,l)
1007 IF M$ =":"or M$ = CHR$(34) THEN X = LEN(F$): GOTO 1000
1008 NEXT X

LOW RESOLUTION GRAPHICS --------------- 145

RE I RIEVING A GRAPHICS PlcnJRE

This demonstrates how to retrieve a saved graphics picture to be used in another
program such as an adventure game, a quiz, a slide show, or as the title page of a
program.

BACKGROUND _

To retrieve a picture that has been saved with a BSAVE command for use later. simply
load it back into memory with a BLOAD command. The computer will load it at the same
address that you originally saved it unless you specify a different location.

Unlike the LOAD command, the BLOAD command will not erase the program or data
values unless they reside in the same memory location where the image is stored. Only
the locations within the BLOAD range are changed. No other memory location is
affected.

Do not BRUN a binary graphics image or you will get unpredictable results.

EXPLANATION _

You can retrieve a binary file in the immediate or the program mode. Enter the
command GR to enter the graphics mode before loading the file. If you omit the GR
command, the binary file will load in as text rather than graphics. Picturename refers to the
name of the binary file that will store your picture. Substitute any legal filename for the
word picturename.

GR
BLOAD picturename

or

40 GR
50 PRINT CHR$(4)"BLOAD picturename"
When you BLOAD the picture. it will load it onto the screen exactly as it looked at the

time it was saved, including text in the text window.

•

SPECIAL EFFEC IS WITH MACHINE
LANGUAGE ROUTINES

Th� following routines provide special effects that can be executed fast enough only in
machine language. The same effects can be obtained with BASIC commands. but it
would take so long that the effect would be lost.

You do not have to know anything about machine language to enter or access these
routines. since the coding for the machine language routines has been entered into DATA
statements for your convenience. Copy the DATA statements exactly because each
number corresponds to a specific command.

Once all the data items have been poked into memory, you can access the special
effects routine with a CALL command, which directs the computer to the starting address
of the machine language routine.

The address locations have been selected so that all seven special effects routines can
be in memory at the same time. The routines load above one another. This enables you to
access multiple routines without having to BLOAD each one when needed.

You can use the keyboard or paddles/joystick to access more than one routine in your
BASIC program.

The five Applesoft programs poke the actual special effects routine into memory. Thus,
once the routine is poked in. it is ready for use.

All but the Switch Color routines leave the text window intact.
The routines remain in memory until you tum off the computer or load another routine

or program into their locations.
To view the full effect of the following special effects routines, BSAVE a low resolution

picture that uses all the lo-res colors. Use that picture in the programs or write a simple
etch-a-sketch program to draw a design.

In order to use the next five special effects routines, you must first follow certain steps.
Step A need only be followed the very first time. Thereafter, start with Step 1.

STEP A: ENTERING ROUTINES FOR THE FIRST TIME ONLY

Type in each of the following programs: LORES SCREEN EORA. GV SCREEN FLIP A.
GH SCREEN FLIP .A, LORES UPSCROLL.A, and LORES DOWNSCROLL.A. Save each
program to disk and run each to set up the machine language routine in memory. The
program will ask if you want to save the routine. If the routine has not already been saved.
then answer Y. The special effects routine is now ready for use. Type NEW after each
program has been run .

After you follow this step for all five Applesoft programs, you will have five binary files
that contain the machine language code for the special effects routines.

• ..

After you run and answer Y
to this Applesoft program:

LORES SCREEN EOR.A
GV SCREEN FLIP.A
GH SCREEN FLIP.A
LORES UPSCROLL.A
LORES DOWNSCROLL.A

You will obtain this
binary file:

LORES SCREEN EOR
GV SCREEN FLIP
GH SCREEN FLIP
LORES UPSCROLL
LORES DOWNSCROLL

1 46 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
LOW RESOLUTION GRAPHICS --------------- 1 47

STEP 1: BLOADING A SPECIAL EFFECTS ROUTINE

If you have followed the directions in Step A, then the routines are in memory and
ready to use. However, if the routines have previously been BSAVEd and the computer
has been turned off, or if a program has been loaded in its memory location, then a
routine must be loaded into memory for you to access it. There are two ways to do this.

The first method is to run the Applesoft program again and answer N. The second
technique is to BLOAD the routine with the following command, where filename is the
name of the binary file saved when the Applesoft program was run and you answered Y.

BLOAD filename
STEP 2: LOADING A LO-RES GRAPHICS PICTURE

Run a program to draw a low resolution graphics picture, or type GR and BLOAD a
picture to get the image on the screen.

STEP 3: CALLING A SPECIAL EFFECIS ROUTINE

You are now ready to call the specific machine language routine by issuing a CALL A
command, where A is the starting address of the special effects routine desired. The value
for A will be provided for each routine.

REVERSING COLORS OF ntE GRAPHICS SCREEN

This routine will change the colors of a graphics picture according to the number
entered.

EXPLANATION _

This program pokes the values contained in the DATA statements into memory starting
at address 768.

Load this routine in memory with the following command:

BLOAD LORES SCREEN EOR
After you get the graphics image on the screen, issue the command CALL 768,C

(where C is a number 1-15). C can be a constant or a numeric expression that evaluates to
a value of 1-15. For example, you could use CALL command

1 48 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

10 CALL 768,15
20 HOME

or

10 C = 5
20 CALL 768,C
30 HOME

or

10 X = 2
20 CALL 768, (X = 2) * 13
30 HOME

If you enter a number such that C < I or C > 15, then this routine will not function
properly.

T_o ge� the original colors back after calling this routine with a specific number. call it
again with the exact same number.

Si.nee this routine affects the text window, issue a HOME command after you call the
routine.

5 REM === LORES SCREEN EOR.A ===
10 HOME
20 FOR X = 0 TO 51: READ V: POKE 768 + X,V· NEXT
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: iF A$= "N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE LORES SCREEN EOR,A
$300,L$34"
99 END
100 DATA 32,76,231,189,36,3,141,35,3,169
110 DATA 0,133,6,168,169,4,133,7,170,177
120 DATA 6,77,35,3,145,6,200,208,246,230
130 DATA 7,202,208,241,96,0,0,17,34,Sl
140 DATA 68,85,102,119,136,153,170,187,204,221
150 DATA 238,255

LOW RESOLUTION GRAPHICS --------------- 1 49

FLIPPING THE SCREEN UPSIDE DOWN

This routine flips the screen upside down.

EXPLANATION _

Load this routine into memory with the command:

BLOAD GV SCREEN FLIP
This routine loads into memory starting at address 24576. After your graphics image is

on the screen, access this routine with a CALL 24576 command. To return the screen to its
original position. reissue the CALL command.

5 REM === GV SCREEN FLIP.A===
10 HOME 20 FOR X = 0 TO 79: READ V: POKE 24576 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: IF A$= "N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE GV SCREEN FLIP,A$6
OOO,L$50"
99 END 100 DATA 169,0,141,81,96,169,19,14],82,96
110 DATA 32,71,248,165,38,133,6,165,39,133
120 DATA 7,173,81,96,32,71,248,160,39,177
130 DATA 6,32,62,96,72,177,38,32,62,96
140 DATA 145,6,104,145,38,136,16,237,238,81
150 DATA 96,206,82,96,173,82,96,201,9,208
160 DATA 205,96,170,74,74,74,74,141,80,96
170 DATA 138,10,10,10,10,24,109,80,96,96

FLIPPING THE SCREEN LEFT TO RIGHT

This routine gives the mirror image of the original picture by flipping the screen (left
becomes right and right becomes left).

EXPLANATION _

Load this routine into memory with the following command:

BLOAD GH SCREEN FLIP
After you have your graphics picture on the screen. use the CALL 24659 to flip the

picture. This routine has been loaded in memory starting at address 24659. To return the
image to its starting position. issue the same CALL command.

1 50 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

5 REM === GH SCREEN FLIP.A===
10 HOME
20 FOR X = 0 TO 60: READ V: POKE 24659 + X,V: NEXT X
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: IF A$= "N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE GH SCREEN FLIP,A$6
053,L$3D"
99 END
100 DATA 169,0,141,144,96,141,145,96,l68,32
110 DATA 71,248,172,145,96,177,38,72,169,39
120 DATA 56,237,145,96,168,177,38,170,104,145
130 DATA 38,172,145,96,138,145,38,200,140,l45
140 DATA 96,192,20,208,226,160,0,140,145,96
150 DATA 238,144,96,173,144,96,201,20,208,205,96

SCROWNG THE SCREEN UP

This routine scrolls the graphics image up the screen.

EXPLANATION---------------------

Load this routine into memory with the following command:

BLOAD LORES UPSCROLL
This routine is loaded into memory at location 24 722. Each time the routine is called, it

scrolls the scree� up two horizontal lines. The top two horizontal lines reappear at the
bottom to provide a wraparound effect. To access this routine, use CALL 24722.

5 REM === LORES UPSCROLL.A ===
10 HOME
20 FOR X = 0 TO 136: READ V: POKE X + 24722,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: IF A$= "N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE LORES UPSCROLL,A$6
092,L$89"
99 END
100 DATA 160,0,185,0,4,141,255,63,185,128
110 DATA 4,153,0,4,185,0,5,153,128,4
120 DATA 1'85,128,5,153,0,5,185,0,6,153
130 DATA 128,5,185,128,6,153,0,6,185,0
140 DATA 7,153,128,6,185,128,7,153,0,7
150 DATA 185,40,4,153,128,7,185,168,4,153
160 DATA 40,4,185,40,5,153,168,4,185,168
170 DATA 5,153,40,S,185,40,6,153,168,5
180 DATA 185,168,6,153,40,6,185,40,7,153
190 DATA 168,6,185,168,7,153,40,7,l85,80
200 DATA 4,153,168,7,185,208,4,153,80,4
210 DATA 185,80,5,153,208,4,185,208,5,153
220 DATA 80,5,173,255,63,153,208,5,200,l92
230 DATA 40,240,3,76,148,96,96

LOW RESOLUTION GRAPHICS --------------- 1 51

SCROWNG THE SCREEN DOWN
SE I I ING UP AND ACCESSING LEFT AND

RIGHT SCROWNG ROUTINES
This routine scrolls the graphics image down the screen.

EXPLANATION _

Load this routine with the following command:

BLOAD LORES DOWNSCROLL
This routine is stored starting at memory location 24859. Each time this routine !s

accessed. it scrolls the screen down two horizontal lines. Use a CALL 24859 to use this
routine. This routine also wraps the picture around.

The following two special effects routines are entered in a manner different from the
previous five. As mentioned earlier, each program creates a machine language generator
routine that then creates the special effects routine.

This double creation method was designed with you in mind. It saves you from
entering 100 additional data items.

In order to use the next two special effects routines, you must first follow these steps.
Step A need only be followed the very first time. Thereafter. start with Step 1.

STEP A: ENTERING THE GENERATOR ROUTINES FOR
THE FIRST TIME ONLY

STEP 1: CREATING A SPECIAL EFFECfS ROUTINE

LORES LEFTSCROLL.A LORES LEFTSCROLL
LORES RIGHTSCROLL.A LORES RIGHTSCROLL

If you have followed the directions in Step A. then each generator routine has been
saved to disk. The special effects routine is not yet ready for use. You must issue a BRUN
filename command. where filename is either LORES LEITTCROLL or LORES
RIGHTSCROLL. depending on the routine you want loaded into memory. The BRUN
command instructs the computer to execute the generator routine that creates the actual
scrolling routine. The special effects routine is now ready for use.

Type in each of the following two programs: LORES LEffiCROLL.A and LORES
RIGHTSCROLL.A. Save each program to disk and run each to set up the machine language
generator routine in memory. The program will ask if you want to save the routine. If the
routine has not already been saved. then answer Y. Type NEW before typing in the next
program.

After you follow this step for both Applesoft programs. you will have two binary files
that contain the machine language code for the generator routines.

You will obtain this
binary file:

After you run and answer Y
to this Applesoft program:

5 REM === LORES DOWNSCROLL.A ===
10 HOME
20 FOR X = 0 TO 136: READ V: POKE 24859 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N}: ";: GET A$: IF A$= ''N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE LORES DOWNSCROLL,A
$611B,L$89"
99 END
100 DATA 160,0,185,208,5,141,255,63,185,80
110 DATA 5,153,208,5,185,208,4,153,80,5
120 DATA 185,80,4,153,208,4,185,168,7,1�3
130 DATA 80,4,185,40,7,153,168,7,185,168
140 DATA 6,153,40,7,185,40,6,153,168,6
150 DATA 185,168,5,153,40,6,185,40,5,153
160 DATA 168,5,185,168,4,153,40,5,185,40
170 DATA 4,153,168,4,185,128,7,153,40,4
180 DATA 185,0,7,153,128,7,185,128,6,153
190 DATA 0,7,185,0,6,153,l28,6,185,128
200 DATA 5,153,0,6,185,0,5,153,128,5
210 DATA 185,128,4,153,0,5,l85,0,4,153
220 DATA 128,4,173,255,63,153,0,4,200,192
230 DATA 40,240,3,76,29,97,96

STEP 2: LOADING A LO-RES GRAPHICS PICTURES

Run a program to draw a low resolution graphics picture. or type GR and BLOAD a
picture to get the image on the screen.

STEP 3: CAL.LING A SPECIAL EFFEC IS ROUTINE

After you have your graphics image on the screen. issue the command CALL A to
activate the desired routine, where A is the starting address of the special effects routine.
The value of A will be provided for each routine.

LOW RESOLUTION GRAPHICS --------------- 15:3
1 52 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SCROWNG THE SCREEN LEFT

This routine scrolls the graphics screen left one line at a time.

EXPLANATION======------------------

Load the routine into memory with the following command:

BRUN LORES LEFTSCROLL
The machine language routine starts at address 24996. The command CALL 24996

scrolls the screen one line to the left with a wraparound effect.

5 REM === LORES LEFTSCROLL.A ===
10 HOME 20 FOR X = 0 TO 230: READ V: POKE 28672 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: IF A$= "N" T
BEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ {4);"BSAVE LORES LEFTSCROLL,A
$7000,L$E7"
100 DATA 169,164,133,6,160,0,169,97,133,7
110 DATA 140,231,112,152,162,23,32,71,248,169
120 DATA 173,145,6,200,165,38,145,6,200,165
130 DATA 39,145,6,200,169,141,145,6,200,138
140 DATA 232,145,6,200,169,99,145,6,32,207
150 DATA 112,238,231,112,173,231,112,201,20,208
160 DATA 211,169,160,145,6,200,169,0,145,6
170 DATA 32,207,112,140,231,112,162,l,l42,232
180 DATA 112,169,185,32,181,112,206,232,ll2,l69
190 DATA 153,32,181,112,238,232,112,238,231,ll2
200 DATA 173,231,112,201,20,208,230,160,7,185
210 DATA 223,112,145,6,136,16,248,160,7,32
220 DATA 207,112,140,231,112,152,162,23,32,71
230 DATA 248,169,173,145,6,200,138,145,6,200
240 DATA 169,99,145,6,200,169,141,145,6,200
250 DATA 165,38,24,105,39,145,6,200,165,39
260 DATA 145,6,32,207,112,232,238,231,112,173
270 DATA 231,112,201,20,208,208,169,96,l45,6
280 DATA 96,72,173,231,112,32,71,248,160,0
290 DATA 104,145,6,200,165,38,24,l09,232,112
300 DATA 145,6,200,165,39,145,6,200,24,152
310 DATA 101,6,133,6,165,7,lOS,0,133,7
320 DATA 160,0,96,200,192,39,240,3,76,30
330 DATA 98

1 54 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SCROWNG THE SCREEN RIGHT

This routine scrolls the graphics screen to the right.

EXPLANATION----------------------

Load this routine into memory with this command:

BRUN LORES RIGHTSCROLL

This routine starts at location 25387 and scrolls the screen right one vertical line with a
wraparound effect each time it is called. To access this routine, use the command CALL
25387.

5 REM === LORES RIGHTSCROLL.A ===
10 HOl1E
20 FOR X = 0 TO 228: READ V: POKE 28672 + X,V: NEXT
30 PRINT "SAVE TO DISK {Y/N): ";: GET A$: IF A$= "N" T
BEN END
40 IF A$< > "Y'' THEN 30
50 PRINT CHR$ (13): CHR$ (4);"BSAVE LORES RIGHTSCROLL, A$7000,L$E5"
99 E!ID
100 DATA 169,43,133,6,160,0,169,99,133,7
110 DATA 140,229,112,152,162,156,32,71,248,l69
120 DATA 173,145,6,200,165,38,24,105,39,145
130 DATA 6,200,165,39,145,6,200,169,141,145
140 DATA 6,200,138,232,145,6,200,169,l00,145
150 DATA 6,32,207,112,238,229,112,173,229,112
160 DATA 201,20,208,208,169,160,145,6,200,169
170 DATA 38,145,6,32,207,112,140,229,112,162
180 DATA 0,142,230,112,169,185,32,181,112,238
190 DATA 230,112,169,153,32,181,112,206,230,112
200 DATA 238,229,112,173,229,112,201,20,208,230
210 DATA 160,S,185,223,112,145,6,l36,16,248
220 DATA 160,5,32,207,112,140,229,112,152,162
230 DATA 156,32,71,248,169,173,145,6,200,138
240 DATA 145,6,200,169,100,145,6,200,169,141
250 DATA 145,6,200,165,38,145,6,200,165,39
260 DATA 145,6,32,207,112,232,238,229,112,173
270 DATA 229,112,201,20,208,211,169,96,145,6
280 DATA 96,72,173,229,112,32,71,248,160,0
290 DATA 104,145,6,200,165,38,24,109,230,112
300 DATA 145,6,200,165,39,145,6,200,24,152
310 DATA 101,6,133,6,165,7,105,0,133,7
320 DATA 160,0,96,136,48,3,76,165,99

LOW RESOLUTION GRAPHICS --------------- 155

1 56 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

TABLE 6-1. ACCESSING SPECIAL EFFECTS
ROUTINES WITH PADDLE

The following program demonstrates the use of the special effects routines with
paddle control.

•

•

5 REM === LORES PADDLE DEMO===
10 D$ = CHR$ (13) + CHR$ {4)
15 REM --- DRAl-l LORES PICTURE ---
20 GR :C = 2: COLOR= C: HOME: VTAB 21: PRINT 11COLOR="C 30 X = PDL {0) * .153:Y = POL (1) * .153: PLOT X,Y: IF

PEEK { - 16286) > 127 THEN HOME : GOTO 80
40 IF PEEK (- 16287} < 128 THEN CH= 0: GOTO 30
50 IF CH THEN 30
60 CH= l:C = C + 1: IF C = 16 THEN C = 0
70 COLOR= C: VTAB 21: PRINT "COLOR="C" ": GO'l'O 30
75 REM --- BLOAD ROUTINES ---
80 FOR X = 1 TO 5: READ N$: PRINT D$"BLOAD"N$: NEXT X
90 PRINT D$"BRUN LORES LEFTSCROLL": PRINT D$"BRUN LORES
RIGHTSCROLL": POKE - 16368,0

95 REM --- EXECUTE ROUTINES ---
100 IF PEEK { - 16384) = 155 THEN 199
110 IF POL (0) > 167 THEN CALL 25387
120 IF POL (0) < 87 THEN CALL 24996
130 IF POL (1) > 167 THE?� CALL 24859
140 IF PDL (1) < 87 THEN CALL 24722
150 IF PEEK (- 16287) > 127 THEN CALL 24576
160 IF PEEK { - 16286) > 127 THEN CALL 24659
170 IF PEEK { - 16384} < > 195 THEN 100
180 POKE - 16368,0: VTAB 21: I:NPUT "EOR FACTOR: ";t-1$:N

= VAL (N$}: CALL 768,N: HOME: GOTO 110
199 HOME : END
995 REM --- NAMES OF FIRST FIVE ROUTINES ---
1000 DATA LORES SCREEN EOR,GV SCREEN FLIP,GH SCREEN FLI
P,LORES UPSCROLL,LORES DOWNSCROLL

LOW RESOLUTION GRAPHICS --------------- 1 57

How to Access It
C and number 0-15 (RETURN)
Button on paddle O
Button on paddle I
Paddle I when it reads <87
Paddle I when it reads >167
Paddle O when it reads <87
Paddle O when it reads >167

Special Effects Routine
Switching colors
Flipping upside down
Flipping sideways
Scrolling up
Scrolling down
Scrolling left
Scrolling right

PADDLE DEMONSTRATION OF SPECIAL
EFFEC IS ROUTINES

EXPLANATION _

This program assumes that you have run all the special effects routines and answered Y
to save the binary files for the routines. It also assumes that they are all on the same disk.
and that disk is inserted in the logged disk drive.

Lines 20-70 present a simple etch-a-sketch program to plot a design on the low
resolution graphics screen. The button on paddle O changes the colors of the dots, while
the button on paddle 1 ends the sketching routine and executes line 80. This design can
then be flipped upside down, scrolled in the four directions, and have its colors switched.

Line 80 BLOADs the five special effects routines that are listed in the DATA statement
on line 1000. while line 90 BRUNs the left and right scrolling routines.

The routine at lines I 00-180 allows you to access the machine language routines with
paddle and button controls. The ESC key ends the program. Depending on the button
you press or the reading of your paddle, the program calls the appropriate routine.

Table 6-1 indicates how to access the special effects routines.

1 58 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

TABLE 6-2. ACCESSING SPECIAL EFFECTS
ROUTINES WITH KEYBOARD

This program demonstrates the use of the special effects routines with keyboard
control.

GOTO 12

25387
24996
24859
24722
24576:

299
CALL
CALL
CALL
CALL
CALL

5 REM === LORES KEYBOARD DEMO===
10 D$ = CHR$ (13) + CHR$ (4)
15 REM --- DRAYl LORES PICTURE ---
20 GR :C = 2: COLOR= C:X = 20:Y = 20: HOME : VTAB 21: p
RINT "COLOR="C
30 GET A$:X = X + (A$= "K") - (A$= "J"):X = X + (X <
0) - (X > 39)
40 Y = Y + (A$ - "M'') - {A$ - "I"):Y = Y + (Y < 0) - (Y
> 39)
50 IF A$='' "THEN 80
60 IF ASC {A$) = 27 THEN HOME: GOTO 100
70 PLOT X,Y: GOTO 30
80 C = C + 1: IF C = 16 THEN C = 0
90 COLOR= C: VTAB 21: PRINT "COLOR="C" ": GOTO 30
95 REM --- BLOAD ROUTINES ---
100 FOR X = 1 TO 5: READ N$: PRINT D$"BLOAD"N$: NEXT X
110 PRINT DS"BRUN LORES LEFTSCROLL": PRINT D$''BRUN LORE
S RIGHTSCROLL": POKE - 16368,0
115 REM --- EXECUTE ROUTINES ---
120 IF PEEK { - 16384) = 155 THEN
130 IF PEEK (- 16384) - 203 THEN
140 IF PEEK { - 16384) - 202 THEN
150 IF PEEK { - 16384) - 205 THEN
160 IF PEEK (- 16384) - 201 THEN
170 IF PEEK { - 16384) - 209 THEN
0
180 IF PEEK (- 16384) - 215 THEN CALL 24659: GOTO 12
0
190 IF PEEK { - 16384) - 160 THEN 120
200 IF PEEK (- 16384) < > 195 THEN 120
210 POKE - 16368,0: VTAB 21: INPUT "EOR FACTOR: ";t-1$:N
- VAL {N$}: CALL 768,N: HOME : GOTO 120

299 HOME: END
995 REM --- NAMES OF FIRST FIVE ROUTINES ---
1000 DATA LORES SCREEN EOR,GV SCREEN FLIP,GH SCREEN FL!
P,LORES UPSCROLL,LORES DOWNSCROLL

LOW RESOLUTION GRAPHICS --------------- 1 59

How to Access It
C and number 0-15
0
w
I
M
J
K

Special Effects Routine
Switching colors
Flipping upside down
Flipping sideways
Scrolling up
Scrolling down
Scrolling left
Scrolling right

KEYBOARD DEMONSTRATION OF SPECIAL
EFFEC IS ROUTINES

EXPLANATION _

The program assumes that you have run all the special effects routines and an�wered:
to save the binary files for the routines. It also assumes that they are all on the disk that rs
inserted in the drive that you are logged onto.

Lines 20-90 draw a simple etch-a-sketch. The keys I, J. K, and M move the dot up. left.
right. and down. respectively. Line 30 gets the keypress and adjusts the X and Y valu.es
accordingly. Line 40 prevents an illegal quantity error by keeping the dot on the graphics
screen. The space bar at lines 50 and 80-90 changes the color. which can range from
Oto 15.

The ESC key executes line 100. which BLOADs the programs in DATA statement 100.
Then line 100 BRUNs the left and right scrolling routines.

The routine at lines 120-210 allows you to access the machine language routines with
keyboard control. The ESC key ends the program. Dependinq on the key you press. the
program calls the appropriate routine.

Table 6-2 indicates how to access the special effects routines. The space bar stops the
scrolling or flipping.

•

CHAPTER .., __
HIGH R-E-SO- LUli_ l_O_N �
GRAPHICS

High resolution graphics offers finer detail in your pictures than low resolution
graphics, but fewer colors.

A machine language already built into Applesoft BASIC that gives you an
instant background in the color of your choice is discussed, and a routine to erase
the screen in a novel way is presented.

There are two pages of high resolution graphics-page l and page 2. The
command HGR sets page l, while the command HGR2 sets page 2 of graphics.
You can draw full screen graphics on page J or page 2 of graphics.

This chapter introduces the set of soft switches that you can either POKE or
PEEK to switch between low and high resolution graphics, between page 1 and

___ 161

- """'· • - I(-

•

TABLE 7-1. COLOR CHART

or

Color
Black
Green
Violet
White
Black
Orange/red
Blue
White

Number
0
42
85
127
128
170
213
255

10 HGR: X - 213: POKE 28,X: CALL -3082

INSTANT BACKGROUND METHOD 1

10 HGR: X - 213: POKE 28,X: CALL 62454

10 HGR: HCOLOR=6: HPLOT 0,0: CALL 62454

The following program provides an instant background.

INSTANT BACKGROUND METHOD 2

This program fills the screen instantly with a solid color.

10 HGR: HCOLOR=6: HPLOT 0,0: CALL -3082
or

HIGH RESOLUTION GRAPHICS --------------- 1 63

EXPLANATION _

Both methods use a built-in machine language routine at address -3082. Memory
location - 3082 is the same as memory location 62454.

With this method, you must plot a dot (anywhere) on the screen in the color that you
want for the background. This program plotted a point at the origin 0.0 where it is least
noticeable. Then, when you call the routine, it fills in the background in the last color
plotted.

EXPLANATION _

With this method you poke in the value for the color. There is a different set of numbers
to get the high resolution colors than the standard 0-7. Table 7-1 indicates the standard
colors.

1 62 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

BACKGROUND

The following program draws a solid background, but it does so slowly.

10 HGR:HCOLOR=7
20 FOR X = 0 TO 279:HPLOT X,O TO X,159: NEXT X
There is another way of getting a solid background by using a built-in machine

language routine that you can call when needed.
There are two methods. They are demonstrated in HGR on page 1, but you could also

use HGR2.

page 2 of memory, between mixed screen and full screen graphics, or between
the graphics and the text page.

You will be shown how to save and load hi-res graphics pictures for use in
other programs or a slide show. The slide show will be explained in Chapter 9.

Shape tables will be used to change the colors of your picture to their
complementary colors for an interesting effect. The complementary sets of colors
are: black and white, blue and orange/red, and violet and green.

High resolution graphics offers eight colors, including two blacks and two
whites. More colors can be obtained by alternating the colors of horizontal lines
or poking in a value and calling a built-in routine to fill the screen with a variety of
colored vertical lines.

Bit-mapped graphics is introduced to enable you to add alphanumeric
characters to the high resolution graphics screen. You can also design any other
character that fits on a grid 7 dots across by 8 dots down.

The addressing of the screen does not correlate exactly with the memory
addresses. A formula is provided to convert any row and column to the correct
memory address for that block on the graphics screen.

Several machine language programs are presented that allow you to take a
high resolution graphics picture and reverse the colors to their complementary
color, flip the picture from left to right, and turn it upside down. Routines to scroll
the picture left or right in either the original color or the complementary color and
to scroll the picture up and down the screen are also provided.

SCREEN ERASER SOFT SWITCHES

This subroutine erases a screen in high resolution graphics and provides a different
effect than the standard HGR or HGR2 command to erase the screen.

EXPLANATION==============--------
Black is the color selected, and vertical lines are drawn from each edge of the screen to

the opposite edge.
Use this subroutine whenever you want to erase the screen in a different manner.

The video display is controlled by sets of soft switches that are located in the read only
memory (ROM). These switches can be set in two different positions. They are located at
eight reserved memory locations that are addressed by-16304 to -16297 or their positive
equivalents, 49232 to 49239 (Table 7-2).

The addresses can be expressed as a positive number such as 49232 or its negative
equivalent-16304. The negative number is obtained by taking the positive number and
subtracting 65536 (or 2 raised to the 16th power) from it 49232 - 65536 = - 16304.

•

TABLE 7-2.
SOF I SWITCHES

You can access these locations by poking a O into their location or they can be toggled
by peeking them.

When you issue the command HGR, the computer sets the switches to I a, 2b, 3a, and
4b. When you issue the command HGR2, the computer automatically sets the switches to
I a, 2a. 3b, and 4b. The command TEXT sets the switches to I b. 2a, 3a, and 4a.

(49238)
-16298

(49236)
-16300

SOFT SWITCHES

(49234)
-16302

(49232)
-16304

GRAPHICS FULL PAGE 1 TEXT/GR MODE SCREEN
, -..., �

......_ � ,

TEXT MIXED
PAGE2 HIRES MODE TEXT /GRAPHS I,

SET RJNCTION ADDRESS
I a Graphics mode -16304 or 49232
1 b Text mode -16303 or 49233
2a Full screen -16302 or 49234
2b Mixed screen -16301 or 49235
3a Page 1 -16300 or 49236
3b Page 2 -16299 or 49237
4a Text/lo-res -16298 or 49238
4b Hi-res -16297 or 49239

5 REM === HIRES SCREEN ERASER===
7 REM --- YOUR HIRES PROGRAM ---
10 HGR2
20 FORT= 1 TO 50
30 C = INT { RND (1) * 7) + 1
40 IF C = 4 THEN 30
50 HCOLOR= C
60 Xl = INT (RND (1) * 280)
70 Yl = INT (RND (1) * 192)
80 X2 = INT (RND (1) * 280)
90 Y2 = INT { RND (1) * 192)
100 HPLOT Xl,Yl TO X2,Y2
110 NEXT T
120 GET A$
130 GOSUB 1000
199 END
1000 HCOLOR= 0
1020 FOR X = 0 TO 279 STEP 2
1030 HPLOT X,O TO X,191
1040 HPLOT 279 - X,O TO 279 - X,191
1050 NEXT
1060 TEXT: HOME
1070 RETURN

-16303
(49233)

-16301
(49235)

-16299
(49237)

-16297
(49239)

Switches in up or down position

1 64 --------- APPLESOFT BASIC SUBROUTINES & SECRETS HIGH RESOLUTION GRAPHICS --------------- 1 65

POKING MEMORY LOCATIONS
PAGE 1 WITH FULL SCREEN GRAPHICS

This statement uses the command HGR and a particular POKE command to get full
screen graphics on page I .

BACKGROUNO---------------------

HGR uses page I of graphics, while HGR2 uses page 2. HGR also gives a mixed
text/ graphics screen, while HGR2 gives a full graphics screen with no text window.

The page refers to a specific area of memory and not whether it is mixed or full screen.
See the memory map in Appendix B. it is possible to obtain full screen graphics on page I
by adding a particular POKE command.

EXPLANATION----------------------

You can get full screen graphics on page I using the HGR command along with the
POKE command POKE -16302,0. which sets full screen graphics.

HGR: POKE -16302,0

Full screen graphics extends the number of horizontal rows by adding on 32 additional
lines of graphics.Mixed mode graphics ranges from Oto 159 and full screen ranges from O
to 191 lines.

However, if you try to access page 2 in the mixed text/ graphics mode, you get garbage
(a random mixture of characters} in the text window that cannot be erased with the
HOME command. The text window normally holds the last four lines of page I of text. in
this case. the last four lines of page 2 of text are being displayed.

You cannot easily write in the text window of page 2 in the mixed text/ graphics unless
you have a specific routine. Thus, page 2 is primarily for full screen graphics. whereas page
l can be used for either full screen or mixed text and graphics.

1 66 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

POKE COMMANDS EQUIVALENT 10 HGR OR HGR2

instead of the commands HGR or HGR2. you can use the equivalent POKE commands.
The commands HGR and HGR2 erase the graphics screen. whereas the POKE commands
do not affect the screen.

EXPLANATION----------------------

The commands H�R and HG�2 erase th� high resolution page selected. You may
want t? use the graphics mode without erasing the display screen. This can be done by
ac�ess,ng ��e graphics mode with either POKE-16304,0 or K = PEEK(-16304] and then
using add1t1onal POKE or PEEK commands to determine the full or mixed screen mode,
page I or page 2. and low or high-resolution graphics.

Replace HGR with:

POKE -16304,0:POKE -16301,0:POKE -16300,0:POKE -16297,0

'Replace HGR2 with:

POKE -16304,0:POKE -16302,0:POKE -16299,0:POKE -16297,0

If you switc� pages �ith th� POKE commands and want to go back to the original
page and continue plotting on It. then you must enter an additional POKE command that
tells the computer on which page the HPLOTs or HPLOT TOs will be drawn.

To plot on page I enter.

POKE 230,32

To plot on page 2 enter.

POKE 230,64

HIGH RESOLUTION GRAPHICS --------------- 1 67

1 68 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SWITCHING BETWEEN I EX I AND GRAPHICS PAGE

EXPLANATION----------------------

The following commands switch between the text screen and the graphics screen.

SAVING A PICTURE WITH BSA VE

The. following statements s�ow you how to save a high resolution graphics picture
from either page 1 or page 2, m the immediate mode or from a program.

990 PRINT CHR$(4)"BSAVE picturename,A$2000,L$2000"

BSAVE picturename,A8192,L8192

990 PRINT CHR$(4)"BSAVE picturename,A8192,L8192"

HIGH RESOLUTION GRAPHICS --------------- 1 69

EXPLANATION----------------------

C hapter 6 explained how to save a low resolution graphics picture. Refer to that section
for an explanation of how to BSAVE a picture.

Th� hi-res.pictur� can be saved from either page 1 or page 2 of graphics. This can be
done m the immediate mode or from within a program.

Since the hi-r�s grap�ics page l and page 2 are separate from the text window, you
c�nnot save a picture with the text window displaying a title or message. The full hi-res
picture gets saved wh�ther you are viewing it as a full screen or mixed text/ graphics
screen. If you want a title or message. then you will have to add it after the picture is
loaded.

To sa�e a hi-res pi�ure from page 1 in the immediate mode, enter the following line,
where picturename rs the name of your hi-res picture. You can use either decimal or
hexadecimal notation. The dollar sign (SJ indicates hexadecimal notation. The number
after the letter A represents the starting address of memory, while the number following L
represents the length of the binary file.

or

BSAVE picturename,A$2000,L$2000
The numbering of line 990 may have to be adjusted for your program. If the command

to BSAVE a picture is preceded by a GET command, be sure to concatenate a carriage
return to the beginning of line 990.

or

FROM PAGE 1

(graphics to text page}
(text to graphics pageJ

WAIT - 16384,1�8
K = PEEK (- 16384): IF K - 128 = 27 THEN 199
POKE - 16368,0
REM --- DISPLAY HIRES PAGE 1 MIXED MODE ---
POKE - 16304,0: POKE - 16301,0: POKE - 16300,0:
- 16297,0

GOTO 60
TEXT: HOME: END

POKE -16303,0
POKE -16304,0

". ,
140
150
160
165
170
POKE
180
199

5 REM === TEXT-GRAPHICS FLIP===
7 REM --- GRAPHIC SCREEN --- 10 TEXT: HGR
20 HCOLOR= 3
30 HPLOT O,O TO 279,159
40 HPLOT 279,0 TO 0,159
45 REM --- STROBE KEYBOARD ---
50 POKE - 16368,0
60 HOME
'lO VTAB 22: PRINT "PRESS ANY KEY FOR TEXT SCREEN";
80 WAIT - 16384,128
90 K = PEEK (- 16384): IF K - 128 = 27 THEN 199
100 POKE - 16368,0: REM RESET STROBE
105 REM --- TEXT SCREEN ---
110 TEXT: HOME: VTAB 12: HTAB 10
120 INVERSE: PRINT "THIS IS THE TEXT SCREEN": NORMAL
125 REM --- STROBE KEYBOARD ---
130 VTAB 22: PRINT "PRESS ANY KEY TO RETURN TO PICTURE

This program allows you to switch between the text page and graphics screen. This
can be used for an adventure program to switch between viewing the text description of
the location and the high resolution graphics picture of the location without erasing either
screen.

This can also be used for printing a message on the text page while waiting for a
graphics design to be drawn on the graphics page. Once the design is drawn, it can then
be viewed.

The next chapter introduces designs that are drawn using the sine and cosine
functions. Some of these designs take a while to be HPLOTed. The text screen can give a
description of the program or concept, and when the design is complete it can switch to
the graphics screen.

FROM PAGE 2
To save a hi-res picture from page 2 in the immediate mode, enter the following !ine,

where picturename is the name of your hi-res picture. Either the decimal �r hexadecimal
notation can be used. The number after the letter A represents the starting address of
memory, while the number following L represents the length of the binary file.

BSAVE picturename,Al6384,L8192
or

BSAVE picturena.me,A$4000,L$2000
The numbering of line 990 may have to be adjusted for your program. If the comm_and

to BSAVE a picture is preceded by a GET command, be sure to concatenate a carnage
return to the .beginning of line 990.

990 PRINT CHR$(4)"BSAVE picturena.me,Al6384,L8192"
or

990 PRINT CHR$(4)''BSAVE picturena.me,A$4000,L$2000"

SAVING AN EXTRA SECTOR ON THE DISK

Normally, the high resolution graphics image takes 34 sectors on a disk.. If 1ou enter a
length of8184 {L8184J instead of 8192, the image will take 33 se�ors. �ydropp1ng �he last
eight bytes of the binary image, you save a sector on the disk w1tho�t affecti�g the
graphics picture. You can use the decimal length 8192 or the hexadecimal equivalent
S1FF8. .

From Page 1:

BSAVE picturena.me,A8192,L8184
or

BSAVE pioturena.me,A$2000,L$1FF8
From Page 2:

BSAVE pioturena.me,Al6384,A8184

or

BSAVE pioturename,A$4000,L$1FF8

1 70 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

LOADING A PICTURE WITH BLOAD

This presents the statement that retrieves a high resolution picture from disk and loads
it into memory. A picture can.be loaded to either page 1 or page 2 of memory regardless of
the page on which it was originally saved. This is useful for page flipping, which is
demonstrated in Chapter 9. .

LOADING TO SAME PAGE

The following statements load a hi-res picture to the page on which it was originally
drawn and from which it was saved. Use the commands HGR or HGR2 or the equivalent
POKE commands, depending on which page the picture was originally drawn and saved
from. These sets of statements can be issued in either the immediate or program mode.

HGR or HGR2
BLOAD picturena.me

or

980 HGR or HGR2
990 PRINT CHR$(4) "BLOAD picturen�e"

LOADING TO DIFFERENT PAGE

The following statements allow you to load a high resolution graphics picture to page
2 if it was saved on page t. and to page 1 if it was saved on page 2. Enter the necessary
POKE commands to get full screen graphics or mixed text and graphics.

LOADING TO PAGE 1 FROM PAGE 2

These statements load a picture originally saved from page 2 onto page 1 and can be
issued in either the immediate or program mode.

HGR: POKE -16302,0
BLOAD pioturename,A8192

or

980 HGR: POKE -16302, 0
990 PRINT CHR$(4)"BLOAD picturena.me,A8192"

LOADING TO PAGE 2 FROM PAGE 1

These statements load a picture originally saved from page 1 onto page 2 and can be
issued in either the immediate or program mode.

HGR2
BLOAD pioturename,Al6384

or

980 HGR2
990 PRINT CHR$(4)"BLOAD picturena.me,Al6384"

HIGH RESOLUTION GRAPHICS --------------- 1 71

SHOWING FULL GRAPHICS

This statement allows you to view the full graphics screen.

EXPLANATION _

If you load a picture onto page 1 after issuing the �--IGR command, you may only see part
of the picture. This occurs if the picture was originally drawn on page 2 with full screen
graphics using either HGR2 or HGR:POKE -16302,0.

If you type the following POKE command, the text window will close and allow the rest
of the graphics piaure to be displayed.

POKE -16302,0

or

POKE 49234,0

PICTURE INVERSER

The following two subroutines can be added to the end of your program to change the
colors of a graphics piaure to their complementary colors: black to white, blue to
orange/red, and violet to green. and vice versa.

Shape tables and the XDRAW command are used to produce the color flip.

VERIICAL INVERSER

This subroutine draws the graphics picture in its complementary colors starting at the
left edge of the screen.

EXPLANATION _

This program uses a Shape table to draw one shape. The shape moves and plots up
one space. It is scaled to 192 so the line will fill the entire screen from top to bottom. When
a shape is XDRAWn, it draws in the complement of the background color.

This program draws a random design at lines 10-100 in order to demonstrate the
inverser subroutine. When you want to use your own graphics image, delete lines I 0-110
and BLOAD the high resolution graphics picture to page 1 with full screen graphics or to
page 2 using the following commands, where piaurename is the name of the piaure:

Loading to page I:

HGR:POKE -16302,0
BLOAD pioturename,A$2000

1 72 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

Loading to page 2:

HGR2
BLOAD pioturename,A$4000

Lines 100�-1040 set up the shape table at memory location 24576 with a zero rotation
and scale size of 192. The loop at lines 1050-1070 XDRAWs the shape tocreate the
complementary color effect

5 REM=== VERTICAL INVERSER ===
7 REM --- BLOAD OR DRAW HIRES PICTURE --- 10 HGR2
20 FOR N = 1 TO 25
30 C = INT (RND (1) * 7) + 1: IF C - 4 THEN 30 40 HCOLOR= C
50 Xl = INT (RND (1) * 280)
60 Yl = INT (RND (1) * 192)
70 X2 = INT (RND (1) * 280)
80 Y2 = INT (RND (1) * 192)
90 HPLOT Xl,Yl TO X2,Y2
100 NEXT N
110 GET A$
120 GOSUB 1000
199 END
995 REM --- INVERSE COLORS ---
1000 L = 24576
1010 FOR X = L TO L + 5: READ V: POKE X,V: NEXT X
1020 DATA l,0,4,0,4,0
1030 POKE 232,0: POKE 233,96
1040 ROT= 0: SCALE= 192
1050 FOR X = 0 TO 279
1060 XDRAW 1 AT X,O
1070 NEXT X
1080 RETURN

HIGH RESOLUTION GRAPHICS --------------- 1 73

1 74 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

Loading to page 2:

Loading to page I:

X-coordinate
Even Odd

High
bit

XDRAW 1 AT O,Y
NEXT Y
RETURN

1060
1070
1080

COLOR
PIXEL

On Blue Orange
Off Violet Green

TABLE 7-3.
PIXEL COLORS

HIGH RESOLUTION GRAPHICS --------------- 1 75

The resolution of the graphics screen is expressed in terms of pixels. Pixel is short for
picture element, which represents the smallest unit that can be turned on or off on the
video display screen. The Apple offers a resolution of 280 X I 92, which means 280 pixels
or dots horizontally by 192 vertically.

The screen does not show every color in every location. Only black and white pixels
can be plotted at every position. The remaining four colors appear in alternate columns.
When you HPLOT a vertical line, you can plot the even colors 2 and 6 only at even
numbered columns, and the odd colors green and orange only at the odd-numbered
columns.

Both page 1 and page 2 contain 8192 bytes of memory. Each of these bytes contains
eight bits. Seven of these eight bits determine which pixels will be lit. Each pixel on the
hi-res graphics screen has a bit in memory assigned to it. If the bit is a I, then the
corresponding pixel on the screen is lit. If the bit is a 0, then the pixel is not lit. The eighth
bit, or high bit, determines the color.

The color of a dot depends on its position on the screen and the value of the leftmost
bit. The leftmost bit, often called the high bit or most significant bit, controls the color of
the other seven bits by determining which color group will be displayed. Bits in even
columns are either violet or blue, while bits in odd columns are either green or orange. If
the leftmost bit (high bit) is off, the colors are violet and green. If the leftmost bit is on, the
colors are blue and orange.

There is no white color per se. When blue and orange are next to each other they
appear white, and when green and violet are next to each other they also appear white.
Therefore, there are two different whites possible. There are also two different blacks.
When the seven rightmost bits are 0, the high bit can be on or off.

Any dot on an even X-coordinate will appear as white, black, violet, or blue, whereas
any dot on an odd X-coordinate will appear as white, black, orange, or green. When the
high bit is on you get blue, orange, white, or black. When the high bit is off you get violet,
green, white, or black.

Table 7-3 indicates the color of the pixel (or dot) on the screen when it is in an even or
odd column with its high bit on or off.

The command HGR turns all the dots off on page I, whereas HGR2 turns all the dots off
on page 2. This is accomplished by changing every byte to O, thereby changing every bit to
O and thus clearing the screen.

(1) * 280)
(1) * 192)
(1) * 280)
(1) * 192)
X2,Y2

HORIZONTAL INVERSER ===
BLOAD OR DRAW HIRES PICTURE

5 REM ===
7 REM ---
10 HGR2
20 FOR N = 1 TO 25
30 C = INT (RND (1) * 7) + 1: IF C = 4 THEN 30
40 HCOLOR= C
50 Xl - INT (RND
60 Yl = INT (RND
70 X2 = INT (RND
80 Y2 = INT (RND
90 HPLOT Xl,Yl TO
100 NEXT N
110 GET A$
120 GOSUB 1000
199 END
995 REM --- INVERSE COLORS ---
1000 L = 24576
1010 FOR X = L TO L + 6: READ V: POKE X,V: NEXT X
1020 DATA 1,0,4,0,5,5,0
1030 POKE 232,0: POKE 233,96
1040 ROT= 0: SCALE= 140
1050 FOR Y = 0 TO 191

HGR2
BLOAD picturename,A$4000
Lines 1000-1040 set up the shape table at memory location 24576 with a zero rotation

and scale size of 140. The loop at lines 1050-1070 XDRAVJS the shape to create the
complementary color effect.

HORIZONTAL INVERSER

HGR:POKE -16302,0
BLOAD picturename,A$2000

This subroutine draws the graphics picture in its complementary colors starting at the
top edge of the screen.

EXPLANATION _

This program uses a shape table to draw one shape. The shape moves right .and plots
two spaces. It is scaled to 140 so the line will fill the entire screen fr?m left to right. Two
vectors are used, since the maximum value for the SCALE command rs 255 and the screen
is 280 dots across. With two vectors (move right and plot two times) the scale can be set at
140 for a full line across the screen.

This program draws a random design at Jines 10-100 i� �rder to demo�strate the
inverser subroutine. When you want to use your own graphics irnaqe. delete I 1ne� 10-11 O
and BLOAD the high resolution graphics picture to page 1 with full screen graphic� or to
page 2 using the following commands. where picturename is the name of the picture:

RANDOM COLORS

FIXED COLOR

1 76 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

20 111111 222222 333333 444444 555555 666666 21 123456 123456 123456 123456 123456 123456 22 111111 222222 333333 444444 555555 666666 23 123456 123456 123456 123456 123456 123456
•

140 123456 123456 123456 123456 123456 123456

GE I I ING 36 HGR COLORS

The following program alternates between two different colors for the horizontal lines
creating a pattern of colors.

5 REM === HGR 36 COLORS===
10 HGR: HOME

. 20 FOR Y = 20 TO 140 STEP 2
30 XP = 13
40 FOR A= 1 TO 6
50 FOR B = 1 TO 6
60 HCOLOR= A: HPLOT XP,Y TO XP + 4,Y
70 HCOLOR= B: HPLOT XP,Y + 1 TO XP + 4,Y + 1 80 XP = XP + 7
90 NEXT B,A,Y
99 END

EXPLANATION---------------------

The nested loops at 40-90 draw 36· sets of vertical lines. Each set is composed of
combinations of the six colors available (green. blue, white, black, orange, and violetJ.

The outermost loop counts from 20 to I 40 in steps of 2 to set the row number. The
middle loop (40-90J counts from I to 6 and places 36 horizontal lines five dots wide of that
color plotting one row at a time. The innermost loop (50-90) counts from I to 6 and places
36 horizontal lines five dots wide of that color.

The following diagram indicates the combinations of the colors.

HIGH RESOLUTION GRAPHICS --------------- 1 77

TO 0,159 TO 0,0
TO 1,159 TO 1,0

279,0 TO 279,159
278,0 TO 278,159
500: NEXT Z

5 REM === RANDOM COLOR HIRES BORDER===
10 HGR: HOME
20 C = INT (RND (1) * 7) + 1: IF C = 4 THEN 20
30 HCOLOR= C
40 HPLOT O,O TO
50 HPLOT 1,0 TO
60 FOR Z = 1 TO
70 GOTO 20

PREVENTING THE Loss OF VER I ICAL LINES

These methods prevent the loss of vertical lines.

If you have set the color at a fixed color number. then use even columns to plot the
even colors {colors 2 and 6) and odd columns to plot the odd colors (colors 1 and 5).

-
If you use random colors and want to avoid losing the vertical li0es. then double plot

the vertical lines. Double plotting means plotting a line at location X and another at
location X + 1. When the color number is even (colors 2 and 6). the line at the even column
will be plotted. and when the color number is odd (colors 1 and 5). the line at the odd
columns will be plotted.

Line 40 draws a border at the screen limits; line SO double plots the border. Omit line 50
to see why it is needed.

MIXING COLORS

This program demonstrates two wa-ys to fill the background with a mix of two colors.

EXPLANATION _

This program draws the full background in a variety of combinations of colors sim!lar to
the previous program. It shows two methods to fill in the background. The subrout1�e at
lines I 000-1050 fills the background instantly with the command CALL -3082 (explained
earlier in this chapter) and then fills in every other line with a different color.

The subroutine at lines 2000-2060 fills in one line with the first color and the next line
with the second color, alternating until the screen is completely filled.

POKE HGR COLORS

This program dem�nstrate� how you can use memory location 28 to poke in a value
from O to 255 to obtain a variety of colored vertical lines.

EXPLANATION======-----------------

Memory location 28 holds the high resolution color. Table 7-4 indicates the values that
return the eight standard hi-res colors.

TABLE 7-4. HI-RES
COLOR VALUES IN

LOCATION 28

5 REM === MIX HGR COLORS=== Standard No. in
10 HGR Color Color No. Location 28
20 HOME: VTAB 22 Black I 0 0
30 INPUT "ENTER TWO COLORS (0-7) ":Cl,C2 Green I 42
40 INPUT "ENTER 1 OR 2 (3 TO QUIT) ":A Violet 2 85
50 HGR White l 3 127
60 ON A GOSUB 1000,2000,99 Black 2 4 128
70 GOTO 20 Orange 5 170

99 HOME • END Blue 6 213
• White 2 995 REM --- INSTANT SCREEN AND FILL EVERY OTHER LINE - 7 255

-- 1000 HCOLOR= Cl: HPLOT 0,0: CALL - 3082
1010 HCOLOR= C2
1020 FOR Y = 0 TO 159 STEP 2
1030 HPLOT O,Y TO 279,Y
1040 NEXT Y
1050 RETURN
1995 REM --- FILL EVERY OTHER LINE ---
2000 FOR Y = 0 TO 159 STEP 2
2010 HCOLOR= Cl
2020 HPLOT O,Y TO 279,Y
2030 HCOLOR= C2
2040 HPLOT O,Y + 1 TO 279,Y + 1
2050 NEXT Y
2060 RETURN

MODIFICATION _

Subroutine 2000-2060 can be easily modified to draw any rectangular shape of a
variety of colors.

1 78 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

The loop a� 30-80 loops through the numbers from Oto 255 andpokes them into
me�ory location 28. It then calls the routine to instantly fill in the background.

Eight of th� numbers produce a solid screen, while the remaining 248 numbers
produce a vanety of colored vertical lines.

5 REM === POKE ALL HGR COLORS===
10 HGR: HOME
20 HPLOT 0,0
30 FOR X = 0 TO 255
40 VTAB 22: PRINT X
50 POKE 28,X
60 CALL - 3082
70 GET A$
80 NEXT X
99 END

HIGH RESOLUTION GRAPHICS _;,_ 1 79

1 80 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

This program demonstrates four POKE commands that return the color (coded] and
the horizontal and vertical positions of the last dot plotted on the screen.

PEEK HCOLOR AND POSITION OF
LAsT DOT PLO I I ED

•

5 REM === PEEK HCOLOR & POSITION===
10 HGR: HOME
20 X = INT (RND (1) * 280)
30 Y = INT (RND (1) * 160)
40 C = INT (RND (1) * 8)
50 HCOLOR= C
60 HPLOT 0,0 TO X,Y
70 VTAB 22
80 PRINT "RND: COLOR="C,
90 PRINT "X = "X,"Y = "Y
100 PRINT "PEEK:COLOR=" PEEK (228),
110 PRINT "X ="PEEK {225) * 256 + PEEK (224),
120 PRINT "Y =" PEEK (226)
130 GET A$
140 GOTO 10

HIGH RESOLUTION GRAPHICS --------------- 1 81

No. in
Location 228

0
42
85

127
128
170
213
255

Standard
Color No.

0
1
2
3
4
5
6
7

Color
Black 1
Green
Violet
White 1
Black 2
Orange
Blue
White 2

TABLE 7-5. HCOLOR
VALUES IN MEMORY

LOCATION 228

Line l 00 prints the value of the HCOLOR command by peeking location 228.
Lines 110-120 print the horizontal and vertical values of the last dot HPLOTted. These

values are obtained by peeking locations 225 (high byte ofX). 224 (low byte ofX). and 226
(Y).

The Apple has 65536 (216) possible memory locations. Two bytes are needed to store a
number in the range 0-65535. If the number of the address is in the range 0-255, the low
or least significant byte holds the address, and the high or most significant byte holds 0.
When the number is in the range 256-65535, then two bytes are needed to express that
number.

Memory location 225 returns the high byte of the x-coonnnate. while 224 returns the
low byte. To convert this to a number in the range 0-279. multiply the high byte by 256
and add the low byte.

Memory location 226 returns the low byte of the Y-coord inate. Since Y ranges from O to
191. only a low byte is needed.

EXPLANATION _

This program draws a line from the origin 0,0 to a random location on the screen in a
random color (0-8). Lines 80 and 90 print the value of the random color and the values ofX
and Y that determine the horizontal and vertical positions of the last dot HPLOTted.

Memory location 228 holds the value of the last HCOLOR command in the code
format given in Table 7-5.

SHADED BLOCK

TABLE 7-7. DECIMAL ADDRESSES OF THE B BYTES

7x8 BLOCIC BYTE ADDRESS COMPUTATION

To obtain the starting address of any block, take the decimal number from the row
address plus the column number (0-39). The addresses of the next bytes in the block are
obtained by adding I 024 to the previous address and continuing until you have the
addresses of all 8 bytes of the block (see Table 7-7).

= 8616+20
• 9636 + 1024
= 9660 + 1024
= 10684 + 1024
= 11708 + 1024
= 12737 + 1024
= 13756 + 1024
= 14780 + 1024

8636
9660

10684
11708
12737
13756
14780
15804

1st byte*
2nd byte-
3rd byte
4th byte
5th byte
6th byt�
7th byte
8th byte

* Starting Address of block

• • • • • • • • • • • • . • • • • • • • . • • . . • • . . • • • • • • • • • • . . • • •.• •.• • . . . •.• . •
• • • . • • • • • • • • • • • • • . • . . . • . . . • . • . • . . • • • . . • • . • • . . • • . • . .
• • • • •• • • . . • •• • . . ••• • • • • • • • • • • . • ·.· • . • • • . • • • • • • • . • • • • . • �·. • • • • • • • • . . - . • . .· . • . • • • ••• . . • • • • • • • • • . . • • . • • ·-. • • • • • • • . • • • • • . • • • • • • • • • It·.·. . . • • • • � . . • • • • • . • • • • • • • • • • • • • . • • • • • • • . • • • • . •

It···· • • • . • • • • �·· • • • • • • •• . • . • • • • •• • • • • • . . • • • • • • • • . • • •.• • • • • • • . • . . • • • . . • • • • • • • • • • • • • • . • • • • • • • • . • . • • . . • • • • • • •.• •.• • • . - . ._ . • .
• . • • . • . • • • . • • • • . . . • . • . • • • • • • . • • • • • . • . • . . • . . . • • • • • • •

The starting address of subsequent blocks down the screen is obtained by adding I 28
to the previous address within rows 1-8. 9-16. and I 7-24. The starting address of the block
at the 9th row is equal to the starting address of the I st row plus 40. whereas the starting
address of the block at the 17th row is equal to the starting address of the I st row plus 80.

You can think of the screen as divided into three major sets called triads. The first triad
holds rows 1-8, the second holds rows 9-16, and the third holds rows I 7-24.

The following rules indicate how to get from one address in memory to another:
1. Add 1 to get from one column to the next.
2. Add 40 to go from one triad to the next.
3. Add 128 to get from one row within the triad to the next.
4. Add 1024 to get from one horizontal line of the block to the next line of the block.

SUBSEQUENT ADDRESSES

TABLE 7-6. MEMORY MAP OF HI-RES GRAPHICS
SCREEN PAGE 1

BIT MAPPING

Adjacent screen columns on the hi-res graphics screen are consecutively numbered.
but the rows are not.

Table 7-6 displays the screen numbering as it correlates with memory addressing.
The memory locations assigned to the hi-res graphics screen are displayed on the

screen as 40 columns and 24 rows of blocks. Each block represents 1 byte across and 8
bytes down. Each byte contains 8 bits. Seven of these bits control 7 pixels on the graphics
screen and the 8th bit (high bit or most significant bit) controls the color group.

The 7 rightmost bits of each of these 40 bytes plot a dot for a total of 280 dots or pixels
across the screen. Each of the 24 rows contains8 bytes for a total of192 (24 X 8 = 192) dots
or pixels down the screen.

Pages 1 and 2 of hi-res graphics use only 7680 bytes (24 rows X 40 blocks X 8
bytes/block) of the possible 8192 bytes allocated for those pages. There are 512 memory
addresses that do not plot to the hi-res graphics screen.

.P12;"Nl :=71�
� ���4-1-H-++�HTt-t-HHT"I

Lt

�

A correspondence between the dots of light on the high resolution �raphi�s scree�
and the value of the bit is called a map. This technique for generating video dr�pla� .,s
called bit mapping. Each dot on the graphics screen is "mapped" into a certain brt rn
memory. If you set a certain bit in memory to 1. then the corresponding pixel on the screen
will light up.

CORRELATION OF MEMORY ADDRESSING

1 82 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
HIGH RESOLUTION GRAPHICS --------------- 1 83

SCREEN ADDRESSING
No color command is needed. since you are poking in the information in the high bit

for the color group. The color depends on the value of the high bit and the column on the
screen.

This program demonstrates how the memory addressing correlates with the screen
addressing.

EXPLANATION _

The value of N, which can range from O to 255, is poked into each memory location
from 8192 to 16383.

The screen is not filled in from left to right and then down the screen as you might
expect. One row of each triad is filled in at a time until the screen is completely filled in.

5 REM === BIT MAPPED S ===
10 HGR: POKE - 16301,0: HOME
20 VTAB 22: INPUT "ENTER STARTING ADDRESS OF BLOCK ";AD
30 IF AD= 0 THEN 99
40 FOR A= AD TO AD+ (7 * 1024) STEP 1024
50 READ B: POKE A,B
60 NEXT A
70 RESTORE: GOTO 20
99 HOME: END
1000 DATA 0,28,34,2,28,32,34,28

1 84 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SPECIFIC BIT-MAPPED CHARAC I ER

Decimal
No.

0
28
34

2
28
32
34
28

Hi-Res Screen Bit Pattern
1 2 4 8 16 32 64 1 28*
0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 1 1 0 0 0

*High bit= color

You can design your own characters. If you look closely at the characters of text on a
green or amber monitor. you can see the individual pixels or dots that make up that
character. The dots appear fuzzy on a television set.

To display a specific pattern of 7 bits across by 8 bits down. shade in the appropriate
squares to form a design of your choice. Interpret each shaded square as a J and each
blan� square as a 0. wher� a value_ of I represents the lit pixel and O the unlit pixel. Label
the bits m reverse order using the binary place value. convert to their decimal equivalents.
and poke the set of 8 numbers into the addresses of the block desired.
. You are labeling the = in reverse_orde'.. == the screen interprets the bits in memory
1� reve'.se order when plotting. The high bit ts the color bit. In the following examples. the
high bit equ�ls O �nd is therefore off. If you want the other set of colors with the high bit
on. set the high bit on and add 128 to every decimal number computed. Table 7-8 shows
the bit pattern needed to create the letter S.

TABLE 7-8. CREATING THE LE I I ER S

DESIGN OF A CHARAC I ER

HIGH RESOLUTION GRAPHICS --------------- 185

--- --- 5 REM === SCREEN ADDRESSING DEMO
10 HGR: POKE - 16301,0: HOME
20 N = 255
30 FOR A= 8192 TO 16383
40 POKE A,N
50 NEXT A
99 END

EXPLANATION _

The program demonstrates the correlation of the pixels or dots on the hi-res screen
with the bits in memory.

Bit pattern mapping is used to create the letter S. If you want to display the
alphanumeric characters that appear on the text screen. use a block for each character.
Leave a border of unused bits on two edges so the characters can be spaced on the
graphics screen.

Lines 20 and 30 let you enter the starting address of the block. Use addresses in Table
7-6. lfyou use asdresses outside the range of page I. unpredictable results may occur. and
you may have to reboot or enter FP and reload your program. This program is designed to
end when an address of zero is entered.

Line 40 calculates the addresses of the 8 bytes in a block. The values for the bytes are
read in and poked into the appropriate memory address.

You can place more than one Son the screen. The RESTORE command is needed to set
the DATA statement pointer to the first data item again.

The image on the graphics screen is not exactly a bit-by-bit �orrelation of the pixels on
the graphics screen and the bits in memory. The leftmost bit or most significant bit in
memory controls the color leaving the remaining 7 bits to control? pixels on the graphics
screen. However. the mapping of these 7 bits is not straightforward. The rightmost or least"
significant bit in memory controls the leftmost pixel in that set of 7 dots. The leftmost or
most significant bit. which controls the color. is not displayed on the graphics screen.

This program places the letter S at any position on the high resolution graphics screen
that you specify.

::tlf
I l • I I I
I I I I I I
• --y I I I I

TABLE 7-9. CCONT.l
Character Bytes for DATA Statement

8* 7 6 5 4 3 2 I
A 0 28 34 34 62 34 34 34
8 0 30 34 34 30 34 34 30 c 0 60 2 2 2 2 2 60
D 0 30 34 34 34 34 34 30
E 0 62 2 2 14 2 2 62
F 0 62 2 2 14 2 2 2
G 0 60 2 2 2 50 34 28
H 0 34 34 34 62 34 34 34

I 0 62 8 8 8 8 8 62
j 0 32 32 32 32 34 34 28
K 0 34 18 10 6 10 18 34
L 0 2 2 2 2 2 2 62
M 0 34 54 42 34 34 34 34
N 0 34 38 42 50 34 34 34
0 0 28 34 34 34 34 34 28
p 0 30 34 34 30 2 2 2
0 0 28 34 34 34 42 18 44
R 0 30 34 34 30 10 18 34
s 0 28 34 2 28 32 34 28
T 0 62 8 8 8 8 8 8
u 0 34 34 34 34 34 34 28 v 0 34 34 34 34 34 20 8
w 0 34 34 42 42 42 54 34 x 0 34 34 20 8 20 34 34
y 0 34 34 20 8 8 8 8 z 0 62 32 18 8 4 2 62

*Color bit.

The following are bit-mapped representations of all the characters.

TABLE 7-9. BYTES HOLDING
BIT PA I I ERN FOR EACH

CHARACTER
Character Bytes for DATA Statement

8* 7 6 5 4 3 2 1
space 0 0 0 0 0 0 0 0

I 0 4 4 4 4 4 0 4
II 0 20 20 0 0 0 0 0
0 20 20 62 20 62 20 20
$ 0 8 28 42 12 24 42 28
% 0 6 38 16 8 4 50 48
& 0 8 20 8 84 36 88 0

0 8 8 4 0 0 0 0
I 0 16 8 4 4 4 8 16
) 0 4 8 16 16 16 8 4
* 0 8 42 28 62 28 42 8
+ 0 0 8 8 62 8 8 0

0 0 0 0 0 8 8 4
• 0 0 0 0 62 0 0 0

0 0 0 0 0 0 0 4
I 0 0 32 16 8 4 2 0
0 0 28 34 50 42 38 34 28
1 0 2 8 8 8 8 8 28
2 0 . 28 34 32 24 4 2 62
3 0 28 34 32 24 32 34 28
4 0 18 18 18 62 16 16 16
5 0 62 2 2 28 32 32 30
6 0 60 2 2 30 34 34 28
7 0 62 32 16 8 8 8 8
8 0 28 34 34 28 34 34 28
9 0 28 34 34 60 32 34 28

0 0 0 8 0 8 0 0
. 0 0 0 8 0 8 8 4
' < 0 16 8 4 2 4 8 16

0 0 0 62 0 62 0 0
> 0 4 8 16 32 16 8 4
7 0 28 34 34 16 8 0 8
@ 0 56 68 84 116 52 4 120

*Color bit ,,

CHARAC I ER SET

Table 7-9 represents the 8 bytes needed to poke into memory for the corresponding
characters. These characters vary slightly from the characters on the text screen. You can
easily redefine your own set of characters. Enter the set of 8 bytes into a DATA statement.

HIGH RESOLUTION GRAPHICS --------------- 1 87 1 86 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

ADDRESS FINDER

This program returns the value on page 1 or 2 of memory that represents the startin�
address of a block at column C. row Ron the high resolution graphics screen. A formula is
used to obtain the starting address of any block.

EXPLANATION _

The following formula calculates the starting address for a block on the hi-res graphics
screen. You must provide the column and row number represented by C and R.
respectively. The value of the column is in the range 1 -40 and is represented ?n the map of
the graphics screen as the HTAB number. The range of the row is 1-24 a�d rs represented
on the graphics screen map as the VT AB or row number. The expression INT((R-1)/8)
holds a O. 1. or 2 depending on the triad.

A= 8063 - 984 * INT((R-1)/8) + 128 * R + C
Use Table 7-6 to correlate the row and column numbers with the starting address of a

block.

5 REM === ADDRESS FINDER===
10 HOME
20 PRINT TAB{ 15)"ADDRESS FINDER": PRINT: PRINT
30 INPUT "ENTER PAGE 1 OR 2: ";P
40 IF P > < 1 AND P > < 2 THEN 199
50 IF P = 1 THEN AD= 8063
60 IF P = 2 THEN AD= 16255
70 INPUT "ENTER ROW & COLUMNS NUMBERS R,C: ";R,C
80 IF {R < 1) OR {R > 24) OR (C < 1) OR {C > 40) THEN 7
0
90 A= AD - 984 * INT {(R - 1) / 8) + 128 * R + C
100 PRINT "THE ADDRESS IS: ";A
110 PRINT: PRINT: GOTO 30
199 END

1 88 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

MOOIFICATION---------------------

lf you want an address on hi-res graphics page 2. replace 8063 with 16255.

DERIVATION OF FORMULA

The following mathematical calculations indicate how this formula was obtained.
Depen�ing on the �ria� (rows 1-8. rows 9-16. or rows 17-24). the following

mathematical statement indicates the value of the starting address in memory of the block
at row R, column C on the graphics screen.

In this formula. row R represents the row or VTAB number (l-24). while column c
represents the HTAB number (1-40). The VT AB and HTAB numbers were used to correlate
the numbering of the graphics screen with the numbering of text screen. which uses the
VT AB and HT AB commands.

Rows 1-8: 8063 + O + 128 X (Row-OJ+ Column
Rows 9-16: 8063 + 40 + 128 X (Row-8) + Column
Rows 17-24: 8063 + 80 + 128 X (Row-16) + Column

These formulas can be further represented as:
Rows 1-8: 8063 + 40XO + 128 X (Row-(OXOJJ + Column
Rows 9-16: 8063 + 40XI + 128 X (Row-(BX1JJ + Columh
Rows 17-24: 8063 + 40X2 + 128 X (Row-(8X2JJ + Column

If you let F = INT((R- 1)/8), then F can be used to multiply by O, 40, or 80 to obtain the
�ddress. Whether you multiply by 0, 40, or80 depends on which triad the block is located
m.

Using formula F = INT((R - I J/8)
If R = number in range 1-8. then F = O
If R = number in range 9-16, then F = I
If R = number in range 17-24, then F = 2

The following is a general mathematical statement of the above formulas. It can be
reduced to the formula presented that calculates the starting address for any block.

A = 8063 + 40XF + 1 2BX CR-C8XFl) + C
A= 8063 + 40XF + 1 2BXR -1 024XF + C
A = 8063 - 984XF + 1 28XR + C

In BASIC, this would translate to:

A= 8063 - 984 * INT((R-1)/8) + 128*R + C

HIGH RESOLUTION GRAPHICS --------------- 1 89

USING ARRAYS TO HOLD DATA FOR
BIT-MAPPED CHARAC I ERS

The following program lets you enter four bit-mapped characters anywhere on the
screen. This is useful when you want to draw a few characters on the graphics screen,
such as identifying the X and Y axis, or adding your initials or a short message.

'

EXPLANATION---------------------

The high resolution graphics screen on page 1 is used, since you need the text window
for directions for this program. The starting address of page I is set at line 20.

The number of characters is entered in line 1000. The bytes for the desired characters are
stored in DATA statements. Lines 30-60 read in the data in a two-dimensional array. The
row corresponds to the set of 8 bytes for each character. The column corresponds to the
individual 8 bytes.
NRC) I 2 3 4 5 6 7 8

I O 34 34 30 8 20 34 34
2 0 34 34 20 8 8 8 8
3 0 0 8 8 62 8 8 0
4 0 0 0 0 62 0 0 0

ArrayelementA{3,2) holds 0, while arrayelementA{2,3) holds 34. The general form of a
two-dimensional array element is A(R,CJ, where R represents the row and C the column.

Lines 70-80 draw a border to show how graphics and bit-mapped text characters can
be mixed on the hi-res graphics screen.

Lines 90-140 ask for the character to be displayed, as well as the row and column. Lines
110 and 140 check for an invalid keypress. The rows are limited to 1-20, since the text
window covers the bottom four rows of the graphics screen.

Line 120 calculates the value of CH to determine which character is to be displayed on
the screen. If a Y was entered on line 100, then line 120 calculates CH as:

CH= 0 + (1) * 2 + 0 + 0 = 2
Since the second characters were selected, array element A(2X) will be poked into
memory, where X ranges from 1 to 8 (8 bytes in a block).

The routine at lines 150-190 determines the memory address and pokes in the 8 bytes
for the character selected.

1 90 APPLESOFT BASIC SUBROUTINES & SECRETS

5 REM === BIT MAPPED XY+- ===
10 HGR: HOME
20 AD= 8063: REM PAGE 1
25 REM --- READ BYTES INTO ARRAYS ---
30 READ N: DIM A(N,8)
40 FOR X = 1 TON: FOR B = 1 TO 8
50 READ A(X,B)
60 NEXT B,X
65 REM --- DRAW BORDER ---
70 HCOLOR= 3
80 HPLOT 0,0 TO 279,0 TO 279,159 TO 0,159 TO O,O
85 REM --- GET & CHECK ENTRIES ---
90 VTAB 22: CALL - 958
100 INPUT "ENTER X Y + - ";A$
110 IF (A$> < "X") AND (A$> < "Y") AND (A$> < "+"
) AND (A$> <"-")THEN 299
120 CH= (A$= "X") + (A$= "Y") * 2 + (A$="+") * 3 +
(A$ = "-") * 4
130 INPUT "ENTER ROW AND COLUMNS R,C ";R,C
140 IF (R < 1) OR (R > 20) OR (C < 1) OR (C > 40) THEN
130
145 REM --- POKE CHARACTER INTO MEMORY ---
150 FOR X = 1 TON
160 A= AD - 984 * INT ((R - 1) / 8) + 128 * R + C
170 FOR B = 1 TO 8
180 POKE A+ (B - 1) * 1024,A(CH,B)
190 NEXT B,X
200 GOTO 100
299 HOME : END
1000 DATA 4: REM t OF CHARACTERS
1010 DATA 0,34,34,20,8,20,34,34: REM X
1020 DATA 0,34,34,20,8,8,8,8: REM Y
1030 DATA 0,0,8,8,62,8,8,0: REM +
1040 DATA o,o,o,0,62,0,o,o: REM -

MODIFICATION=---------------------

. Enter any of the 59 characters defined or create some characters of your own design.
Line 1000 holds the number of characters. Change lines 100, 110, 120, and 1000 if you
change or add characters to the program.

HIGH RESOLUTION GRAPHICS --------------- 1 91

1024,A(N(X),B)
INT ((R - 1) / 8) + 128 * R + C

INT ((R - 1) / 8) + 128 * R + C

59: REM NUMBER OF CHARACTERS
O,O,O,O,O,O,O,O: REM SPACE
0,4,4,4,4,4,0,4: REM 1
0,20,20,o,o,o,o,o: REM "
0,20,20,62,20,62,20,20: REM #
0,8,28,42,12,24,42,28: REM $
0,6,38,16,8,4,50,48: REM %
0,4,10,10,4,42,l8,44: REM &
0,8,8,4,0,0,0,0: REM '
0,16,8,4,4,4,8,16: REM (
0,4,8,16,16,16,8,4: REM)
0,8,42,28,62,28,42,8: REM *
0,0,8,8,62,8,8,0: REM +
0,0,0,0,0,8,8,4: REM ,
o,o,o,0,62,o,o,o: REM -
o,o,o,o,o,o,o,4: REM •
0,0,32,16,8,4,2,0: REM /
0,28,34,50,42,38,34,28: REM O
0,12,8,8,8,8,8,28: REM 1
0,28,34,32,24,4,2,62: REM 2
0,28,34,32,24,32,34,28: REM 3
0,18,18,18,62,16,16,l6: REM 4
0,62,2,2,28,32,32,30: REM 5
0,60,2,2,30,34,34,28: REM 6
0,62,32,16,8,8,8,8: REM 7

(continued on next page)

170 HGR
175 REM --- ACROSS ---
180 FOR X = 1 TO L
190 R = l:C = X
200 A= AD - 984 * INT ((R - 1) / 8) + 128 * R + C 210 FOR B = 1 TO 8
220 POKE A+ (B - 1) * 1024,A(N(X),B) 230 NEXT B
240 A= AD+ X
250 NEXT X
255 REM --- DOWN ---
260 FOR Y = 1 TO L
270 R = Y:C = 1
280 A= AD - 984 *
290 FOR B = 1 TO 8
300 POKE A+ (B - 1) * 1024,A(N(Y),B) 310 NEXT B
320 NEXT Y
325 REM --- CENTER ---
330 C = INT (20 - (L / 2))
340 R = 12
350 FOR X = 1 TO L
360 A= AD - 984 *
370 FOR B = 1 TO 8
380 POKE A+ (B - 1) *
390 NEXT B
400 C = C + 1
410 NEXT X
420 GOTO 90
499 END
1000 DATA
1010 DATA
1020 DATA
1030 DATA
1040 DATA
1050 DATA
1060 DATA
1070 DATA
1080 DATA
1090 DATA
1100 DATA
1110 DATA
1120 DATA
1130 DATA
1140 DATA
1150 DATA
1160 DATA
1170 DATA
1180 DATA
1190 DATA
1200 DATA
1210 DATA
1220 DATA
1230 DATA
1240 DATA

HIGH RESOLUTION GRAPHICS --------------- 1 93

CHARAC I ER GENERA IOR

5 REM === CHARACTER GENERATOR ARRAYS===
10 HGR: POKE - 16301,0: HOME
20 VTAB 22: HTAB 5: PRINT "LOADING IN CHARACTER GENERAT
OR"
30 READ N: DIM A(N,8),A$(24},N(24}
40 FOR C = 1 TON
50 FOR B = 1 TO 8
60 READ A(C,B) ,
70 NEXT B,C
80 AD= 8063: REM PAGE 1
90 HOME
100 VTAB 22: INPUT "ENTER YOUR MESSAGE OR <QUIT> ":N$
110 IF N$ = "QUIT" THEN 499
120 L = LEN (N$): IF L > 24 THEN 90
130 FOR X = 1 TO L
140 A$(X) = MID$ (N$,X,1)
150 N(X) = ASC (A$(X)) - 31
160 NEXT X

1 92 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

This program demonstrates the character set shown on page 187. It prints any message
in a vertical and a horizontal manner and also centers the message on the screen.

EXPLANATION _

Lines I 0- 70 set up the graphics screen and load the 8 bytes for each of th� 59 ch�racters
into a two-dimensional array A(N,8). The memory is set for page 1 of graphics on line 80.

Lines 100-120 accept your message and check that it is 24 characters or fess. Your
message can be made up of any of the 59 characters listed in the D�TA stat�ments,
including the space. To use a colon or comma, enter your messa9e "'":'1th leading and
ending quotes. The order of the DATA statements is important 1n this program. The
ordering is in the same order as the ASCII code chart (Appendix A).

The routine at lines 130-160 takes the message apart, finds the ASCII code of each
character and converts that ASCII code to a number from 1 to 59, where I represents the , .
first character, 2 represents the second character, and X represents the Xth character. This
number is stored in array A(X). See Appendix A.

The graphics screen is cleared on line 170. The routine at 180-250 prints the message
across the screen starting at row I, column l. Rand C represent the row and column. The
formula for finding addresses is used to determine the starting address of each byte.

The routine at lines 260-320 prints the message down the screen starting at row I,
column I. R and C represent the row and column. The formula computes the memory
addresses.

The last routine at lines 330-410 uses the length of the message to calculate the center
of the screen. The message is printed across the screen at row 12.

The program continues at line 90 and waits for you to enter a new message. If you
enter QUIT as your message, the program ends.

If your message is printed at rows 21-24, it will not show up because of the text
window. Exit from the program with a CONTROL C RETURN and enter POKE -1?302,0
for full screen graphics. If you wish to continue with the program, add the text window
with the command POKE -16301,0 and issue the GOTO 90 command.

1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0,28,34,34,28,34,34,28: REM 8
0,28,34,34,60,32,34,28: REM 9
o,o,o,a,o,a,o,o: REM :
o,o,o,a,o,a,a,4: REM 1
0,16,8,4,2,4,8,l6: REM <
o,o,o,62,0,62,o,o: REM -
0,4,8,16,32,16,8,4: REM >
0,28,34,34,16,8,0,8: REM ?
0,56,68,84,116,52,4,l20: REM @
0,28,34,34,62,34,34,34: REM A
0,30,34,34,30,34,34,30: REM B
0,60,2,2,2,2,2,60: REM C
0,30,34,34,34,34,34,30: REM O
0,62,2,2,14,2,2,62: REM E
0,62,2,2,14,2,2,2: REM F
0,60,2,2,2,so,34,28: REM G
0,34,34,34,62,34,34,34: REM H
0,62,8,8,8,8,8,62: REM I
0,32,32,32,32,34,34,28: REM J
0,34,18,10,6,10,18,34: REM K
0,2,2,2,2,2,2,62: REM L
0,34,54,42,34,34,34,34: REM M
0,34,38,42,50,34,34,34: REM N
0,28,34,34,34,34,34,28: REM O
0,30,34,34,30,2,2,2: REM P
0,28,34,34,34,42,l8,44: REM Q
0,30,34,34,30,10,l8,34: REM R
0,28,34,2,28,32,34,28: REM S
0,62,8,8,8,8,8,8: REM T
0,34,34,34,34,34,34,28: REM U
0,34,34,34,34,34,20,8: REM V
0,34,34,42,42,42,54,34: REM W
0,34,34,20,8,20,34,34: REM X
0,34,34,20,8,8,8,8: REM Y
0,62,32,16,8,4,2,62: REM Z

'

USING A BINARY FILE 10 STORE
CHARAC I ER GENERATOR

This program stores the 8 bytes for the bit-mapped characters as a binary file. This is
convenient. since you do not have to enter the 60 DATA statements each time you want
to use the character set.

EXPLANATION _

A binary file is used to store the 8 bytes per character of the 59 available characters.
Enter and save the program entitled Character Generator Arrays. Run the program

several times testing each of the characters. If you wish to change the design of a
character. then change the 8 items in the appropriate DAT A statement.

Delete lines 5-499 (DEL 5,499) and insert the following lines 5-199 to use the same
DAT A statements without having to retype them.

The routine at lines 30-40 reads in the data items as a one-dimensional array or list
instead of a two-dimensional array. N holds the number of data lines. and NB holds the
number of data elements.

The routine at lines 70-90 pokes the list into free memory starting at location 24576.
Line 100 saves the contents of memory starting at 24576 and ending NB addresses later.
You can substitute any legal filename for the name CHARACTERS. Be sure that the name
is not a duplicate of any other name on your disk.

Make certain you have a disk in the drive when you run this program because the
program writes a binary file to the disk. The disk will spin for a while while it stores the
data. Wait until the disk stops spinning or you may lose your data.

Appropriate messages are printed at lines 20, 60, and 120 to let you know what is
happening. since the screen would otherwise go blank during this program.

5 REM === CREATE CHARACTERS===
10 HOME : VTAB 5: HTAB 5
20 PRINT •toADING IN CHARACTER GENERATOR"
30 READ N:NB = 8 * N: DIM A(NB)
40 FOR X = l TO NB: READ A(X): NEXT X
50 HOME: VTAB 5: HTAB 5
60 PRINT "SAVING CHARACTERS AS BINARY 4FILE"
70 FOR X = 1 TO NB
80 POKE 24575 + X,A(X)
90 NEXT X
100 PRINT CHR$ (4)8BSAVE CHARACTERS,A24576,L"NB 110 HOME
120 VTAB 5: HTAB 15: PRINT "FINISHED"
199 END

1 94 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
HIGH RESOLUTION GRAPHICS --------------- 1 95

LoADING A BINARY FIL.E OF BIT-MAPPED CHARAC I ERS

This program loads the binary file that stored the bytes for the bit-mapped characters. It
can be used to add bit-mapped characters to any image that you have saved as a binary
file.

EXPLANATION _

The following program is one example of many programs that you can write to retrieve
and use the data for the characters stored in the binary file called CHARACTERS.

This binary file contains the bytes that represent the bit-mapped characters. Line 50
instructs the computer to BLOAD this binary file into memory. It is loaded into the same
memory locations that it was saved from. The routine at 60-90 peeks these addresses
starting at location 24576 and stores the values in a two-dimensional array that is 59 rows
by· 8 columns.

Line 100 sets page 1 of hi-res graphics with a text window. The address for page I is
8063.

Lines 120-180 let you exit the program, clear the graphics screen. or continue with the
program. Lines 190-220 accept your message. Lines 230-260 take the message apart,
determine the ASCII code, and assign a number to the character depending on its position
in the list of characters. The number ranges from I to 59.

Lines 270 to 330 request either vertical or horizontal printing and the row and column
number of the first character of the message. Row values range from I to 24 and column
values range from I to 40.

The subroutine at lines 1000-1070 prints the message vertically, while the subroutine at
lines 2000-2070 prints the message horizontally.

LOADING A BINARY IMAGE OR CREATING A HJ-RES PICTURE

You can BLOAD a binary image to the screen, run this program to add text characters to
the image, and then BSAVE the image with the same or a different name. You can draw
your own hi-res graphics picture by changing line 100 to:

100 HGR: HOME: GOSUB 3000 "DRAW HIRES PICTURE"
Then line 3000 should start your graphics picture.

M ISSJNG FOUR LINES

The last four rows of the graphics screen are covered by the text window. The program
will write to them. but they wilf not be visible unless you exit the program with a
CONTROL C RETURN command and enter POKE-16302,0 to obtain full screen graphics.
Return to the program with a GOTO 100 command.

ERASING A CHARACTER

If you print a character or characters and want to erase them. enter the appropriate
number of spaces preceded by a leading quotation mark. Draw the blanks at the location
to be blanked out.

1 96 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

5 REM === RETRIEVE CHARACTERS===
7 REM --- LOAD IN TEXT FILE ---
10 HOME: VTAB 5: HTAB 5
20 PRINT "LOADING IN CHARACTER GENERATOR"
30 N = 59
40 DIM A(N,8),A$(24),N(24)
50 PRINT CHR$ (4)"BLOAD CHARACTERS"
60 FOR X = 1 TON
70 FOR B = 1 TO 8
80 A(X,B) = PEEK (24567 + X * 8 + B)
90 NEXT B,X
95 REM --- SET HGR SCREEN PAGE 1 - DO NOT ERASE IMAGE
100 POKE - 16304,0: POKE - 16301,0: POKE - 16300,0:
POKE - 16297,0
110 AD= 8063: REM PAGE 1
115 REM --- GET & CHECK ENTRIES ---
120 HOME
130 VTAB 21: PRINT "ENTER <ESC> TO QUIT"
140 PRINT "ENTER <C> TO CLEAR HGR SCREEN"
150 PRINT "ENTER <SPACE> TO CONTINUE";
160 GET A$: IF A$< > CHR$ (32) AND A$< > CHR$ (27
) AND A$< > "C" THEN 160
170 IF A$= CHR$ (27) THEN 399
180 IF A$= "C" THEN HGR
190 PRINT: HOME
200 VTAB 22: INPUT "ENTER YOUR MESSAGE ";N$
205 REM --- CALCULATE POSITION OF CHARACTER IN LIST --
210 L = LEN {N$)
220 IF L > 20 THEN 120
230 FOR X = 1 TO L
240 A$(X) = MID$ (N$,X,l)
250 N(X) = ASC (A$(X)) - 31
260 NEXT X
265 REM --- SELECT DIRECTION ---
270 INPUT "V)ERTICAL OR H)ORIZONTAL ";HV$
280 IF HV$ < > "H" AND HV$ < > "V" THEN 270
290 INPUT "ENTER ROW & COLUMN R,C ";R,C
300 IF R < 1 AND R > 40 AND C < 1 AND C > 20 THEN 290
310 IF LEFT$ (HV$,1) - "V" THEN GOSUB lOOO"VERTICAL R
OUTINE"
320 IF LEFT$ {HV$,1) - "H" THEN GOSUB 2000"HORIZONTAL
ROUTINE"

330 GOTO 120
399 HOME : END
995 REM --- VERTICAL ROUTINE ---
1000 FOR X = 1 TO L
1010 A= AD - 984 * INT ((R - 1) / 8) + 128 * R + C
1020 FOR B = 1 TO 8
1030 POKE A+ (B - 1) * 1024,A{N{X) ,B}
1040 NEXT B
1050 R = R + 1
1060 NEXT X
1070 RETURN
1995 REM --- HORIZONTAL ROUTINE ---
2000 A= AD - 984 * INT ((R - 1) / 8) + 128 * R + C

jcontinued on next page)

HIGH RESOLUTION GRAPHICS ---------------- 1 97

2010
2020
2030
2040
2050
2060
2070

FOR X = 1 TO L
FOR B = 1 TO 8
POKE A+ (B - 1)
NEXT B

A =A+ 1
NEXT X
RETURN

* 1024,A(N(X),B)

SCREEN EOR.A
HV SCREEN FLIP.A
HH SCREEN FLIP.A
HH SCREEN FLIP2.A

SCREEN EOR
HV SCREEN FLIP
HH SCREEN FLIP
HH SCREEN FLIP2

MODIFICATION _

If you wish to draw to page 2. then change the address flt line 110 to read:

110 AD= 16255: REM PAGE 2

STEP A: ENTERING ROUTINES FOR THE FIRST TIME ONLY

First type in one of the programs, SCREEN EOR.A. HH SCREEN FLIP.A, HH SCREEN
FLIP2.A, or HV SCREEN FLIP.A. SAVE and run the program. The program will ask whether
it should save the routine to disk. Answer Y if it has not already been saved. Now the
routine is in memory and ready for use.
When you run and answer Y You will obtain this
to this Applesoft program: binary file:

You will no longer have a text window. Change the input statements t� assignment
statements or poke the screen to get a text window and use the program as rs. When you
BSAVE the picture. you will get the full screen saved.

SPECIAL EFFEC IS WITH MACHINE
LANGUAGE ROUTINES

The following routines provide high resolution effects that can only be achie�d by
using machine language routines, since Applesoft BASIC is too slow to accomplish the
same effect.

You do not have to be familiar with machine language to enter or access these routines
because the machine language coding has been transferred to DATA stat�ments for your
convenience. Since the values in the DATA statements correspond to specific commands
in machine language, be sure to enter the values in the DATA statements exactly or the
routine will produce unpredictable results.

To view the full effect of the following special routines, BSAVE a high resolution picture
either from page 1 or page 2 that uses all the hi-res graphics colors. �se that picture in the
programs or write a simple etch-a-sketch program to draw a design.

The first four routines flip the screen and change its colors. The last six routines scroll the
screen up, down. left, and right.

The memory locations have been arranged so that you can loa? three of the first '.our
routines one above the other in memory. This enables you to use either the set of routines
SCREEN EOR, HV SCRE'£N FLIP, HH SCREEN FLIP or the set composed of SCREEN EOR,
HV SCREEN FLIP, HH SCREEN FLIP2 simultaneously.

In addition to this set of flipping routines, one of the six scrolling routines can also =
used simultaneously. These scrolling routines are too lengthy for more than one to be ,n
memory at a time.

Two demonstration programs show how these special effects routines can be used in
your programs. One program uses keyboard control, whereas the other uses
paddle/button/keyboard control.

The last program of this chapter lets you display a hi-res �raphics_ pictu�e in a spiral
fashion. This routine cannot be used with any of the preceding routines, since they all
occupy the same memory locations.

In order to use the special effects routines, you must first follow certain steps. Step A
need only be followed the very first time. Thereafter start with Step 1.

1 98 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

STEP 1: BLOADING A SPECIAL EFFECTS ROUTINE

If you have already saved the routine and it is not currently in memory.you can load itto
memory with two different techniques.

The first method is to run the Applesoft program that corresponds to the routine and
answer N to save it, since it is already on disk.

The second technique is to BLOAD the binary file from disk using the following
command, where filename is the name of the special effects routine you want to use:

BLOAD filename
STEP 2: LOADING A HI-RES GRAPHICS PICTURE

To use the routine. enter either HGR or HGR2 or the equivalent POKE commands to set
the proper page. Load your high resolution graphics picture with a BLOAD command or
use your etch-a-sketch program.

POKE OPTION FOR SE I 1 ING UP PAGE l OR PAGE 2

In some situations you may already have a hi-res graphics picture on the screen and
may want to use one of the following special effects routines. If you type TEXT in order to
run one of the routines. your graphics picture is temporarily erased from the screen.
However, the picture is still in memory and can be displayed with the POKE commands
that are equivalent to HGR or HGR2.

The following POKE commands set page I or 2 without erasing the graphics screen.
You must also poke values into location 230 to inform the special effects routines which
page of hi-res graphics will be modified.

The equivalent of HGR is:

POKE -16304,0:POKE -16301,0:POKE -16300,0:POKE
-16297,0:POKE 230,32
The equivalent of HGR2 is:

POKE -16304,0:POKE -16302,0:POKE -16299,0:POKE
-16297,0:POKE 230,64

HIGH RESOLUTION GRAPHICS --------------- 1 99

FLIPPING 1HE SCREEN UPSIDE DOWN

This program flips a picture upside down instantly by rotating the picture along a
horizontal axis.

32,76,231,189,71,3,141,85,3,l41
87,3,189,78,3,141,86,3,165,230
133,7,169,0,133,6,168,162,32,177
6,77,87,3,145,6,200,240,20,152
74,144,8,173,86,3,141,87,3,208
234,173,85,3,141,87,3,208,226,230
7,173,85,3,141,87,3,202,208,215
96,255,127,128,85,42,213,170,255,127
128,42,85,170,213

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

5 REM === SCREEN EOR.A ===
10 HOME
20 FOR X = 0 TO 84: READ V: POKE 768 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: IF A$= "N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE SCREEN EOR,A$300,L
$55"
100
110
120
130
140
150
160
170
180

BLOAD SCREEN EOR

This routine instantly switches the colors of a high resolution picture.

INSTANT INVERSER

EXPLANATION _

When you run the program SCREEN EOR.A. it will save a binary file called SCREEN
EOR.

Load in this binary file with the following command:

If you omit the HGR or HGR2 command (or equivalent POKE commands), before you
CALL the routines, the computer will not function properly and you will have to tum the
computer off and reboot.

Issue a CALL A command. where A represents the starting address of the special effects
routine. The value of A will be given for each routine.

STEP 3: CALL.ING A SPECIAL EFFECTS ROUTINE

To execute this routine. use the command CALL 768.C. where C represents a number
from Oto 6 and each number causes a different color switch. C can be a constant. variable.
or any legal expression.

To reinstate the previous colors. issue the same CALL command.
Table 7-10 snows the color changes.

EXPLANATION _

When you run the program HVSCREEN FLIP.A. it saves the binary file HVSCREEN FLIP.
Load in this binary file with the following command:

BLOAD HV SCREEN FLIP
TABLE 7-10. COLOR

CHANGES

Original Colors

Value of C 0 1 2 3 4 5 6 7
0 7 6 5 4 3 2 I 0
I 3 2 1 0 7 6 5 4
2 4 5 6 7 0 I 2 3
3 2 3 0 I 6 7 4 5
4 I 0 3 2 5 4 7 6

' 5 6 7 4 5 2 3 0 1
6 5 4 7 6 I 0 3 2

O = Black!: I =green; 2 = violet; 3 = white!: 4 =
black2; 5= orange/red; 6= blue; and7= white2.

To execute this routine, use the command CALL 24576. where 24576 is the starting
address of the machine language routine.

If you issue the CALL command again. the original picture will be displayed.

5 REM === HV SCREEN FLIP.A===
10 HOME
20 FOR X = 0 TO 59: READ V: POKE 24576 + X,V: NEXT
30 PRINT ''SAVE TO DISK {Y/N): ";: GET A$: IF A$= "N'' T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE HV SCREEN FLIP,A$6
OOO,L$3C"
100 DATA 169,0,141,60,96,169,l3!,141,61,96
110 DATA 160,0,32,17,244,165,38,l33,6,165
120 DATA 39,133,7,173,60,96,160,0,32,l7
130 DATA 244,160,39,177,6,170,177,38,l45,6
140 DATA 138,145,38,136,16,243,238,60,96,206
150 DATA 6r;96,17�,51,96,201,95,208,207,96

HIGH RESOLUTION GRAPHICS --------------- 201
200 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

FLIPPING THE SCREEN LEFT TO RIGHT AND
PRESERVING COLOR

This program flips a picture left to right by rotating it around a vertical axis. It does not
alter the colors.

EXPLANATION=====:=----------------

When you run the program HH SCREEN FLIP.A, it saves the binary HH SCREEN FLIP.
Load in this binary file with the following command:

BLOAD HH SCREEN FLIP
To execute this routine. use the command CALL 24638, where 24638 is the starting

address of the machine language routine.
If you issue the CALL command again, the original picture will be display�d.
This routine preserves the original colors, since it does not affect the seven rightmost

graphics plot positions.

5 REM === HH SCREEN FLIP.A===
10 HOME
20 FOR X = 0 TO 115: READ V: POKE 24638 + X,V: NEXT
30 PRINT "SAVE TO DISK {Y/N): ";: GET A$: IF A$= "N" T
HEN END
40 IF A$< > •yn THEN 30
50 PRINT CHR$ (13); CHR$ (4):"BSAVE HH SCREEN FLIP,A$6
03E,L$74"
100 DATA 169,0,141,180,96,141,l78,96,l68,32
110 DATA 17,244,172,178,96,177,38,32,l37,96
120 DATA 169,38,56,237,178,96,168,177,38,170
130 DATA 173,181,96,145,38,138,32,137,96,172
140 DATA 178,96,145,38,200,140,178,96,192,19
150 DATA 208,219,177,38,32,137,96,l45,38,l60
160 DATA 0,140,178,96,238,180,96,l73,l80,96
170 DA1A 201,192,208,191,96,162,0,l42,l81,96
180 DATA 74,144,16,141,179,96,189,l70,96,24
190 DATA 109,181,96,141,181,96,173,179,96,232
200 DATA 224,8,208,232,173,181,96,96,64,32
210 DATA 16,8,4,2,1,128

202 APPLESOFT BASIC SUBROUTINES & SECRETS --------

FLIPPING THE SCREEN LEFT TO RIGHT WITH
COMPLEMENTARY COLORS

This program flips an entire picture left to right by rotating it around a vertical axis. The
colors (excluding black and white) are switched to their complementary colors.

EXPLANATION---------------------

When you run the program HH SCREEN FLIP2.A, it saves the binary file HH SCREEN
FLIP2.

Load in this binary file with the following command:

BLOAD HH SCREEN FLIP2

To execute this routine, use the command CALL 24638, where 24638 is the starting
address of the machine language routine.

If you issue the CALL command again, the original picture will be displayed.
This routine does not affect the black or white colors. However, since it affects the

seven rightmost graphics plot positions, blue and orange are swapped and violet and
green are swapped.

Since both HH SCREEN FLIP and HH SCREEN FLIP2 occupy the same memory block,
only one routine can be used at a time.

5 REM === HH SCREEN FLIP2.A === 10 HOME
20 FOR X = 0 TO 108: READ V: POKE 24638 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ":: GET A$: IF A$= "N" T HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13): CHR$ {4);"BSAVE HH SCREEN FLIP2,A$ 603E,L$6D"
100 DATA 169,0,141,173,96,141,171,96,168,32
110 DATA 17,244,172,171,96,177,38,32,130,96
120 DATA 169,39,56,237,171,96,168,177,38,l70
130 DATA 173,174,96,145,38,138,32,130,96,172
140 DATA 171,96,145,38,200,140,171,96,192,20
150 DATA 208,219,160,0,140,171,96,238,173,96
160 DATA 173,173,96,201,192,208,198,96,162,0
170 DATA 142,174,96,74,144,16,141,172,96,189
180 DATA 163,96,24,109,174,96,141,174,96,173
190 DATA 172,96,232,224,8,208,232,173,174,96
200 DATA 96,64,32,16,8,4,2,1,128

HIGH RESOLUTION GRAPHICS --------------- 203

SE I I ING UP THE SPECIAL EFFEC IS
SCROLLING ROUTINES

STEP 3: LOADING A HI-RES GRAPHICS PJCTIJRE

Load the hi-res graphics picture into memory using the following statement where
picturename represents the name of the picture:

When you run and answer Y
to this Applesoft program:

LEFTSCROLL.A
LEFTSCROLL2.A
RIGHTSCROLL.A
RIGHTSCROLL2.A
UPSCROLL.A
DOWNSCROLL.A

You will obtain this
bina,y file:

LEFTS CROLL
LEFTSCROLL2
RIGHTS CROLL
RIGHTSCROLL2
UP SCROLL
DOWNS CROLL

BLOAD pioturename

The picture must be loaded to the same page that you set in Step I, since only that page will be affected by the scrolling routines.

STEP 4: CALLING A SPECIAL EFFECTS ROUTINE
Call the special effects routine with the command CALL 24 758. where 24 758

represents the starting address of the routine. The starting address is the same for all six
scrolling routines.

The following routines scroll only the page that had been set when the generator
routine was called. However, you may load other hi-res graphics pictures on the same
page and use the scrolling routines without reloading them.

SCROLLING DIFFERENT PtCTIJRES ON THE SAME PAGE
To scroll another picture on the same page, load your picture on that page. Call the

desired scrolling routine by issuing the CALL A command, where A is the starting address
of the special effects routine.

SCROLLING ON BOTH PAGES

If you want to use the other hi-res graphics page. then you must set the new page with HGR. HGR2, or the equivalent POKE commands.
If the generator routine is in memory, you do not have to RUN the Applesoft program or

BRUN the generator routine again. It will remain in memory until you turn off the
computer or load in a different scrolling routine. Issue the CALL A command. where A is
the starting address of the particular generator routine. This instructs the computer to
execute the generator routine, which creates the scrolling routine.

Table 7-1 I gives the starting addresses of the generator routines.

First enter one of the following six Applesoft programs. Save and_ run the program.
When it asks whether you want to save the routine to �isk, ans�er_ Y 1f the _progr�m has
not already been saved. This saves the generator routine. which 1s the binary file that
creates the scrolling routine.

The six routines that are used to scroll the screen need to be set up differe�tly than the
previous four routines. The machine language scrolli_ng =v= are .quite l�ngthy.
Therefore, generator routines that create the actual scrolling routines are given. This saves
you from entering approximately 8000 bytes of data. . .

The following directions explain =- to set up _and_ use the last six special e�ects
routines that scroll the graphics screen in the four directions: up. down, left and rrght.

You need to follow Step A only the first time you enter the programs. Afterwards. start
with Step I.

STEP A: ENTERING THE GENERATOR ROUTINE FOR THE FIRST
TIME ONLY

The special effects routine is not yet ready for use. This will be done in Step 2. Go to
Step J next in order to set up the proper pages. This is necessary before you set up the
special effects routine.

STEP 1: SELECTING PAGE 1 OR PAGE 2 ,
Decide which page you want to scroll. Enter HGR to scroll page I or H�R2 to scr?II

page 2. The equivalent POKE commands for setting up pa� I or page 2 mentioned earlier
can be substituted for HGR or HGR2.

STEP 2: CREATING A SPECIAL EFFECIS ROUTINE

The special effects routine is not yet ready for u�e. You must first BRU:-J the appropnate
generator routine. This causes the genera�or routine to create the special effects rout�ne:
For example. the following command will generate the Scroll Left Same Color routrne. �

BRUN LEFTSCROLL2

Generator Routine
LEFTSCROLL
LEFTSCROLU
RIGHTSCROLL
RIGHTSCROLU
UPSCROLL
DOWNSCROLL

Starting Address
28672
32260
28672
32260
28672
28672

TABLE 7-11. STARTING
ADDRESSES OF

GENERA TOR ROUTINES

The routine is now in memory and ready for use. Use the CALL 24 758 command to
access the particular scrolling routine.

If you adjust the HIMEM or use the MAXFILES command, the special effects routine
may be written over and consequently not function properly. You will then have to return
to Step I.

204 -------- APPLESOFT BASIC SUBROUTINES & SECRETS
HIGH RESOLUTION GRAPHICS --------------- 205

SCROWNG LEFT WITH COMPLEMENTARY COLORS

This program scrolls a hi-res graphics design from right to left and continues on the
right side of the screen. This creates a wraparound effect since the leftmost 7 bytes
become the r.ightmost 7 bytes. It changes the colors to their complementary colors in the
process.

E�PLANATION _

To load this routine into memory use the command:

BRUN LEFTSCROLL
Issue the CALL 24 758 command each time you want to scroll the screen left 7 plot

positions.
Since this program shifts an odd number of positions at a time. the colors flip between

their normal and complementary colors. Blue switches with orange, while green switches
with violet. Black and white are not affected.

5 REM === LEFTSCROLL.A ===
10 HOt-iE
20 FOR X = 0 TO 247: READ V: POKE 28672 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: IF A$= "N" T
HEN END
40 IF A$< > ''Y'' THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE LEFTSCROLL,A$7000,
L$F8"
100 DATA 169,182,1�3,6,162,0,160,0,169,96
110 DATA 133,7,32,177,112,32,17,244,160,0
120 DATA 169,173,32,212,112,200,169,141,32,225
130 DATA 112,32,192,112,208,235,169,160,145,6
140 DATA 200,169,0,145,6,32,161,112,140,248
150 DATA 112,162,l,142,249,112,169,185,32,133
160 DATA 112,206,249,112,169,153,32,133,112,238
170 DATA 249,112,238,248,112,173,248,112,201,l92
180 DATA 208,230,160,7,185,240,112,145,6,136
190 DATA 16,248,160,7,32,161,112,32,177,112
200 DATA 32,17,244,165,38,24,105,39,133,38
210 DATA 160,0,169,173,32,225,112,200,169,141
220 DATA 32,212,112,32,192,112,208,228,169,96
230 DATA 145,6,96,72,173,248,112,160,0,32
240 DATA 17,244,160,0,104,145,6,200,165,38
250 DATA 24,109,249,112,145,6,200,165,39,l45
260 DATA 6,200,24,152,101,6,133,6,165,7
270 DATA 105,0,133,7,160,0,96,168,65,141
280 DATA 250,112,169,110,141,251,112,140,248,112

206 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

290
300
310
320
330
340

DATA 152,96,32,161,112,238,250,112,208 3
DATA 238,251,112,238,248,112,173,248,112,201
DATA 192,96,145,6,200,165,38,145,6,200
DATA 165,39,145,6,96,145,6,200,173,250
DATA 112,145,6,200,173,251,112,145,6,96
DATA 200,192,39,240,3,76,56,101

HIGH RESOLUTION GRAPHICS ________________ 207

SCROWNG LEFT WITH SAME COLOR

This program scrolls a hi-res graphics picture from right to left to create a wraparo�nd
effect. It keeps the same colors as the original picture and scrolls faster than the previous
program. The routine scrolls 14 plot positions at a time. Since this is an even number. the
colors remain intact.

EXPLANATION=---------------------

To load this routine into memory use the command:

BRUN LEFTSCROLL2
Issue the CALL 24 758 command each time you want to scroll the screen left 14 plot

positions.

5 REM === LEFTSCROLL2.A ===
10 HOME
20 FOR X = 0 TO 341: READ V: POKE 32260 + X,V: NEXT
30 PRINT "SAVE TO DISK {Y/N): '';: GET A$: IF A$= "N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ {4);"BSAVE LEFTSCROLL2,A$7E04
,L$156"
100 DATA 169,182,133,6,162,0,l60,0,169,96
110 DATA 133,7,169,194,141,90,l27,169,123,141
120 DATA 94,127,138,141,93,127,32,252,l26,l69
130 DATA 130,141,90,127,169,124,141,94,127,169
140 DATA l,141,93,127,152,170,32,252,l26,l69
150 DATA 160,145,6,200,169,0,l45,6,32,236
160 DATA 126,140,91,127,162,2,142,92,127,169
170 DATA 185,32,208,126,206,92,127,206,92,127
180 DATA 169,153,32,208,126,24,169,3,109,92
190 DATA 127,141,92,127,169,185,32,208,l26,206
200 DATA 92,127,206,92,127,169,lS3,32,208,l26
210 DATA 238,92,127,238,91,127,173,91,127,201
�O DATA 192,208,202,160,8,185,81,l27,145,6
230 DATA 136,16,248,160,8,32,236,126,169,38
240 DATA 141,93,127,169,194,141,90,l27,169,123
250 DATA 141,94,127,152,32,185,126,l69,39,l41
260 DATA 93,127,169,130,141,90,127,169,124,141
270 DATA 94,127,152,32,185,126,l69,96,l45,6
280 DATA 96,141,91,127,32,67,127,169,173,32
290 DATA 19,127,200,169,141,32,34,127,32,47
300 DATA 127,208,237,96,72,173,91,127,160,0
310 DATA 32,17,244,160,0,104,145,6,200,165
320 DATA 38,24,109,92,127,145,6,200,l65,39
330 DATA 145,6,200,24,152,101,6,133,6,l65
340 DATA 7,105,0,133,7,160,0,96,l41,91
350 DATA 127,32,67,127,169,173,32,34,l27,200
360 DATA 169,141,32,19,127,32,47,l27,208,237
370 DATA 96,145,6,200,173,90,127,145,6,200
380 DATA 173,94,127,145,6,96,145,6,200,165
390 DATA 38,145,6,200,165,39,l45,6,96,32

208 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

400 DATA 236,126,238,90,127,208,3,238,94,127
410 DATA 238,91,127,173,91,127,201,l92,96,32
420 DATA 17,244,160,0,165,38,24,109,93,127
430 DATA 133,38,96,200,200,192,38,240,3,76
440 DATA 184,105

SCROWNG RIGHT WITH COMPLEMENTARY COLORS

This program scrolls the screen right 7 plot positions each time it is called. The rightmost
7 bytes become the leftmost 7 bytes, creating a wraparound effect. Since an odd number
of positions are scrolled, the colors flip between their complementary and original colors.

EXPLANATION _

To load this routine into memory use the command:

BRUN RIGHTSCROLL
Issue the CALL 24 758 command each time you want to scroll the screen right 7 plot

positions.

5 REM === RIGHTSCROLL.A ===
10 HOME
20 FOR X = 0 TO 245: READ V: POKE 28672 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: IF A$= "N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT C_HR$ (13): CHR$ (4): "BSAVE RIGHTSCROLL,A$7000
,L$F6"
100 DATA 169,182,133,6,162,0,160,0,169,96
110 DATA 133,7,32,177,112,32,17,244,l65,38
120 DATA 24,105,39,133,38,160,0,169,173,32
130 DATA 212,112,200,169,141,32,225,112,32,192
140 DATA 112,208,228,169,160,145,6,200,169,38
150 DATA 145,6,32,161,112,140,246,112,162,0
160 DATA 142,247,112,169,185,32,133,112,238,247
170 DATA 112,169,153,32,133,112,206,247,112,238
180 DATA 246,112,173,246,112,201,192,208,230,l60
190 DATA 7,185,240,112,145,6,136,16,248,160
200 DATA 7,32,161,112,32,177,112,32,17,244
210 DATA 160,0,169,173,32,225,112,200,169,l41
220 DATA 32,212,112,32,192,112,208,235,169,96
230 DATA 145,6,96,72,173,246,112,160,0,32
240 DATA 17,244,160,0,104,145,6,200,l65,38
250 DATA 24,109,247,112,145,6,200,165,39,145
260 DATA 6,200,24,152,101,6,l33,6,165,7
270 DATA 105,0,133,7,160,0,96,169,65,141
280 DATA 248,112,169,110,141,249,112,140,246,112
290 DATA 152,96,32,161,112,238,248,112,208,3
300 DATA 238,249,112,238,246,112,173,246,112,201
310 DATA 192,96,145,6,200,165,38,145,6,200
320 DATA 165,39,145,6,96,145,6,200,173,248
330 DATA 112,145,6,200,173,249,ll2,145,6,96
340 DATA 136,48,3,76,56,101

HIGH RESOLUTION GRAPHICS --------------- 209

SCROWNG RIGHT WITH SAME COLOR

This program scrolls the graphics picture from left to right 14 plot positions and wraps
around on the left side of the screen. The colors remain intact.

EXPLANATION _

To load this routine into memory use the command:

BRUN RIGHTSCROLL2
Issue the CALL 24 758 command each time you want to scroll the screen right 14 plot

positions.

5 REM === RIGHTSCROLL2.A ===
10 HOME
20 FOR X = 0 TO 339: READ V: POKE 32260 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ":: GET A$: IF A$= "N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE RIGHTSCROLL2,A$7EO
4,L$154"
100 DATA 169,182,133,6,162,0,l60,0,169,96
110 DATA 133,7,169,38,141,91,127,169,194,141
120 DATA 88,127,169,123,141,92,127,152,32,252
130 DATA 126,169r39,141,91,127,169,130,141,88
140 DATA 127,169,124,141,92,127,152,32,252,126
150 DATA 169,160,145,6,200,169,36,145,6,32
160 DATA 236,126,140,89,127,162,l,142,90,127
170 DATA 169,185,32,208,126,238,90,l27,238,90
180 DATA 127,169,153,32,208,126,56,173,90,127
190 DATA 233,3,141,90,127,169,185,32,208,126
200 DATA 238,90,127,238,90,127,169,153,32,208
21� DATA 126,206,90,127,238,89,l27,l73,89,l27
220 DATA 201,192,208,202,160,6,185,81,127,145
230 DATA 6,136,16,248,160,6,32,236,126,l69
240 DATA 194,141,88,127,169,123,141,92,127,152
250 DATA 141,91,127,32,185,126,169,130,141,88
260 DATA 127,169,124,141,92,127,169,l,141,91
270 DATA 127,152,170,32,185,126,l69,96,l45,6
280 DATA 96,141,89,127,32,67,127,169,173,32
290 DATA 19,127,200,169,141,32,34,l27,32,47
300 DATA 127,208,237,96,72,173,89,127,160,0
310 DATA 32,17,244,160,0,104,145,6,200,165
320 DATA 38,24,109,90,127,145,6,200,165,39
330 DATA 145,6,200,24,152,101,6,133,6,165
340 DATA 7,105,0,133,7,160,0,96,l41,89
350 DATA 127,32,67,127,169,173,32,34,127,200
360 DATA 169,141,32,19,127,32,47,127,208,237
370 DATA 96,145,6,200,173,88,127,145,6,200
380 DATA 173,92,127,145,6,96,l45,6,200,l65

21 0 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

390 DATA 38,145,6,200,165,39,145,6,96,32
400 DATA 236,126,238,88,127,208,3,238,92,127
410 DATA 238,89,127,173,89,127,201,192,96,32
420 DATA 17,244,160,0,165,38,24,l09,91,127
430 DATA 133,38,96,136,136,48,3,76,184,105

HIGH RESOLUTION GRAPHICS --------------- 211

SCROWNGUP

This program scrolls the graphics picture up the screen 1 plot position each time it is
called. A wraparound effect is created, since the top byte becomes the bottom byte. Since
it only moves one byte at a time, this program scrolls the screen slowly.

EXPLANATION _

To load this routine into memory use the command:

Issue the CALL 24 758 command each time you want to scroll the screen up 1 plot
position at a time.

REM === UPSCROLL.A ===
HOME
FOR X = 0 TO 141: READ V: POKE 28672 + X,V: NEXT
PRINT "SAVE TO DISK (Y/N): ":: GET A$: IF A$= "N" T
END

IF A$< > "Y" THEN 30
PRINT CHR$ (13); CHR$ (4):"BSAVE UPSCROLL,A$7000,L$
DATA 169,182,133,6,169,96,133,7,165,230
DATA 141,123,112,160,7,185,119,ll2,l45,6
DATA 136,16,248,169,190,133,6,l69,1,l41
DATA 142,112,169,185,32,81,112,206,142,112
DATA 169,153,32,81,112,238,142,ll2,238,142
DATA 112,173,142,112,201,192,208,230,169,191
DATA 160,0,32,17,244,165,39,l41,l32,112
DATA 160,14,185,127,112,145,6,l36,l6,248
DATA 96,72,173,142,112,160,0,32,17,244
DATA 160,0,104,145,6,200,165,38,l45,6
DATA 200,165,39,145,6,200,152,24,lOl,6
DATA 133,6,165,7,105,0,l33,7,96,160
DATA 0,185,0,255,141,255,63,l73,255,63
DATA 153,208,255,200,192,40,240,3,76,l84
DATA 96,96

21 2 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SCROWNG DOWN

This _program scrolls the graphics picture down the screen with the bottom-most byte
becomrng the top. It scrolls the screen down 1 byte or plot position each time it is called.
Therefore, this program scrolls the screen slowly.

EXPLANATION---------------------

To load this routine into memory use the command:

BRUN DOWNSCROLL

l��ue the C�LL 24 758 command each time you want to scroll the screen down 1 plot
posrtron at a time.

5 REM === DOWNSCROLL.A ===
10 HOME
20 FOR X = 0 TO 141: READ V: POKE 28672 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: IF A$= "N" T
HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13): CHR$ (4);"BSAVE DOWNSCROLL,A$7000,
L$8E"
100 DATA 169,182,133,6,169,96,133,7,169,191
110 DATA 160,0,32,17,244,165,39,141,123,112
120 DATA 160,7,185,119,112,145,6,136,l6,248
130 DATA 169,190,133,6,169,190,141,142,ll2,l69
140 DATA 185,32,81,112,238,142,112,l69,153,32
150 DATA 81,112,206,142,112,206,142,112,173,142
160 DATA 112,201,255,208,230,165,230,141,132,112
170 DATA 160,14,185,127,112,145,6,136,16,248
180 DATA 96,72,173,142,112,160,0,32,l7,244
190 DATA 160,0,104,145,6,200,165,38,145,6
200 DATA 200,165,39,145,6,200,152,24,101,6
210 DATA 133,6,165,7,105,0,l33,7,96,l60
220 DATA 0,185,208,255,141,255,63,l73,255,63
230 DATA 153,0,255,200,192,40,240,3,76,l84
240 DATA 96,96

HIGH RESOLUTION GRAPHICS --------------- 21 3

BRUN UPSCROLL

5
10
20
30
HEN
40
50
SE"
100
110
120
130
J.40
150
160
170
180
190
200
210
220
230
240

UPSCROLL,DOWNSCROLL,HH SCREEN FLIP,HH SCREE

REM ---PLOT DOT ---
HPLOT XP,YP TO X,Y TO X + l,Y TO XP + l,YP: HPLOT X

170

(K$ = "

y - (Y >

PEEK (226

128 THEN 70
{K$ = "K") * S
(X < 0) * S
= "I") * S:Y -

- 16368,0: GOTO
- 16368,0: GOTO 70
8) * 8: HCOLOR= HC

io REM === HIRES KEYBOARD DEMO===
20 FOR X = 1 TO 8: READ S${X): NEXT X

D$ = CHR$ (13) + CHR$ (4) 25 REM ET . --- CH A SKETCH ---
3o HGR: HOME: POKE - 16302 O
40 HC = 6:S = l:X = 127:Y = 96,
50 HCOLOR= HC: HPLOT X,Y
60 POKE - 16368,0
67 REM --- READ KEYBOARD ---
70 K = PEEK (- 16384): IF K <
8� K: = CHR$ (K - 128):X = X +
J) S:K = X - {X > 278) * S +
90 Y = Y + (K$ = "M") * S - (K$
191) * S + (Y < 0) * S
100 XP = PEEK (224) + PEEK {225) * 256:YP =
)
105
110
,Y
i�� IF VAL (K$) < 11 AND VAL {K$) > 0 THENS= VAL (
130 IF ASC (K$) - 27 THEN POKE
140 IF K$ < >" n THEN POKE
150 HC = HC + l:HC = HC - (HC =
160 POKE - 16368,0: GOTO 70
165 REM --- DISPLAY MENU ---
170 TEXT: HOME: VTAB 13
180 FOR X = 1 TO 6: HTAB 7: PRINT "("X") "S$(X): NEXT X 190 PRINT: INPUT ncHOOSE A SCROLLING PROGRAM {1-6) ";P
200 p = VAL (P$): IF P < 1 OR P > 6 THEN POKE 37, PEEK (37) - 2: GOTO 190
210 HOME: VTAB 13
i;O FOR X = 1 TO 2: HTAB 7: PRINT "("X") "S$(X + 6): NE
230 PRINT: INPUT "WHICH FLIP (1-2) "·F$
240 F = VAL (F$): IF F < 1 ORF 2 ' (37) - 2: GOTO 230 > THEN POKE 37, PEEK
245 REM --- LOAD MACHINE LANGUAGE ROUTINES ---
250 PRINT D$"BLOAD SCREEN EOR": PRINT D$"BLOAD HV SCREE N FLIP": PRINT D$"BLOAD"S$(F + 6)
260 PRINT D$"BRUN"S$(P)
265 REM --- DISPLAY HIRES SCREEN ---
270 POKE - 16304,0: POKE - 16297 0· POKE - 16302,0: POKE - 16368,0 ' •
275 REM --- READ KEYBOARD ---
280 K = PEEK { - 16384): IF K = 141 THEN CALL 24758 290 IF K = 209 THEN CALL 24576
300 IF K = 215 THEN CALL 24638
310 IF PEEK { - 16384) < > 160 THEN 280 :;o POKE - 16301,0: VTAB 21: INPUT "EOR FACTOR (0-6) "
330 CALL 768,F: POKE - 16302,0: GOTO 280 ff�O DATA LEFTSCROLL,LEFTSCROLL2,RIGHTSCROLL,RIGHTSCRO
1010 DATA
N FLIP2

This program demonstrates the use of the special effects routines using keyboard
control.

KEYBOARD DEMONSTRATION OF SPECIAL
EFFEC IS ROUTINES

EXPLANATION _

The program demonstrates four special effects at a time. It loads the special effects
routines SCREEN EOR and HVSCREEN FLIP. You can select one of the following scrolling
routines: LEffiCROLL, LEffiCROLL2, RlGHTSCROLL, RIGHTSCROLL2, UPSCROLL, or
DOWNSCROLL. And you can select one of the page flips, either HH SCREEN FLIP or HH
SCREEN FLIP2.

The program includes an etch-a-sketch routine to draw a design. If you have a binary
picture that you would like to use, then omit lines 30-160 from the program and save the
program as HIRES KEYBOARD DEMO 2. Then BLOAD your picture to page 1 and run the
program HIRES KEYBOARD DEMO 2.

Line 10 reads in the names of the special effects. Lines 30-160 provide an etch-a-sketch
program to draw a design. The space bar allows you to change the color of the dot being
HPLOTted. The keys I, J, K, and M move the dot up, left right and down, respectively. The
keyboard is read on line 70. Lines 80-90 adjust the value of X or Y, depending on the
keypress. Line 100 checks the color of the last dot HPLOTted.

The dot is HPLOTted from its old position XP,YP to its new position X,Y at line 110.
There is an adjustment factor for the number of dots you move at a time. Enter any

"' number 1-9 to set this factor at any time in the program. Line 120 checks for a digit 1-9
keystroke and sets the adjustment factor S to your selected number.

The ESC key at line 1030 terminates the etch-a-sketch routine and requests you to select
two special routines.

Lines 170-200 request that you specify a scrolling routine, and lines 210-240 request
that you specify a flip routine. The routines are loaded into memory above one another,
along with the color switch routine and upside down flip at line 250. Line 260 BRUNs the
scrolling routine.

Line 270 sets the graphics screen to full screen hi-res graphics without erasing the
screen. The keyboard is read at lines 280-300 and the appropriate machine language
routine is called.

The space bar, followed by a number from Oto 6, allows you to change the colors of
the hi-res graphics picture. The RETURN key starts the scrolling routine, and any key stops
the scrolling. The keyO flips the picture upside down, while the keyW flips the picture
from side to side. CONTROL C RETURN stops the program.

21 4 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

HIGH RESOLUTION GRAPHICS �-�-�-��-������215

UPSCROLL,DOWNSCROLL,BB SCREEN FLJP,HH SCREEN

PADDLE DEMONSTRATION OF SPECIAL
EFFEC IS ROUTINES

This program demonstrates the special effects routines using paddle, button, and
keyboard control.

EXPLANATION _

The program is similar to HIRES KEYBOARD DEMO except it uses paddle, button, and
keyboard controls. See the explanation for HIRES KEYBOARD DEMO. The etch-a-sketch
uses paddle Oto change colors rather than the space bar, and the paddles control the
movement of the dot rather than the keys I, J, K, and M. There is no adjustment factor for
spacing in this program.

The button on paddle I terminates the etch-a-sketch program and requests the special
effects routines. This is similar to HIRES KEYBOARD DEMO.

The controls differ with the exception of the space bar followed by a number from Oto
6, which still controls the color switching. The movement of either paddle controls the
scrolling. When the paddle reads in the middle range (87-167), the scrolling stops.

Button O flips the picture upside down, while button 1 flips the picture from side to side.
If you have an Apple lie/lie, the open and closed apples function the same as buttons O
and 1 on the paddles. CONTROL C RETURN stops the program.

230 PRINT D$"BLOAD SCREEN EOR": PRINT D$"BLOAD HV SCREE
N FLIP": PRINT D$"BLOAD"S$(F + 6)
240 PRINT D$"BRUN"S$(P)
245 REM --- DISPLAY HIRES SCREEN ---
250 POKE - 16304,0: POKE - 16297 0: POKE - 16302,0: POKE - 16368,0 '
255 REM --- READ PADDLES/BUTTONS/KEYBOARD ---
260 IF POL (0) < 87 OR POL (0) > 167 OR POL (1) < 87
OR POL (1) > 167 THEN CALL 24758

270 IF PEEK (- 16286) > 127 T�BN CALL 24638
280 IF PEEK (- 16287) > 127 THEN CALL 24576
290 IF PEEK (- 16384) < > 160 THEN 260
300 POKE - 16301,0: VTAB 21: INPUT "EOR F'ACTOR (0-6) 11

;F
310 CALL 768,F: POKE - 16302,0: GOTO 260
1000 DATA LEFTSCROI,I,,LEFTSCROLL2 ,RIGHTSCROLL,RIGHTSCRO LL2
1010 DATA
FLIP2

21 6 -------- APPLESOFT BASIC SUBROUTINES & SECRETS
HIGH RESOLUTION GRAPHICS --------------- 21 7

REM === HIRES PADDLE DEMO===
FOR X = 1 TO 8: READ S$(X): NEXT X

0$ = CHR$ (13) + CHR$ (4)
REM --- ETCH A SKETCH ---
HGR: HOME: POKE - 16302,0

HC = 1: HCOLOR= HC
HPLOT POL (0) * 278 / 255, PDL (1) * 191 / 255

X = POL (0) * 278 / 255:Y = POL (1) * 191 / 255
XP = PEEK (224) + PEEK (225) * 256:YP = PEEK (226)
HPLOT TO X,Y: HPLOT XP + 1,YP TO X + l,Y: HPLOT X,Y
REM --- READ BUTTONS ---
IF PEEK (- 16286) > 127 THEN 150
IF PEEK (- 16287) < 128 THEN P = 0: GOTO 60
IF P = 1 THEN 60

HC = HC + l:HC = HC - (HC = 8) * 8: HCOLOR= HC
POKE 28, PEEK (228):P = 1
GOTO 60
REM --- DISPLAY MENU --
TEXT: HOME: VTAB 13
FOR X = 1 TO 6: HTAB 7: PRINT "("X") "S$(X): NEXT X
PRINT : INPUT •cHOOSE A SCROJ.,Ll t-JG PROGRAM (1-6) 11; P

5
10
20
25
30
40
50
60
70
80
85
90
100
110
120
130
140
145
150
160
170
$
180 P = VAL (P$): IF P < 1 OR P > 6 THEN POKE 37, PEEK

(37) - 2: GOTO 170
190 HOME: VTAB 13
200 FOR X = 1 TO 2: HTAB 7: PRINT "("X") "S$(X + 6): NE
XT
210 PRINT: INPUT "WBICH FLIP (1-2) "1F$
220 F = VAL (F$): IF F < 1 ORF> 2 THEN POKE 37, PEEK

(37) - 2: GOTO 210
225 REM --- LOAD MACHINE LANGUAGE ROUTINES ---

I

'

SPIRAL DISPIA Y OF SCREEN

This routine displays the high resolution graphics screen in a spiral that moves in a
counterclockwise direction.

EXPLANATION _

The routine takes the picture from page 1 and spirals it onto page 2, starting at the
center of the screen.

DATA statements are used to enter the directions for a machine language program.
These instructions are poked into memory starting at address 24576. Run the program
and answer Y to save it, if it has not already been saved. This creates a binary file.

When you wish to use this routine, load in a hi-res graphics image to page 1 with the
following command, where picturename is the name of the binary file:

BLOAD picturena.me,A$2000
Then BLOAD the spiral routine with the command:

BLOAD SPIRAL DISPLAY
Issue the HGR2 command or the equivalent pokes to set page 2. Use the command

CALL 24576 to access the machine language routine.
This routine cannot be used with the scrolling or page flipping routines, since they

occupy the same memory locations.
You can adjust the speed of this spiraling routine by poking in two additional values.

Enter these two commands, where H represents the counter for an outer loop and L
represents the counter for an inner loop. The values of Land H can be in the range 0-255,
where O equals a count of 256. This routine is initially set up so H = 4 and L = 0. By
entering the following two POKE commands, you change the values of H and L.

POKE 24776,H
POKE 24781,L
To obtain the starting values again, enter the following two POKE commands:

POKE 24776,4
POKE 24781,0

21 B --------- APPLESOFT BASIC SUBROUTINES & SECRETS

5 REM === SPIRAL DISPLAY.A=== 10 HOME
20 FOR X = 0 TO 259: READ V: POKE 24576 + X,V: NEXT
30 PRINT "SAVE TO DISK (Y/N): ";: GET A$: IF A$= "N" T HEN END
40 IF A$< > "Y" THEN 30
50 PRINT CHR$ (13); CHR$ (4);"BSAVE SPIRAL DISPLAY,A$6 OOO,L$103"
100 DATA 169,32,133,230,169,0,l41,5,97,141
110 DATA 6,97,160,0,32,17,244,172,6,97
120 DATA 165,38,153,10,97,165,39,153,38,97
130 DATA 238,6,97,24,173,5,97,105,8,141
140 DATA 5,97,201,192,144,222,169,28,141,8
150 DATA 97,169,11,141,7,97,169,l,141,4
160 DATA 97,169,17,141,9,97,32,153,96,32
170 DATA 233,96,206,8,97,32,153,96,32,249
180 DATA 96,208,245,32,233,96,238,7,97,32
190 DATA 153,96,32,239,96,208,245,238,4,97
200 DATA 238,9,97,173,9,97,201,40,208,3
210 DATA 76,215,96,32,233,96,238,8,97,32
220 DATA 153,96,32,249,96,208,245,32,233,96
230 DATA 206,7,97,32,153,96,32,239,96,208
240 DATA 245,238,4,97,238,9,97,32,233,96
250 DATA 76,72,96,172,7,97,185,l0,97,l33
260 DATA 6,133,8,185,38,97,133,7,24,105
270 DATA 32,133,9,172,8,97,162,7,177,6
280 DATA 145,8,24,165,7,105,4,133,7,24
290 DATA 165,9,105,4,133,9,202,16,235,l69
300 DATA 4,141,66,97,160,0,136,208,253,206
310 DATA 66,97,208,248,96,206,9,97,32,233
320 DATA 96,238,8,97,32,153,96,32,249,96
330 DATA 208,245,96,169,0,141,3,97,96,238
340 DATA 3,97,173,3,97,205,4,97,96,238
350 DATA 3,97,173,3,97,205,9,97,96,0

HIGH RESOLUTION GRAPHICS --------------- 219

CHAPTER a�� CIRCLE- S,-S- IN_E_S_ ,_C_O_S_ IN_E_S_ , -
AND DESIGNS

The Apple computer can generate numerous interesting designs, images,
illusions, and portraits of people. Many beautiful designs can be obtained by
cyclical repetition of math functions with slight variations between cycles. Art
shows now include computer-generated art as another form of creative
expression.

The sine and cosine are built-in trigonometric functions that can produce sine
waves, circles, spirals, and other geometric designs. The sine wave can be used
for a border in high resolution graphics orto display your name or message in text.
A variation of the circle routine can produce ellipses and spirals.

___ 221 ---

This graphically illustrates the built-in functions of sine and cosine waves.

EXPLANATION---------------------

The following diagrams illustrate the sine and cosine wave functions.

cos

SINE AND COSINE

SIN

DEGREES AND RADIANS

The computer uses radians rather than degrees to measure angles. This shows the
conversion between degrees and radians.

EXPLANATION _

We use degrees to measure angles, but the computer uses radians. A complete
revolution of a circle is 360° or 21r radians. where tr = 3.14159.

Computer art can be generated by combinations of the sine and cosine
funaions to produce designs that resemble flowers, spheres. and spirals.

The following programs give suggested values for the variables. After running
the programs with the suggested values, try changing them to obtain additional
designs.

It is advisable to read the first several pages of this chapter, including the
explanation of the C ire le program, in order to understand sine and cosine
funcnons. amplitude, frequency, and the adjustment factor. These variables are
used in most of the programs but are only explained thoroughly in the beginning
of the chapter.

21T radians = 360°
21T 360
-- radians = 1 degree 1 radian = degrees
360 21T

1T 180
radians = 1 degree 1 radian = 1T degrees

180

As the argument {value within parentheses} goes from O to 21r radians, the values of
the sine and cosine functions range from l to -1. as shown in Table 8-1.

TABLE 8-1. VALUES OF
SINE ANO COSINE

CONVERSION

To convert from degrees to radians. multiply degrees by tr /180:

RAD =DEG* 1T/180

Angle in radians COS(A) SIN(AJ
1r/2 0 I
tt -I O
31r/2 0 -I
21r I O

To convert from radians to degrees. multiply radians by l80/1r:

DEG= RAD* 180/1T

222 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

CIRCLES, SINES, COSINES, AND DESIGNS ----------- 223

FREQUENCY

Frequency represents how often the sine wave is completed as A goes from Oto 21r
radians.

The following figures represent a frequency of I, 2, and 3.

AMPLITUDE

Multiplying the sine and cosine functions by AM, where AM represents the value of the
amplitude. adjusts the functions so the amplitude ranges from AM to-AM. AM can be
considered a scaling factor. This is illustrated by the figures below.

Amplitude= 1 Amplitude = 2 Amplitude = 3

TT
o,----+---�

2rr

3

1

2

-1

-2

Frequency= 3

1

Frequency= 2 Frequency = 1

Y = SIN (A) Y = 2*SIN (A) Y = 3*SIN (A)

2,r TT

1

2

3

O t---+-e--+-.._

-1

-2

-3

2TT

1

2

-1

-2

Y = SIN (3*A)

tr

1

-1

Y = SIN (2*A) Y = SIN (A)

X = COS (A) x = 3·cos (A)

X = COS (A) X = COS (2*A)

224 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
CIRCLES, SINES, COSINES. AND DESIGNS ------------ 225

SINE WAVES
VERIICAL STAR SINE WAVE

This program prints an asterisk or star on the text screen in a sine wave formation. This
sine wave moves down the screen rather than across, since the axis of the sine wave is
vertical rather than horizontal.

EXPLANATION _

The sine function is usually viewed moving across the screen. This program rotates the
function 90° so it will snake down the screen while it prints an asterisk. A curve is
completed as A goes from Oto 2rr radians. This is called a cycle. N controls the number of
cycles.

The variables are:
Pl Value of tr
N Number of cycles
S Step size
AM Amplitude or scaling factor
XC Center of sine wave on text screen
Z Counter for delay loop
A Value of angle from O to N X 21r radians
X Tabbing value

Since the sine of an angle can only have values from l to -1, you must expand its scale
in order to see its shape. AM represents the amplitude and adjusts the scaling. To obtain a
range that contains the maximum number of points on the text screen, let AM= 19. When
you multiply the sine value by AM in line 90, you expand the range from -1 through 1 to a
new range of -19 through 19. This range, including 0, takes 39 print positions.

Since you cannot tab a negative number or plot a negative value, you must add a factor
to bring the values of the sine wave within tabbing or plotting limits. XC represents the
desired center. When you add XC in I ine 90, where XC = 20, you bring the range from -19
through 19 to a new adjusted range ofl-39. This shifts the center from O toXC or 20. You
now have the tabbing range across the screen.

The step size S in line 70 determines the number of points plotted along the curve. A
larger step size means fewer points, and a smaller step size means more points.

5 REM === STAR SINE WAVE===
10 PI= 3.14159
20 N = 4:S = .2:AM = 19:XC = 20
30 TEXT: HOME
40 HTAB (15): VTAB (12): PRINT "SINE WAVE"
50 FOR Z - 1 TO 500: NEXT Z
60 HOME
70 FOR A - 0 TON* PI STEPS
80 X =AM* SIN (A) + XC
90 PRINT TAB(X)1"*"
100 FOR Z = 1 TO 50: NEXT Z
110 NEXT A
199 END

226 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

SAMPLE OUTPUT===:-:---------------------

SINE WAVE
*

*
*

*
*

*
*
*
*
*

*
*

*
*

*
*

*
*

*
*

*
*
*
*

*
*

*
*

*
*

*
*

*
*

*
*
*
*
*

*
*

*
*

*
*

*
*

*
*

*
MODIFICATIONS---------------------

l. Change the number of cycles graphed by changing the value of N.
2. Change the number of points plotted by changing the step sizes.
3. Change what is printed from an asterisk to another symbol, your name, or a message. You

may have to change the scale factor AM from 19 to another number, and change the X
center XC from 20 to another number to enable your message to fit on the screen.

CIRCLES, SINES, COSINES, ANO DESIGNS ------------ 227

F = .5:YS = 1:Y = 5
GOSUB lOOO"SINE DOWN"

N = 21:INC = .S:YC = 180:AM = 5
F = .5:XS = l:X = 5
GOSUB 2000"SINE ACROSS"
END
REM ===DOWN===
HPLOT XC +AM* SIN (0),0
FOR A= 0 TON* 2 * PI STEP INC

X =AM* SIN (A* F) + XC
Y = Y + YS
HPLOT TO X,Y
NEXT A
RETURN
REM ===ACROSS===
HPLOT O,AM * SIN (0) + YC
FOR A= 0 TON* 2 * PI STEP INC

X = X + XS
Y =AM* SIN (A* F) + YC
HPLOT TO X,Y
NEXT A
RETURN

(
? •

120
130
140
150
160
499
995
1000
1010
1020
1030
1040
1050
1060
1995
2000
2010
2020
2030
2040
2050
2060

CIRCLES, SINES, COSINES, ANO DESIGNS ----------- 229

SAMPLE OUTPUT---------------------

MOOIFICATION---------------------

To change the border. you can change the step size INC, the amplitude AM. the
frequency F, and the number of cycles N to other values.

SINE WAVE A BORDER IN HGR

228 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

This program draws a sine wave border around the screen in high resolution graphics.

EXPLANATION _

A straight line border is drawn at line 40. Then two subroutines are used to draw the
sine waves. The subroutine at 1000-1060 draws the sine wave down the screen. while the
subroutine at 2000-2060 draws the sine wave across the screen.

The variables are set in lines 50-160 for each sine wave and the appropriate subroutine
is executed.

The variables are:
N Number of cycles
INC Step size
XC Center on X-axis
YC Center on Y-axis
AM Amplitude or scaling factor
F Frequency
X Value on X-axis
Y Value on Y-axis
XS Increment or step size on X-axis
YS Increment or step size on Y-axis
A Value of angle from Oto 2rr radians

The variable AM represents the amplitude and adjusts the range of the values of the
sine wave from -AM to AM. The variable F stands for the frequency and adjusts how
often the sine wave is completed as A varies from O to 21r radians.

Since the origin of the hi-res screen is in the upper left comer. you will have to add a
constant to the horizontal and vertical values in order to position the center of the figure
on the screen at the desired location. XC adjusts the horizontal position. while YC adjusts
the vertical position.

XS determines the increment or step size on the X-axis as the sine function moves
across the screen. while YS does the same on the Y-axis as the function moves down the
screen.

N determines the number of cycles of the sine function that will be drawn. Different
values of N are used for the X-axis and Y-axis and these values must be adjusted if you
change the frequency F.

5 REM === SINE WAVE BORDER===
10 PI= 3.14159
20 HGR2
30 HCOLOR= 3
35 REM --- BORDER ---
40 HPLOT 0,0 TO 279,0 TO 279,191 TO 0,191 TO 0,0
45 REM --- SINE WAVES ---
50 N = 14:INC = .S:XC = 10:AM = 5
60 F = .5:YS = 1:Y = 5
70 GOSUB lOOO"SINE DOWN"
80 N = 21:INC = .5:YC = 10:AM = 5
90 F = .5:XS = l:X = 5
100 GOSUB 2000"SINE ACROSS"
110 N = 14:INC = .S:XC = 270:AM - 5

CIRCLES
CIRCLES USING TRIGONOME I RIC METHOD

. �he value of INC deter�ines the number of points that will be plotted. Table 8-2
rndrcates th� num�er of points plotted for various values of INC. Add one additional point
for the starting point.

TABLE 8-2. INC PLO I I ED POINTS

R·cos (A), R*SIN (A)

R*COS (A)
O,o _

Number of points plotted
10 X 2X3.14 = IOX6.28 = 62.8 = 62+1 = 63 points
2 X 2X3.14 = 2X6.28 = 12.56 = 12+1 = 13 points

100 X 2X3.J4 = IOOX6.28 = 628+1 = 629 points

varue of rNc
INC= .J
INC= .5
INC= .OJ

In order to adjust the radius of the circle to the desired value, multipythe functions byR
where R represents the amplitude. '

This program draws a circle using the trigonometric method.

EXPLANATION _

There are various ways of drawing a circle-estimation method, algebraic method,
and trigonometric method. This program uses the latter technique.

The variables are:
Pl Value of tr
AF Adjustment factor for circle/ellipse
R Radius or amplitude of sine and cosine functions
XC Center on X-axis
YC Center on Y-axis
A Value of angle from O to 21r radians
INC Step size or increment
X Distance on X-axis
Y Distance on Y-axis
The value ofX is determined by the cosine function, while the value ofY is determined

by the sine function. COSIA) represents the horizontal distance from the center of the
circle; SIN(A) represents the vertical distance from the center of the circle.

The variable A represents the angle in radians. The value of A ranges from Oto 21r
radians. where 21r represents one complete rotation of the circle and INC is the step size.

COS (A), SIN (A)

o,o _
COS (A}

230 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
CIRCLES, SINES, COSINES, ANO DESIGNS 231

The variables XC and YC shift the center of the circle from the upper left corner of the
screen 0,0 to the center of your choice XC.YC.

XC, YC
RADIUS ";R
CENTER FOR X ANDY AXIS"· ,
INCREMENT ";INC

HOME
"ENTER THE
"ENTER THE
"ENTER THE

or

7 ONERR GOTO 999

7 ONERR GOTO 45

45 TEXT:
50 INPUT
52 INPUT
54 INPUT

I. Try changing the value of the radius, where 95 is the maximum value.
2. Change the increment INC to other values such as . 7 .. 9, or .5.
3. You can get different shaped ellipses by changing the value of AF to .5 or 2. Adjust the

value of the radius accordingly.
4. lnp�t the values for the variables. Change line 50 and add lines 7. 45. 52. and 54. Line 7

avoids the range error message and program termination when an illegal value forX orY is
HPLOTted.

MODIFICATIONS=========--=-------------

R*SIN (A) + YC

R*COS (A) + XC, R*SIN (A) + YC

XC,YC----
R·cos (A) + xc

Since the screen is not a square. the circles appear as ellipses or flattened circles. On a
printer. however, they would appear as circles. To make them appear as circles on the
screen. an adjustment factor AF is used to multiply the cosine function. You may have to
change the values of the adjustment factor to accommodate the adjustment of your TV
screen or monitor. Try values such as 1.13, 1.15. or 1.18.

The value of R* COS(A)*AF+XC represents the distance on the X-axis. while the value
of R*SIN(A)+YC represents the value on the Y-axis.

The first point is HPLOTted. The remaining points on the circumference are connected
to the preceding point. The last point is connected to the first point to complete the circle.

(0) + XC,R * SIN (0) + YC
STEP INC
COS (A) + XC,R * SIN (A) + YC

AF* COS
TO 2 * PI
R *AF*

5 REM ===CIRCLE===
10 PI= 3.14159
20 AF= 1.17
30 HGR: POKE - 16302,0
40 HCOLOR= 3
50 R = 80:XC = 140:YC = 96:INC = .1
60 GOSUB lOOO"DRAW CIRCLE"
999 END
1000 HPLOT R *
1010 FOR A= 0
1020 HPLOT TO
1025 J = J + 1
1030 NEXT A
1040 HPLOT TOR* AF* COS (0) + XC,R *
1050 RETURN

SIN (0) + YC

232 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
CIRCLES, SINES, COSINES, AND DESIGNS ----------- 233

AF= 1.5

AF= 1.17

Then change line 1020 to:

where X and Y represent a point within the circle or outside the circle. The values of X
and Y do not have to be equal to XC and YC, respectively.

35 X = O:Y = 0

1020 HPLOT X,Y TOR* COS(A) * XF + XC,R * SIN(A) + YC

35 X = 140:Y = 0

35 X - 20:Y - 130

35 X - 100:Y - 60

or

or

or

l. Change the adjustment factor AF to get an elliptical figure.
2. Change the center of the spoke to a point other than the center of the screen. You need to

add a line 35. which may be one of the following:

CIRCLES, SINES, COSINES, AND DESIGNS ----------- 235

MODIFICATIONS----------------------

5 REM ===CIRCLE/SPOKES===
10 PI= 3.14159
20 AF= 1.17
30 HGR: POKE - 16302,0
40 HCOLOR= 3
50 R = 80:XC = 140:YC = 96:INC = .1
60 GOSUB lOOO"DRAW CIRCLE/SPOKES"
999 ENO
1000 HPLOT R *AF* COS (0) + XC,R * SIN (0) + YC
1010 FOR A= 0 TO 2 * PI STEP INC
1020 HPLOT XC,YC TOR* AF* COS (A) + XC,R * SIN (A)

+ YC
1030 NEXT A
1040 RETURN

SAMPLE OUTPUT _

234 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

AF=.75

This program draws spokes emanating from the center to the circumference of a circle.

SPOKES

EXPLANATION _

This program is a variation of the Circle program. Instead of connecting each point on
the circumference to each other, it connects each point on the circumference to a point in
the center XC,YC of the circle.

The variables are:
Pl Value of tt
AF Adjustment factor for circle/ellipse
R Radius of circle or amplitude
XC Center on X-axis
YC Center on Y-axis
A Value of angle from O to Ztt radians
INC Step size or increment
X Distance on X-axis
Y Distance on Y-axis

See the explanation of the Circle program for a description of this program.

DRAWING CIRCLE FASTER WITH ARRAYS

This program uses arrays to store the calculated values of the circle in order to draw the
circle quickly.

EXPLANATION _

The computer does calculations quickly-almost always faster than we could even
with the aid of a calculator. But it still takes some time to make the calculations. If you
calculate as you draw, the drawing will be slow.

The program first calculates the values and, when all the values are calculated and
stored, it draws the circle. This program is a modification of the program that draws a
circle.

The variables are:
Pl Value of tt
N Number of points
S Step size
R Radius or amplitude of sine and cosine functions
AF Adjustment factor for circle/ellipse
XC Center on X-axis
YC Center on Y-axis
X(N) Value on X-axis
Y(N) Value on Y-axis
A Value of angle as it ranges from Oto 2rr radians

Subroutine 1000-1050 stores the X and Y values as array elements. Line 100 lets you
position the circle at the center of your choice XC,YC. Lines I 10-150 draw the circle using
the array elements that have already been calculated. Line 110 draws the starting point
while line I 50 connects the last point or endpoint to the starting point.

5 REM === DRAW CIRCLE FASTER===
10 DIM X{63) ,Y{63)
20 TEXT: HOME
30 PI= 3.14159
40 VTAB 8: HTAB 17: PRINT "CIRCLE"
50 VTAB 12: HTAB 11: INVERSE: PRINT "ONE MOMENT PLEASE
": NORMAL
60 N = 0:S = .l:R = 95:AF = 1.17
70 GOSUB lOOO"SET UP ARRAYS"
75 REM --- DRAW CIRCLE ---
80 HGR: POKE - 16302,0
90 HCOLOR= 3
100 XC = 140:YC = 96
110 HPLOT X(l) + XC,Y(l) + YC
115 REM --- DRAW CIRCLE ---
120 FOR C = 1 TON
130 HPLOT TO X{C) + XC,Y(C) + YC
140 NEXT C
150 HPLOT TO X(l) + XC,Y(l) + YC
160 HPLOT TO X(l) + XC,Y(l) + YC
199 END
995 REM --- SET UP ARRAYS WITH X,Y ---
1000 FOR A= 0 TO 2 * PI STEPS
1010 N = N + 1
1020 X(N} = INT (COS {A} * R * AF)
1030 Y(N) = INT (SIN (A) * R)
1040 NEXT A
1050 RETURN

236 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
CIRCLES, SINES, COSINES, AND DESIGNS ----------- 237

STRING CIRCLE OF N POINTS

170 NEXT K,J
180 FOR Z = 1 TO 500: NEXT Z
190 NEXT N
199 END

This program draws a string circle of N points as N ranges from l to 15. SAMPLE OUTPUT---------------------

238 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

EXPLANATION _

The program uses string art to draw a quasi-circle. It is a modification of the Circle
program.

The set of variables are:
Pl Value of tt
ND Number of designs
R Radius of design
AF Adjustment factor for circular design rather than elliptical shape
XC Center on X-axis
YC Center on Y-axis
N Counter for number of designs
C Value of angle from O to Zrr radians
F Counter that determines frequency of the sine and cosine functions
A Angle C in radians times frequency F
J, K Counter for endpoints
XIJJ,X(K) Array elements for X value
Y(J),YIK) Array elements for Y value
Z Delay counter

This program uses arrays to store the values so the designs can be drawn quickly. Lines
70-11 O set up the arrays X() and Y() with the cosine and sine values that represent the
values of the X and Y coordinates for N designs.

The loop at 140-170 plots a circle of N points, where N ranges from 1 to 15, since
ND= 15.

Even values for N create a circle pattern in the center of the design, while with odd
values for N the strings cross through the center of the design.

N=7

N = 12

1. Change the value of ND. which determines the number of designs.
2. Change the adjustment factor AF to get an elliptical design.

CIRCLES, SINES, COSINES, ANO DESIGNS ----------- 239

MODIFICATIONS---------------------

--- --- 5 REM=== STRING CIRCLE N POINTS
10 DIM X(30),Y(30)
15 REM --- INITIALIZATION ---
20 PI - 3.14159
30 ND= 15:R = 95:AF = 1.17
40 XC = 140:YC = 96
45 REM --- SET UP ARRAYS ---
50 FOR N = l TO ND
60 C = 2 *PI/ N
70 FOR F = 0 TON - 1
80 A= C * F
90 X(F) = R *AF* COS (A) + XC
100 Y(F) = R * SIN (A) + YC
110 NEXT F
120 HGR2
130 HCOLOR= 3
135 REM --- DRAW CIRCLE N POINTS
140 FOR J = 0 TON - 1
150 FORK - 0 TON - 1
160 HPLOT X(J),Y{J) TO X(K),Y{K)

CIRCLE FILL 1
CIRCLE FILL 2

This program also draws a circle and fills it in.

Circle triangle:

EXPLANATION====------------------

The Pythagorean theorem is used to draw this circle. The Pythagorean theorem states
that the square �fthe hypotenuse of the right triangle is equal to the sum of the squares of
the other two sides.

Right triangle:

CIRCLES, SINES, COSINES, ANO DESIGNS ----------- 241

R2 =X2 +y2
y2=R2-X2

Y=V·R-X

The set of variables are:
XC Center on X-axis
YC Center on Y-axis
R Radius or amplitude of sine and cosine functions
AF Adjustment factor to create circle/ellipse
X Value on X-axis
Y Value on Y-axis

This circle is filled in in a zig-zag manner.

5 REM=== CIRCLE FILL 2 ===
10 XC = 140:YC = 80:R = 50:AF - 1.17
20 HGR: POKE - 16302,0
30 BCOLOR= 3: POKE - 16302,0
40 HPLOT (- R * AF) + XC,YC
60 FOR X = - R TOR STEP 1 / AF
70 Y = SQR (RA 2 - X A 2)
80 HPLOT TO AF* X + XC,YC - y
90 HPLOT TO AF* X + XC,YC + Y
100 NEXT X
199 END

SAMPLE OUTPUT---------------------

This program draws a circle and fills it in.

5 REM=== CIRCLE FILL 1 ===
10 PI= 3.14159
20 HGR: POKE - 16302,0
30 S = .01:XC = 140:YC = 96:R = 50:AF - 1.17
40 HCOLOR= 3: POKE - 16302,0
50 FOR A= 0 TO 2 * PI STEPS
60 X = R *AF* COS (A}
70 Y = R * SIN (A}
80 HPLOT XC,YC TO X + XC,Y + YC
90 NEXT A
99 END

240 ---------APPLESOFT BASIC SUBROUTINES & SECRETS

EXPLANATION----------------------

The program uses trigonometric functions to determine the values of the X and Y
coordinates. It is a modification of the Circle program.

The set of variables are:
Pl Value of tr
S Step size
XC Center on X-axis
YC Center on Y-axis
R Radius or amplitude of sine and cosine functions
AF Adjustment factor for circle/ellipse
A Value of angle in range of Oto 21r radians
X Value on X-axis
Y Value on Y-axis

A line is drawn from the center of the circleXC,YC toa point on the radius with a small
step size S = .01. This fills in the circle as the radius swings around.

SAMPLE OUTPUT---------------------

MODIFICATIONS---------------------

DESIGNS USING SINE AND COSINE

The following programs use the sine and cosine functions to draw geometric designs.

I. Change the constant in line 70 from 4 to 2.
2. Change the step size in line 50.
3. Change the frequency F in line 40.

SAMPLE OUTPUT---------------------

FLOWER MAKER

)

50 FOR R = 20 TO 96 STEP 10
70 AM= R * COS (2*F*A)

50 FOR R = 20 TO 96 STEP 20
70 AM= R * COS (4*F*A)

50 FOR R = 20 TO 96 STEP 10
70 AM= R * COS (4*F*A)

5 REM === FLOWER MAKER===
10 HGR2
20 HCOLOR= 7
30 PI= 3.14159
40 F = l:XC = 140:YC = 96:AF = 1.17
45 REM --- DRAW PETALS ---
50 FOR R - 20 TO 96 STEP 20
60 FOR A - 0 TO 2 * PI STEP PI/ 180
70 AM= R * COS (4 * F * A)
80 X =AM* AF* COS (F * A)
90 Y =AM* SIN (F * A)
100 IF A - 0 THEN HPLOT X + XC,Y + YC
110 HPLOT TO X + XC,Y + YC
120 NEXT: NEXT
199 END

This program draws flowers of varying petal size.

EXPLANATION _

The program is a modification of the Circle program. Two nested loops are used. The
outer loop 50-120 determines the radius that affects the size of the petals. The inner loop
60-120 draws the modified circle.

The set of variables are:
Pl Value of tt
F Frequency of sine and cosine functions
XC Center on X-axis
YC Center on Y-axis
AF Adjustment factor for circle/ellipse
R Counter that determines radius
A Angle that ranges from Oto Ztt
AM Amplitude of cosine and sine functions
X Value on X-axis
Y Value on Y-axis

The amplitude AM of the cosine and sine functions is determined in line 70. The
amplitude changes each time the angle changes. The angle A varies from O to 2rr in 1 °
increments. Recall that tr /180 radians is equivalent to 1 °.

Line 100 determines if the point to be plotted is the first point or any of the remaining
points. The HPLOT command is used only with the first point while the HPLOT TO
command is used with the remaining points.

242 --------- APPLESOFT BASIC SUBROUTINES & SECRETS
CIRCLES, SINES, COSINES, AND DESIGNS ----------- 243

SPHERICA.L DESIGN

This program draws a spherical design that resembles the globe.

EXPLANATION _

Two spiral patterns intertwine to give a global effect. The spirals move outward and
then inward.

The set of variables are:
Pl Value of tr
RX Radius on X-axis
RY Radius on Y-axis
AM Amplitude of sine function
XF Frequency of cosine function
YF Frequency of sine function
XC Center on X-axis
YC Center on Y-axis
N Number of completed cycles
Z Increment to value of Y
S Factor that adjusts the step size for drawing the design
A Value of angle in radians from O to 21T radians

Two user-defined functions define the values for X and Y. FN C(A) defines the cosine
function, while FN SIA) defines the sine function. The third function, FN Z(A), is used to
modify the value of Y.

RX * SIN(A/(N*2)) represents the amplitude of the cosine in line 50. while RY *
SlN(A/(N*2)) represents the amplitude of the sine function in line 60.

5 REM ===SPHERICAL===
7 REM --- INITIALIZATION ---
10 PI= 3.14159
20 RX= 100:RY = 50:AM = .2:XF = 2:YF = 2
30 XC = 140:YC = 70:N = 7:Z = 0:S = 32
35 REM --- DEFINE FUNCTIONS ---
40 DEF FN C(A) - RX* SIN (A/ (N * 2)) * COS (XF *
A) + XC
50 DEF FN S(A) =RY* SIN {A/ (N * 2)) * SIN (YF *
A) + YC
60 DEF FN Z(A) =AM* SIN (A/ {N * 2))
75 REM --- DRAW SPHERICAL DESIGN ---
80 HGR: POKE - 16302,0
90 HCOLOR= 3
100 HPLOT XC,YC
110 FOR A= 0 TON* 2 * PI STEP PI/ S
120 X = FN C(A):Y - FN S(A):Z = Z + FN Z(A)
130 HPLOT TO X,Y + Z
140 NEXT A
199 END

244 --------- APPLESOFT BASIC SUSROUTINES & SECRETS

SAMPLE OUTPUT============::--------

MODIFICATIONS�������====::------------

I. Modify the values of AM, RX and RY, XF and YF, N, and S to obtain different spheres. The
values of XC a�d YC may have to also be modified to center the new spherical desi n

2. If you change line 130 to the following statement. you will get a spiral.
9 ·

130 HPLOT TO X,Y

CIRCLES, SINES, COSINES, ANO DESIGNS ___________ 245

SAMPLE OUTPUT======------------------

Table 8-3 lists a few of the designs that can be generated by the program Lissaious
Patterns. :i

TABLE 8-3.
LISSAJOUS DESIGNS

Design A B N
Playpen 3 7 1

5 13 I
6 13 1

Spring 7 2 I
10 2 1
13 2 1

3-0 Net 3.5 7.5 2
9 10 1
13 17 I

Ribbons 3.1 7.3 I

Llssr sous PAI IERNS

This program generates Lissajous patterns.

EXPLANATION _

This program is a modification of the program that draws circles and ellipses. The
frequency of the sine and cosine differ. whereas with the circle/ellipse program the
frequency is the same for both functions.

The set of parameters are:
R Radius
Pl Value of tr computed by arctangent function
AF Adjustment factor for circle/ellipse shape
XC Center on X-axis
YC Center on Y-axis
A Frequency for cosine function
B Frequency for sine function
N Number of rotations
ANG Angle that ranges o-21r radians called theta
X Value on X-axis
Y Value of Y-axis
Z Counter for delay loop

The angle ANG varies from Oto Ztt radians in increments of 2° (2*tr /180). Remember
that tr /180 is equivalent to t 0• N cycles are generated.

R represents the radius and determines the amplitude for the cosine and sine functions
on lines 110-120. The variables A and B determine the frequency of the cosine and sine
functions. respectively. A adjusts the speed up and down on the X-axis. while B adjusts
the speed back and forth on the Y-axis. When A= B. a circle or ellipse is drawn depending
on the value of AF. If AF= I.I 7. then square/circular designs will be drawn instead of
rectangular/elliptical designs.

Line 90 HPLOTs the first point. while line t 30 uses the HPLOT TO command to connect
the remaining points.

The value of tr was calculated by the computer instead of being assigned a value. The
trigonometric function arctangent A TN() can be used to compute the value of tr. Here is
how this is done.

5
10
20
30
40
so
60
65
70
80
90
YC
100
110
120
130
140
150
160
199

REM=== LISSAJOUS PATTERNS==�
O!JERR GOTO 19 9

PI= ATN (1) * 4
R = 90:AF = 1.5:XC = 140:YC - 96
TEXT : HOl1E : VTAB 2 0
INPUT "ENTER A AND B ";A,B
INPUT ''ENTER NUMBER OF CYCLES '';N
REM --- DRAW DESIGN ---
HGR: POKE - 16302,0
HCOLOR= 3
HPLOT R *AF* COS (A* 0) + XC,R * SIN (B * O) +

FOR ANG= 0 TON* 2 * PI STEP 2 *PI/ 180
X = R *AF* COS (A* ANG) + XC
Y = R * SIN (B * ANG) + YC
BPLOT TO X,Y
NEXT ANG
CALL - 1052
GET A$: GOTO 40
END

The CALL command on line 150 rings a bell when the design is finished.

246 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

CIRCLES, SINES, COSINES, AND DESIGNS ----------- 247

(trig fact)
(substitution)

(trig fact)
(computation)

Conversion

from

degrees
to radians

360° = 2 7T radians

1 80° = 1T radians
90° = 1T / 2 radians
45° = 1T / 4 radians

TANC45oJ = 1
TANC7T/4l = 1

A TNC 1 l = 1T / 4
A TNC1 l*4 = 1T

Spring

Playpen

Ribbons

3-0 Net

MODIFICATIONS _

I. Change the value of the adjustment factor AF to obtain the circular/elliptical or
square/rectangular designs.

2. Change the value of the radius R for a smaller design.

'

248 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

CIRCLES, SINES, COSINES. AND DESIGNS ------------ 249

SUPEROSE

This program draws a great variety of designs made with curves.

EXPLANATIDN-----------------------

The program is a modification of Lissajous Patterns. Both the amplitude and frequency
of the functions differ. whereas in the Lissajous Patterns program only the frequency
varied. In Lissajous Patterns. the amplitude of the functions was the radius, whereas in this
program the amplitude is determined by the radius and sine function and changes
throughout the program.

Think of a pen mounted on a rotating arm of varying length. The radius or location of
the pen is a function of the angle A. If the radius remains constant a circle is drawn.

The set of variables are:
Pl Value of tr
R Radius
AF Adjustment factor to get circle/ellipse shape
XC Center on X-axis
YC Center on Y-axis
A Frequency for cosine function
B Frequency for sine function
EF Envelope factor: determines number of petals
ANG Value of angle from O to Ztt radians
AM Amplitude or adjusted radius
X Value on X-axis
Y Value on Y-axis

A and B determine the frequency of the cosine and sine functions. respectively, on lines
130 and 140. When A= 8, a circle or ellipse is drawn depending on the value of AF.

The envelope factor EF controls the frequency for the sine function in line 90. When EF
is odd, you will get EF leaves or petals. whereas an even EF yields 2*EF leaves or petals.

Line 100 HPLOTs the first point. The remaining points are connected with the
command HPLOT TO in line 150.

AM represents the amplitude and is a function of the radius R and the sine function
with a frequency of EF. Throughout the loop 1 l 0-160 the value of the amplitude varies.

The program rings a bell at line 170 when the design is complete.

250 --------- APPLESDFT BASIC SUBROUTINES & SECAEiS

5 REM=== SUPEROSE ===
10 ONERR GOTO 199
20 PI= 3.14159
30 R = 90:AF = 1.17:XC = 140:YC = 96
40 TEXT: HOME: VTAB 20
50 INPUT "ENTER A AND B SUCH THAT A<=B ";A,B
60 INPUT "ENTER ENVELOPE FACTOR "·EF
65 REM --- DRAW DESIGN --- 1

70 HGR: POKE - 16302 O
80 HCOLOR= 3 '
90 AM= R * SIN (EF * 0)
100 HPLOT AM* AF* COS (A* O) + XC,AM * SI { + YC N B * 0)
110 FOR ANG= 0 TO 2 * PI STEP 2 *PI/ 180
120 AM= R * SIN (EF * ANG)
130 X =AM* AF* COS {A* ANG) + XC
140 Y =AM* SIN {B * ANG) + YC
150 HPLOT TO X,Y
160 NEXT ANG
170 CALL - 1052
180 GET A$: GOTO 40
199 END

SAMPLE OUTPUT========-------------

Table 8-4 lists a few of the many designs that the Superose program can generate.

TABLE 8-4. SUPEROSE
DESIGNS

Design A B EF Special Characteristics
Flower I I 4 8 petals

I I 5 5 petals
I 1 6 12 petals
I I 7 7 petals
I I 8 16 petals

Star 100 100 I
100 JOO 2
100 100 3
200 200 2
300 300 3

Dragonfly I 5 20
I 5 30

Ant 4 5 3
Bunny 1 3 3
Butterfly 5 10 I

I 2 3
Lotus 3 3 2

4 4 3

CIRCLES, SINES, COSINES, ANO DESIGNS ----------- 251

Star-Triangle

Lotus

Dragonfly

1. Vary the value of R to adjust the size of the de-sign. where 90 is the maximum radius that
can be used.

2. Change the variable AF, which adjusts the circle/ellipse factor as in the previous Circle
programs.

CIRCLES, SINES, COSINES, ANO DESIGNS ------------ 253

MODIFICATIONS _
Butterfly

APPLESOFT BASIC SUBROUTINES & SECRETS
252 ---------

MODIFICATIONS==:-:--:------------------

SAMPLE OUTPUT:-:---------------------

...................... ;. r: :::::::t::::::::: :: ::::i:::::;::::::
I. • •.•••..•••••••.• . . :: :::::::::i::::::: , ' ' . ·: ::::::=:iti:::::: - : . :::::::;::::::::: :::::::::::::::: ;�!��;���i��t�;!

!11!\1!�1\11\\11 :::::::::::::::: :��;;��J;��if�f�
::::::::::::::i

·1rnrnrnrn1
::::::::::::1: ::::::::::::t:
;f�E�f f ;;; f�Jf
::i::::::::::: ::::::::::::i: ::::::::,:::::

··········· ::::::::::t

�[��I��!f�� :::!::::::: i1�Ii��!��� ::::::::::::::: ··················· . � ��i� ;if [����If�;
·:: :::::::::::::::::: .. : ::::::::::::::::::
::: :::::::::::::::::: .
• • o o o o • o • • o • o I••••" o ::: ::::::::::::::::::
::: ::::::::::::::::::
::: :::::::::::::::::: .
::; ::::::::::::::::::
!!! ::::::::::::::1::: ::: :::::::::::::::::: ·············· ················· ::: ::::::::::::i:::::

27 THEN 299

.
;:i:: :
; ; ; i ! i

.. . ..

.

HCOLOR= 3
HPLOT XM,YM TO X,Y:XM = X:YM = y
NEXT A
REM --- WAIT FOR KEYPRESS --
WAIT - 16384,128

K = PEEK (- 16384): IF K - 128 -
POKE - 16368,0
GOTO 20
END

140
150
160
165
170
180
190
200
299

1. Omit the background by deleting lines 55-80.
2. Omit drawing the spiral design in black by deleting lines 130-140.
3. Add an ONERR GOTO statement at line 9 if you input variables.

9 ONERR GOTO 199

CIRCLES, SINES, COSINES, ANO DESIGNS ------------ 255

SPIRAL DESIGN

5 REM === SPIRAL DESIGN===
7 REM --- INITIALIZATION ---
10 PI - 3.14159
20 XC = 140:YC - 96:PT = 105:S = 2:N = 30

·30 XM = 140:YM = 96:R = 50:AF = 1.17
40 HGR2
45 REM --- BACKGROUND ---
50 C = INT (RND (1) * 6) + 1: HCOLOR= C
60 IF C = 0 OR C = 4 THEN 80
70 FOR B = 0 TO 191 STEPS: HPLOT 0,B TO 279,B: NEXT B
75 REM --- SPIRAL DESIGN ROUTINE ---
80 ST= INT (RND (1) * 300) + 50
90 FOR A - 0 TON* 2 * PI STEP ST* (2 *PI/ 360)
100 X = R *AF* A/ PT* COS (A) + XC
110 Y = R *A/ PT* SIN (A) + YC
115 REM --- BLACK SPIRAL ---
120 HCOLOR= 0
130 FOR BL= 1 TO A/ 22: HPLOT XM + BL,YM + BL TO X +
BL,Y + BL: NEXT BL

254 --------- APPLESOFT BASIC SUBROUTINES & SECREiS

This program draws a solid background in a random color and a spiral design that
varies.

EXPLANATION _

The spiral design varies from a circular spiral to a triangular star-like spiral, while the
direction varies from clockwise to counterclockwise.

The set of variables is:
Pl Value of tr
XC Center on X-axis
YC Center on Y-axis
PT Number of points
S Step size for drawing background
N Number of complete rotations of spiral design
XM Midpoint of X-axis
YM Midpoint of Y-axis
R Radius of the design
AF Adjustment factor for circular/elliptical design
C Random color
B Counter for background
ST Step size for drawing spiral
A Value of angle in radians from O to Ztt radians
X Value on X-axis
Y Value on Y-axis
BL Counter for drawing spiral design in black

Lines 50-70 draw the background. Line 80 determines the step size for the spiral
design. The loop from 90 to 160 draws a black spiral design and a white spiral design.
Lines 120-130 draw the black spiral, while lines 140-150 draw the white spiral design.

Line 170 waits for a keypress. If the ESC key is pressed, then the design ends. Any other
key enables the next random design to be drawn.

CHAPTER 9-- SLIDE S_H_O_WS _

A slide show can be used to display your graphics pictures. This chapter
introduces five slide show programs, each of which can be modified to suit your
needs.

The first slide show program links your graphics and text programs together to
make a presentation or display. The next program uses text files so you can readily
change the order of the programs of your slide show.

The third slide show displays low, high, or mixed low and high resolution
pictures. A menu gives the viewer the choice of the standard presentation of the
pictures or the opportunity to view individual pictures.

The last two programs use page flipping to display low and high resolution
graphics pictures, respeaively.

The speed of the show can be under control of the program or the user. For
program control, a delay loop can be used to pace the viewing of the pictures.

___ 257 _

User control can be achieved with the use of the keyboard or paddle buttons or
both.

The slide show ends automatically when the last picture is viewed. while
allowing the user to stop the show at any time throughout the program.

Bells or clicks can be made after the picture has been loaded. While waiting for
a program to load, the program name or number can be displayed. If a text
window is available. the title or description of the picture can be displayed.

The first two slide shows use programs in Applesoft BASIC. The last three
shows require the pictures to be saved as binary files. To use the last three
programs. save three or more pictures in lo-res graphics and three or more
pictures in hi-res graphics.

APPLESOFT PROGRAMS
LINKING LO- AND HI-RES

(POOR MAN'S SUDE SHowJ

This program allows you to run a slide show with your graphics programs. mixing both
high and low resolution programs.

EXPLANATION _

At the end of each program. whether it be text or lo-res or hi-res graphics. enter a
command to RUN the next program. When you run a program from a program. you must
first issue a CONTROL D by using CHR5(4).

Assume that the programs to be connected are: DESIGN 1, DESIGN 2, DESIGN 3, etc.
At the end of your program enter the following lines. The line numbering may be

different for your program.

5 REM=== DESIGN 1 ===
997 HOME: VTAB 23: PRINT "PRESS RETURN TO CONTINUE";
998 GET A$
999 PRINT CHR$(13}+CHR$(4)"RUN DESIGN 2"
At the end of DESIGN 2. enter a command to RUN DESIGN 3. Continue until all the

programs have been chained or linked together.
Each text program should begin with the TEXT command to clear the screen from the

graphics mode and set the standard window dimensions.
The last program can end the program or be linked to the first program for a continual

display.

MODIFICATIONS---------------------

1. Instead of the GET command at line 998. you can enter a delay statement to pause
between pictures. Adjust the speed of the delay loop to suit your viewing needs.
Or ask the viewer for a slow. moderate. or fast viewing and use a variable in place
of 3000 on line 998.

258 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

998 FOR X = 1 TO 3000:NEXT Z
999 PRINT CHR$(4) "RUN DESIGN 2"

2. You can use the buttons on the paddle to control the pause between
pictures.

998 IF PEEK (-16287) >128 THEN PRINT CHR$ (4) "RUN DESIGN 2"
999 GOTO 998

SAVING A I IEXI PAGE

The following statements allow you to save a text page. In Chapters 5 and 6 you were
shown how to save a low and high resolution graphics picture.

EXPLANATION---------------------

You may have a text page with the text attractively displayed with a border or inverse or
flashing characters. This can be saved as a binary file and loaded when needed. This is
useful for a title page.

If you have a text page that you would like to save, then save it with either of the
following statements where filename is any legal name.

In the immediate mode you can use:

BSA VE f.i l ename, A$400, L$400
or

BSAVE filename,Al024,Ll024
In a program you can use:

900 PRINT CHR$(4) "BSAVE filename,A$400,L$400"
or

900 PRINT CHR$(4) "BSAVE filename,Al024,Ll024"

REIRIEVING A IEXI PAGE

This statement shows you how to retrieve a text page that has been saved as a binary file.

EXPLANATION---------------------

Enter this statement when you want to retrieve a text page:

BLOAD filename
or

50 PRINT CHR$ (4) ''BLOAD filename"

SWITCHING TO GR AF I ER HGR2

This helps avoid the problem of switching from a high resolution graphics picture on
page 2 to a low resolution graphics picture on page I.

BACKGROUND _

If you load a lo-res graphics picture on page 1 after viewing a hi-res picture on page 2,
you will view page 2 of lo-res graphics. If you list the program you will see the listing of the
lo-res program. yet cannot view the lo-res graphics picture on the screen. Page 2 has been
set by the HGR2 command or its equivalent POKE commands. You want to view page I.

EXPLANATION _

There are two methods to view the lo-resolution graphics design on page I after
running a program that uses page 2 of hi-res graphics. Either enter the command TEXT or
POKE-16300,0 between the HGR2 and GR commands. The POKE command switches to
page I.

10 TEXT: GR
20 (continue with low resolution graphics)

or

10 POKE - 16300,0: GR
20 (continue with low resolution graphics)

This program will demonstrate a flip from a simple program in hi-res graphics on page
2 to a lo-res graphics picture on page I. Omit line 30 to see why it is needed.

5 REM === HGR2 ->GR===
10 HGR2 : HCOLOR= 3: HPLOT 0,0 TO 279,159
20 GET A$
30 POKE - 16300,0
40 GR: HOME: COLOR= 1
50 VLIN 0,39 AT 20: HLIN 0,39 AT 20
99 END

EXECING A TEXT FILE WITH A DELAY STATEMENT

This presents an easier and more flexible method of presenting a slide show.

EXPLANATION _

This program sets up a text file that contains the names of the programs to be included
in your slide show.

Enter the names of your programs starting at line 50. Save this program as SLIDE EXEC
STARTER and run it. A text file called SLIDES is created. Then enter EXEC SLIDES. and the
computer takes over the presentation.

•

260 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

The advantage of this method is thatyou can see the program being printed or plotted.
You do not need to BSAVE the pictures. and you can easily change the order and the
programs by changing the text file.

If you change the arrangement of the program in SLIDE EXEC STARTER and want to
keep this version also. then change the name of the text file from SLIDES to another name.

5 REM === SLIDE EXEC STARTER===
10 PRINT CHR$ (4)"0PEN SLIDES"
20 PRINT CHR$ (4)"DELETE SLIDES"
30 PRINT CHR$ (4)"0PEN SLIDES"
40 PRINT CHR$ (4)"WRITE SLIDES"
50 PRINT "RUN SPIRAL IN/COLOR OUT/BLACK"
60 PRINT "RUN STAR SINE WAVE"
70 PRINT "RUN DRAW CIRCLE FASTER"
80 PRINT CHR$ (4)"CLOSE SLIDES"
99 END

MODIFICATION---------------------

You can add a delay to your program by typing in the following program and saving it
with the DELAY or any other legal filename of your choice.

5 REM ===DELAY===
10 FOR Z = 1 TO 500: NEXT Z
Then enter the following lines to run the delay program between each text or graphics

program.

55 PRINT CHR$(4)"RUN DELAY"
65 PRINT CHR$(4)"RUN DELAY"
75 PRINT CHR$(4)"RUN DELAY"
The slide show program with delays then becomes:

5 REM === SLIDE EXEC STARTER/DELAY===
10 PRINT CHR$ (4)"0PEN SLIDES"
20 PRINT CHR$ (4)"DELETE SLIDES"
30 PRINT CHR$ (4)"0PEN SLIDES"
40 PRINT CHR$ (4)"WRITE SLIDES"
50 PRINT "RUN SPIRAL INWARD CLOCKWISE"
55 PRINT "RUN, DELAY"
60 PRINT "RUN STAR SINE WAVE"
65 PRINT "RUN DELAY"
70 PRINT "RUN DRAW CIRCLE FASTER"
75 PRINT "RUN DELAY"
80 PRINT CHR$ (4)"CLOSE SLIDES"
99 END

•

SLIDE SLOWS---------------------- 261

5
10
15
20
30
40
45
50
60
70
80
90
>>"

E N

CHR$ (4)"BLOAD";F$(X);",A$2000

--- SET GRAPHIC SCREEN/LOAD PICTURE ---
T$(X) = "GR" THEN GR: HOME : PRINT CHR$ (13)
(4);"BLOAD";F$(X): RETURN
T$(X) = "HGR" THEN HGR: POKE 16300,0: POKE -

100 VTAB 5: INVERSE: VTAB 5: INVERSE: HTAB 3: PRINT n
GR";: HTAB 20: PRINT" HGR ": NORMAL

110 VTAB 7: FOR X = 1 TON: IF T${X) = "GR" THEN PRINT
TAB{ 3) LEFT$ (F$(X},15)

120 NEXT X
130 VTAB 7: FOR X = 1 TON: IF T$(X) = "HGR" THEN HTAB
20: PRINT LEFT$ (F$(X) ,15)

140 NEXT X
150 VTAB 20: CALL - 958: PRINT TAB(3)"S)TANDARD I)N
DIVIDUAL Q)UIT ";
155 REM --- EVALUATE RESPONSE ---
160 GET A$: PRINT A$
170 IF A$= "Q" THEN 399
180 IF A$= "S" THEN 280
190 IF A$= "I" THEN 210
200 GOTO 150
205 REM --- INDIVIDUAL PICTURES ---
210 VTAB 21: CALL - 958: HTAB 3
220 INPUT "NAME OF THE PICTURE:";P$
230 FORT= 1 TON: IF LEFT$ {F$(T),15) - P$ THEN X -
T:T = N: GOTO 260
240 NEXT T
250 GOTO 210
260 TEXT: HOME : GOSUB 1000: GOSUB 2000
270 GOTO 50
275 REM --- STANDARD PRESENTATION ---
280 HOME
290 FOR X = 1 TON
300 GOSUB 1000: GOSUB 2000
310 NEXT X
320 GOTO 50
399 TEXT: HOME : VTAB 12: HTAB 14: PRINT "THE
D": END
995 REM
1000 IF

+ CHR$
1010 IF
16302,0

1020 PRINT CHR$ {13) +
": RETURN
1995 REM --- STROBE KEYBOARD ---
2000 POKE - 16368,0
2010 K = PEEK (- 16384): IF K < 128 THEN 2010
2020 IF K - 128 = 27 THEN 399
2030 RETURN
2995 REM --- NAMES AND TYPES OF PICTURES ---
3000 DATA 6 : REM NUMBER OF PICTURES
3010 DATA A LETTER OF THE ALPHABET,GR,FLOWER,HGR
3020 DATA MOSAIC,GR,NET 3-D,HGR
3030 DATA RECTANGLES,GR,DRAGONFLY,HGR

\
REM === MENU SLIDE SHOW===
ONERR GOTO 399
REM --- READ IN ARRAY ELEMENTS --
READ N: DIM F${N) ,T$(N)
FOR X = 1 TON: READ F$(X),T${X}
NEXT X
REM --- PRINT MENU --
TEXT : HOME : POKE 48,32
HLIN 0,39 AT 1: HLIN 0,39 AT 47
VLIN 0,47 AT 0: VLIN 0,47 AT 39
POKE 32,1: POKE 33,38: POKE 34,1: POKE 35,22
HOME : VTAB 3: PRINT TAB{ 8)"<<< GRAPHIC PICTURES>

262 APPLESOFT BASIC SUBROUTINES & SECRETS

I 0- AND HI-RES PlcnJRES USING MENU
AND STROBE

This program sets up a slide show of low and high resolution graphics pictures that
have been saved as binary files. A menu is provided to allow the viewer to see the
standard presentation or an individual picture.

EXPLANATION _

This program requires that you save your graphics pictures as binary files. Lo-res
graphics pictures take 6 sectors on the disk, whereas hi-res binary files take 34 sectors.

Lines 20-40 enter the names of the pictures into array FS(X) and store the type of
graphics (low or high) in TS(X). GR represents low resolution graphics, and HGR represents
high resolution graphics.

The pictures are loaded in the order that they appear in the DATA statements. You can
easily change the order by rearranging the items in the DATA statements.

A menu lists the picturenames in two columns under the headings GR and HGR. Lines
50-150 set up the menu and decide in which column the picturename should be printed.

The viewer has the option of viewing the programs in the order in which they are
stored in the DATA statements or viewing an individual picture.

Lines 160-200 obtain the viewer's choice and determine the routine to execute. Lines
210-270 allow the viewer to see an individual picture. Lines 280-320 present the standard
order. The subroutine at lines 1000-1020 sets up the graphics screen and loads the picture.
The POKE commands on line 1010 set up page l and full screen graphics, respectively.

Line l 020 does not include the array element FS(X) in quotes. FS(X) represents the string
element that holds the name of the picture and is not the name of the picture itself.

After the last picture is viewed in the standard format. the program returns to the menu.
The subroutine at lines 2000-2030 strobes the keyboard. While viewing the pictures
whether in individual or standard format an ESC keypress terminates the program.
whereas pressing any other key continues the slide show.

To use the program for your own slide shows. enter the names of your binary files and
their type: GR or HGR in the DATA statements starting at line 3010. On line 3000, insert the
number of pictures in your slide show. These pictures must first be saved as binary fries.
Refer to Chapters 5 and 6 on how to BSAVE and BLOAD fries. You can use both low and
high resolution pictures in this slide show.

BINARY FILES

MODIFICATIONS======:::..:--=--------------

1. Change the keyboard strobe to a delay statement for the standard presentation. Change
line 300 to read the following. where 500 represents the amount of delay

300 GOSUB 1000: FOR Z = 1 TO 500:NEXT Z

2. Add a bell when the picture is loaded by changing line 1020 to:

1020 PRINT CHR$(13) + CHR$(4) ;-'-'BLOAD"';F$(X);
.,., , A$2000-'-': CALL -198: RETURN

CALL -1052 can be used in place of CALL -198.

264 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

\

LO-RES SLIDE SHOW USING PAGE FLIPPING

This program provides a smoother slide show for low resolution graphics pictures by
using page flipping either by user or program control.

BACKGROUND _

There are two pages for lo-res graphics-page 1 and page 2. A page is simply a portion
of memory needed to hold a screen of graphics or text. Pages 1 and 2 of lo-res graphics
start at different memory locations. Page I starts at address 1024 (in decimal} or S400 (in
hexadecimal). and page 2 starts at address 2048 (in decimal} or $800 (in hexadecimal}.
Both pages are 1024 bytes long or $400 in hexadecimal. See the memory map in Appen
dix 8.

Page I of lo-res graphics and the text page occupy the same memory location: address
1024 (decimal} orS400 (hexadecimal}. When you type TEXT after a graphics program, the
computer is interpreting the graphics instructions and returns an interesting screen display
of text characters in standard, inverse, and flashing mode.

Page 2 of lo-res graphics occupies the same memory locations as your Applesoft BASIC
program.

LO-RES SLIDE SHOW STARTER

To use page flipping with low resolution graphics pictures, you must relocate your
Applesoft program that provides the slide show routines. You can locate it above page 2
of text starting at memory location 3073. See the memory map in Appendix B.

There must be a starter program before the slide show program to set two memory
locations so your slide program does not run into page 2 of low resolution graphics/text.
Memory location 104 holds the starting page of the program address (3072/256=12}. The
term page, in this context. refers to a block of 256 bytes of memory. A zero is placed in
location 3072 to place the start of the slide show program at 3073.

Enter the starter program and save it as LORES SLIDE SHOW ST ARTER or any other legal
filename of your choice. Then type in the second program. LORES SLIDE SHOW. using the
names of your own binary files that you have previously BSAVEd.

Any time you want to make a change to LORES SLIDE SHOW, be sure to run LORES
SLIDE SHOW ST ARTER first. This will load the LORES SLIDE SHOW program above page 2
of lo-res graphics. If you fail to do this and enter the program directly, make changes, and
run the program, you will lose the program. Page 2 of lo-res graphics will write over your
program when you run the page flipping program.

5 REM === LORES SLIDE SHOW STARTER===
10 POKE 104,12
20 POKE 3072,0
30 PRINT CHR$ (4);"RUN LORES SLIDE SHOW"
99 END

SLIDE SLOWS---------------------- 265

(continued on next page)

1 TO 100: NEXT Z:

l TO TN: READ N$(X}: NE

1: FOR Z -

GOSUB 3000,3100 = 1 THEN 30
GOSUB 1000,2000
- P:N = N + 1
=TN+ 1 THEN E -

=== LORES SLIDE SHOW===·
CHR$ (13) + CHR$ (4)
TN: DIM N$(TN): FOR X =

5 REM
10 0$ =
20 READ
XT X
30 TEXT : HOl1E
35 REM --- DETERMINE USER/PROGRAM CONTROL ---
40 PRINT TAB(11)"<<< SLIDE SHOW>>>"
50 VTAB 5: PRINT "WOULD YOU LIKE THE SHOltJ TO BE UNDER:" : PRINT : PRI?-1T
60 PRINT TAB(10)"1. USER CONTROL"
70 PRINT: PRINT TAB(10}"2. PROGRAM CONTROL"
80 PRINT: PRINT TAB(10)"3. QUIT PROGRAM"
90 VTAB 14: PRINT "SELECT#";
100 GET A$:A - VAL (A$)
110 IF A< 1 OR A> 3 OR A< > INT (A) THEN PRINT: GOTO 90
120 PRINT A
130 VTAB 5: CALL - 958
140 ON A GOTO 150,210,499
145 REM --- SET UP USER CONTROL ---
150 PRINT "K(KEYBOARD OR P)PADDLES ";
160 GET A$: IF A$< > "K" AND A$< > "P" THEN 160
170 PRINT A$
180 IF A$= "K" THEN UC= 1
190 IF A$= "P" THEN UC= 2
200 GOTO 270
205 REM --- SET UP PROGRAM CONTFOL ---
210 PRINT "ENTER AMOUNT OF DELAY:": PRINT: PRINT
220 PRINT TAB(lO)"FAST (1-150)": PRitJT
230 PRINT TAB(lO}"MODERATE (151-750)": PRINT
240 PRINT TAB(lO)''SLOW (751-1500}": PRINT
250 INPUT "SELECT# ";T
260 IF T < 1 ORT> 1500 THEN VTAB 14: CALL - 958: GO
TO 250
265 REM --- LOAD PICTURES ---
270 P = 2:N = l:F = l:E = 0
280 IF P = 1 THEN PRINT D$;"BLOAD'';N${N);",A$400"
290 IF P = 2 THEN PRINT D$;"BLOAD";N$(N);",A$800"
300 IF NOT F THEN 320
310 ON P GOSUB 1000,2000:P = l:N = N + l:F = 0: GOTO 28
0
320 ON A
330 IF E
340 ON P
350 P = 3
360 IF N
GOTO 320

370 GOTO 280
499 TEXT: HOME : END
995 REM --- DISPLAY PAGE 1 ---
1000 POKE - 16304,0: POKE - 16300,0: POKE - 16298,0:
POKE - 16301,0: RETURN

1995 REM --- DISPLAY PAGE 2 ---
2000 POKE - 16304,0: POKE - 16299,0: POKE - 16298,0:
POKE - 16301,0: RETURN

LO-RES SLIDE SHOW

In the previous program, MENU SLIDE SHOW, you saw the picture being loaded onto
the screen. This program uses page flipping and loads a picture onto one page while you
are viewing the other page.

This slide show starts by loading and displaying the first graphics picture on page 1.
While you are viewing this picture, the next picture is loaded onto page 2.

Then the programs alternate between page 1 and page 2. While you are viewing page
t. page 2 is being loaded. While you are viewing page 2, page 1 is being loaded. This
continues until you have exhausted the supply of pictures.

To inform the computer that it should display the contents of page 1 or 2. you need to
use the appropriate POKE command on lines 1000 and 2000. POKE-16300,0 displays the
contents of page 1, and POKE -16299.0 displays the contents of page 2. You must precede
this with the command for lo-res graphics (either the familiar GR command or POKE
-16298.0).

The mixed text/graphics mode is set on lines 1000 and 2000. This program allows only
mixed text/graphics pictures; you cannot use full screen graphics pictures. However. you
cannot add text to the bottom of the screen, since it is difficult to display text in the
window on page 2. If you want the title with a picture, then you must save the picture
with the title.

Line 20 reads the names of the pictures into an array NS(). TN represents the total
number of pictures to be displayed.

Lines 40-260 set up the type of control for the slide show. The viewer has a choice of
user control or program control. If the viewer selects program control, then he has a choice
of speeds. If the viewer chooses user control, he has a choice of keyboard or paddle
control. With keyboard control the space bar advances the slide snow and the ESC key
returns to the menu. With paddle control, the button on paddle O or 1 advances to the next
picture and the ESC key returns to the menu. On the Apple Ile/lie, either the open or
closed apple can be used in place of the buttons on paddle O or J.

Line 270 initializes the page P, picture numberN. first time flag F. and end flag E. Lines
280-290 load the picture to the proper page so pages are alternated throughout the
program. Line 300 branches to line 320 if F equals O and continues with line 310 if F
equals 1.

Depending on the page P, line 310 sets up either page J or 2. Line 310 is used only once,
when F = 1. Line 320 presents keyboard/paddle control starting at subroutine 3000 or
program control starting at subroutine 4000, depending on the value of A, where A can be
l, 2, or 3 as determined in line 100.

The command POP is used in Jines 3040, 3080. and 3110 to "pop" the return address for
the GOSUB commands from the stack. POP is used when you branch to another line
rather than returning with the RETIJRN command.

Line 330 checks for the last picture. Lines 340- 360 set up the alternate page, advance to
the next picture, and check if all the pictures have been displayed. . \

Insert the names of your lo-res graphics pictures in line 401 O and the number of pictures
in line 4000.

Remember that the program LORES SLIDE SHOW ST ARTER must be run first i.e .. do not
run the LORES SLIDE SHOW first.

266 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

2995 REM --- KEYBOARD/PADDLE CONTROL ---
3000 ON UC GOTO 3010,3060
3005 REM --- CHECK KEYBOARD ---
3010 POKE - 16368,0
3020 K = PEEK (- 16384): IF K < 128 THEN 3020
3030 IF K = 160 THEN RETURN
3040 IF K = 155 THEN POP: GOTO 30
3050 GOTO 3010
3055 REM --- CHECK PADDLES ---
3060 POKE - 16368,0
3070 IF PEEK (- 16286) > 127 OR PEEK (- 16287) > 12
7 THEN RETURN
3080 IF PEEK (- 16384) = 155 THEN POP: GOTO 30
3090 GOTO 3070
3095 REM --- CHECK FOR ESC KEYPRESS ---
3100 POKE - 16368,0
3110 FOR X = l TOT: IF PEEK (- 16384) - 155 THEN X -
T: POP: GOTO 30

3120 NEXT X: RETURN
4000 DATA 3: REM NUMBER OF PICTURES
4010 DATA RECTANGLES,L,MOSAIC

268 --------- APPLESOFT BASIC SUBROUTINES S SECRETS

HI-RES SLIDE SHOW USING PAGE FLIPPING
(FORI.VARD AND REVERSE)

This program lets you view a slide show of your high resolution pictures with either
paddle button control or keyboard control.

EXPLANATION----------------------

The program is similar to the slide show for lo-res graphics in that page flipping is used
for a smooth effect. However, you do not need a starter program because page I and
page 2 of hi-res graphics and your Applesoft program do not share the same memory.

The program displays a menu of the pictures available. The S key starts the slide show.
Page flipping is used to load another picture while one is being viewed.

Button 1 displays the next picture, while button O displays the previous picture. The
space bar returns to the text page and displays the name of the picture that was just
viewed in inverse mode. The ESC key returns the original menu and allows the viewer to
restart the program or quit.

If you have an Apple Ile/lie, you can use either button O and 1 or the open and closed
apple keys. If you do not have paddles or a joystick, the left and right arrow keys can be
used instead of buttons O and I.

Line IO stores the values from DATA statement 5000 for the vertical and horizontal lines
on the menu text screen. Line 20 stores the names of the binary files in an array FS(). Lines
30-140 set up the main menu. Line 70 sets the border, while line 90 freezes the screen.
Lines 100-130 determine the tabbing for the binary file names and print only the left 12
characters of the filename.

The subroutine at lines I 50-160 gets the response and executes the routine at 170-230
to start the slide show if an S was pressed and exits the program with a O keypress.

The routine at lines 240-250 checks for reverse direction, while the routine at lines
260-270 checks for the ESC key or space bar. Lines 280-290 check for the forward
direction.

Lines 300-350 advance to the next picture. The first time through the loop, when T= 1,
the program loads the first two pictures. X holds the number of the picture in memory, but
not currently displayed. D = 1 indicates the last picture has been reached.

Line 200 directs the computer to load the picture to the proper page. P holds the page,
Where P = l indicates page 1 and P = 2 indicates page 2.

Line 330 determines if the fast picture has been displayed.Dis initialized as oat line 220
and is set to 1 at line 330 when the last picture has been displayed.

Line 340 checks the value of U and reverses direction of the slide show presentation
When U = 1.

Lines 360-499 hold the quit routine. The command CALL -1036 moves the cursor right
one position .

. The subroutine at line 1000 displays page I. while 2000 displays page 2, and line 3000
�,splays the text page. The routine at lines 4000-4050 displays the name of the picture in
1n\erse mode when the space bar is pressed.

SLIDE SLOWS---------------------- 269

270 -------- APPLESOFT BASIC SUBROUTINES & SECREiS

40
340 POKE - 16368,0: IF U = 1 THEN 240
350 GOTO 180
355 REM --- QUIT ROUTINE ---
360 TEXT: HOME: VTAB 13: HTAB 14
370 A$= "THE END": FOR X = 1 TO LEN (A$): IF MID
$ (A$,X,l) =" "THEN CALL - 1036: NEXT X: GOTO 390

380 INVERSE : PRINT MID$ (A$,X,l);: NEXT X
390 NORMAL
499 END
995 REM --- DISPLAY PAGB] ---
1000 POKE - 16304,0: POKE - 16297,0: POKE - 16302,C:
POKE - 16300,0: RETURN

1995 REM --- DISPLAY PAGE 2 ---
2000 POKE - 16304,0: POKE - 16297,0: POKE - 16302,0:

POKE - 16299,0: RETURN
2995 REM --- DISPLAY TEXT ---
3000 POKE - 16303,0: POKE - 16300,0: RETURN
3995 REM --- DISPI.,AY NAME OF PICTURE ---
4000 HOME : FOR Z = 1 TON: VTAB 9 + Z - (Z - .5 > N /
:�) * ti / 2: HTAB 8 + 15 * (Z - • 5 > N / 2)
4010 IF X - 1 = Z THEN INVERSE: PRINT F$(Z): NORMAL
4020 IF X - 1 < > Z THEN PRINT F$(Z)
4030 NEXT Z: GOSUB 3000"TEXT"
4040 VTAB 20: PRIN'I' "PRESS ANY KEY TO CONTINUE:"�: POKE

16368,0: GET A$: ON P GOSUB 2000,1000
4050 RETURN
4995 REM --- DATA FOR TEXT DISPLAY ---
5000 DATA 0,1,8,9,46,47
6000 DATA 4: REM NUMBER OF PICTURES
6010 DATA LOTUS,FLOWER,NET 3-D,DRAGONFLY

SLIDE SLOWS---------------------- 271

26,39 AT 4: HLI

READ F$ (X): NEXT

= "4000":P = 2: GOT

- l6368,0:P - (X / 2
INT (X / 2)): GOTO 2

= 0 TO 5: HLIN 0,39 AT V(X): NEXT
0: VLIN 0,47 AT 39
15: PRINT "SLIDE SHOW"
4: HLIN 0,11 AT 5: HLIN

HIRES SLIDE SHOW===
OTO 5: READ V(X): NEXT X
DIM F$(N): FOR X = 1 TON:

--- START SLIDE SHOW ---
- 16368,0:X = l:T = 1

/ 2 = INT (X / 2) THEN A$

--- MENU --
: HOME
48,42: FOR X

REM
TEXT
POKE

RE�1 ===
FOR X =
READ N:

5
10
20
x
25
30
40
x
50 VLIN 0,47 AT
60 VTAB 3: HTAB
70 HLIN 0,11 AT
N 26,39 AT 5
80 VTAB 7: HTAB 12: PRINT "GRAPHICS PICTURES":
90 POKE 32,2: POKE 33,36: POKE 34,8: POKE 35,22
100 HOME: FOR X = 1 TON
110 VTAB 9 + X - (X - .5 > N / 2) * N / 2
120 HTAB 8 + 15 * (X - .5 > N / 2)
130 PRINT LEFT$ (F$(X),12): NEXT X
140 GOSUB 3000"TEXT"
145 REM --- GET RESPONSE ---
150 VTAB 20: CALL - 958: HTAB 12: PRINT "S)TART Q)UIT
: ";: GET A$: PRINT A$
160 ON A$= "Q" GOTO 360: ON A$= "S" GOTO 170: GOTO 15
0
165 REM
170 POKE
180 IF X
0 200
190 A$= "2000":P = 1
200 PRINT CHR$ (13); CHR$ (4);"BLOAD";F$(X);",A$";A$
210 IF NOTT THEN 240
220 T = 0:D = 0
230 GOTO 300
235 REM --- CHECK REVERSE DIRECTON ---
240 IF ((PEEK (- 16287) > 127 AND PEEK (- 16286) <
128) OR PEEK (- 16384) = 136) AND X > 2 THEN X = X - 2
:T = 1:U = 1: GOTO 180
250 IF U = 1 THEN U = 0: GOTO 180
255 REM --- CHECK FOR ESC/SPACE BAR ---
260 IF PEEK (- 16384) = 155 THEN 100
270 IF PEEK (- 16384) = 160 THEN GOSUB 4000
275 REM --- CHECK FOR FORWARD DIRECTION ---
280 IF (PEEK (- 16286) > 127 AND PEEK (- 16287) < 1
28) OR PEEK (- 16384) = 149 THEN GO'l'O 300
290 GOTO 240
300 IF D = 1 THEN GOSUB 3000: GOTO 100
310 ON P GOSUB 1000,2000
320 X = X + 1
330 IF X = N + 1 THEN D = 1: POKE
- INT (X / 2)) * 2 + (X / 2 < >

CHAPTER ���

BELLS, -C-L- IC_KS_ , - SO_U_N_D_S_ , -T'-1
AND TUNES

Simple sound can be obtained with the G-bell and by peeking a particular
location to click the speaker.

Bells can be embedded within a message, and the speaker can be clicked after
each character is printed to simulate a typewriter or ticker tape machine.

For a greater variety of sound, you need to enter a machine language routine
that can click the speaker more quickly to generate tones. You control the
frequency, or pitch, and the duration, or length of tone. There are several machine
la�guage tone-generating routines. One of these routines will be introduced in
this chapter.

Ascending or descending tunes can easily be obtained. If you can read music,
YC>u can enter songs. The frequencies and durations for the following songs will

___ 273 _

be given: theme from Star Wars, "Charge," Beethoven's Ninth Symphony, "Mary
Had a Little Lamb," "Twinkle Twinkle Little Star," Brahms' Lullaby, and "Take Me
Out to the Ball Game."

You will benefit most from the section on musical tunes if you follow the
programs in sequence. Each program introduces a new concept and uses the
ideas presented in previous programs as well.

BELLS

This subroutine embeds bells within a message.

EXPLANATION _

You can add G-bells to your program, but if you edit .the line, the bells are erased or
eliminated. In place of CONTROL G you can use CHRS(7) or call a machine routine that is
permanently stored in ROM with the CALL -J 98 command or its equivalent CALL 65338.

Both subroutines start at line 1000, take the message MS apart. and ring a bel I after each
character is printed.

MESSAGE WITH BELLS 1
This program uses CHRS(7) to represent a bell. The SPEED command is used to slow

down the printing of AS.

5 REM === MESSAGE WITH BELLS l ===
10 HOME
20 A$= "THIS IS THE END ••• GOOD-BYE"
55 VTAB 12
60 HTAB 20 - LEN (A$) / 2
70 GOSUB 1000
99 END
995 REM --- BELL ROUTINE ---
1000 BL$= CHR$ (7)
1010 SPEED= 200
1020 FOR X = 1 TO LEN (AS)
1030 PRINT MID$ (A$,X,l):
1040 IF MID$ (A$,X,l) = CHR$ (32} THEN 1060
1050 PRINT BL$:
1060 NEXT X
1070 PRINT \
1080 SPEED= 255
1090 RETURN

MESSAGE WITH BELLS 2
This program uses CALL -198 to ring the bell. You can replace this CALL command

with its equivalent CALL -1052.

274 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

5 REM === MESSAGE WITH BELLS 2 === 10 HOME
20 A$= "THIS IS THE END ••• GOOD-BYE" 55 VTAB 12
60 HTAB 20 - LEN (A$)/ 2
70 GOSUB 1000
99 END
995 REM --- BELL ROUTINE ---
1000 FOR X = 1 TO LEN (A$)
1010 PRINT MID$ (A$,X,1):
1020 IF MID$ (A$,X,l) = CHR$ (32) THEN 1050
1030 CALL - 198
1040 FOR Z = 1 TO 10: NEXT Z
1050 NEXT X: PRINT: RETURN

CLICKS
AIARM

This program makes an alarm sound.

EXPLANATION===--------------------

When you PEEK. �emory locati.on -16336 or its equivalent. 49000, you toggle the
speaker. The toggle rs I 1ke a I 1ght switch-every other toggle clicks the speaker to produce
a sound. To get JO clicks. the speaker must be toggled 2*10 or 20 times.

The speaker is clicked at lines 30 and 40 to produce the alarm sound.

5 REM --- ALARM --- --- --- 10 s = - 16336
20 FOR X = 1 TO 10
30 B = PEEK (S) - PEEK (S) + PEEK (S} 40 FOR Z = 1 TO 50:B = PEEK (s: : NEXT Z 50 NEXT X
99 END

VTAB 12: HTAB 18: PRINT "BY

A$= "I HOPE THAT YOU HAVE ENJOYED THE TIPS AND TRICK

MODIFICATIONS---------------------

•

PEEK {S

5 REM === TICKER TAPE===
10 POKE - 16368,0
20 SP= - 16336
30 S$ = ":"
40 TEXT: HOME
45 REM --- DRAW TAPE ---
50 INVERSE: VTAB 10: FOR X = 1 TO 2: FOR Y = 1 TO 40:
PRINTS$;: NEXT Y: PRINT: PRINT: PRINT: NEXT X: NORMA
L
60
S"
65 REM --- PAD A$ WITH PERIODS ---
70 IF LEN (A$) < 40 THEN FOR X = 1 TO 40 - LEN (A$):
A$= A$+".": NEXT X
80 A$= A$+" ••••• "
85 REM --- PRINT MESSAGE ROUTINE ---
90 FOR X = 1 TO 40: VTAB 12: HTAB 41 - X: PRINT LEFT$
{A$,X)
100 GOSUB 1000
110 NEXT X
120 FOR X = 1 TO LEN (A$)
130 VTAB 12
140 Z$ = MID$ (A$,X, LEN {A$) - 1) + MID$ (A$,1,X - 1)
150 PRINT LEFT$ (Z$,40)
160 K = PEEK { - 16384): IF K > 128 THEN 190
170 GOSUB 1000
180 NEXT X: GOTO 120
190 POKE - 16368,0: HOME:
E"
199 END
995 REM --- CLICK SPEAKER ---
1000 FOR N = 1 TO INT (RND (1) * 11) + 2:S -
P): FOR Z = 1 TO 25: NEXT Z: NEXT N
1010 RETURN

5 REM ===TYPEWRITER===
10 A$= "I AM AN APPLE II COMPUTER"
20 HOME
30 H = {40 - LEN (A$)) / 2 + 1
40 GOSUB 1000
50 VTAB 22
99 END
995 REM --- CLICK SPEAKER AS PRINT CHARACTER ---
1000 SPEED= 50
1010 HTAB H
1020 FOR X = 1 TO LEN {A$)
1030 PRINT MID$ {A$,X,1):
1040 IF MID$ (A$,X,l) = CHR$ {32) THEN 1070
1050 FORT= 1 TO 4:S = PEEK { - 16336): NEXT T
1060 FOR Z = l TO 55: NEXT Z
1070 NEXT X
1080 SPEED= 255
1090 RETURN

TYPEWRITER

MODIFICATION _

Delete the delay statement at line 1060 for a different effect.

This program simulates the sound of a typewriter as characters are printed to the
screen.

EXPLANATION _

The subroutine at lines 1000-1070 takes the message AS apart. After each nonblank
character. is printed, the speaker is toggled 4 times to produce 2 clicks. The variable H
represents the starting tab position that centers the AS message.

195 SPEED= 255

BELLS, CLICKS, SOUNDS. AND TUNES ----------- 277

ncKERTAPE

This program simulates a ticker tape machine. It prints out a message with sound
effects.

EXPLANATION---------------------\

A border is printed at line 50 to simulate a strip of tape. AS represents the message
to be printed. The message is continually printed within the border.

If the message is less than40 characters, line 70 pads it with dots to obtain a message of
40 characters. Line 80 pads five additional dots to the end of the message to separate the
end of message from the beginning.

Lines 90-110 print the first40 characters and click the speaker. The routine at J0�-1�10
clicks the speaker N times, where N is a random number from 2 to 10. SP is defined in line
30 as-16336. Lines 120-180 continue printing the message and clicking the speaker. ArrY
keypress will terminate the program. The keyboard is strobed in line 160.

276 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

I. Change the speaker subroutine so the speaker is clicked twice each time the subroutine is
accessed:

1000 FOR N = 1 TO 2: S = PEEK(SP) : S = PEEK(SP): FOR Z = 1 TO
25:NEXT Z,N

1010 RETURN

2. A SPEED command can be added to the program at lines 115 and 195:

115 SPEED= 50

MODIFICATIONS=======---------------

. Run the program several times with different values for the starting ending and
increment variables .. When you find a sequence of sounds that you like, set.up a loop and
use that sequence ,n your program .

--- TONE GENERATOR
L,V: NEXT L 173,48,192,136,208,5,206,l,3,240,9

202,208,245,174,0,3,76,2,3,96
--- USER ENTERS VALUES FOR LOOP ---

REM ===ASCENDING/DESCENDING===
REM --- POKE IN MACHINE LANGUAGE
FOR L = 770 TO 790: READ V: POKE
DATA
DATA
REM
HOME
HTAB 18: PRINT 0MUSIC": VTAB 6
INPUT "ENTER STARTING VALUE (1-255) ";ST
IF ST< 1 OR ST> 255 THEN 60
INPUT "ENTER ENDING VALUE (1-255) ";EN
IF EN< 1 OR EN> 255 THEN 80
INPUT "ENTER STEP SIZE ";INC
IF INC> ABS (EN - ST) THEN 100
IF ST> EN THEN INC= - INC
INPUT "ENTER DURATION VALUE (1-255) ";D
IF D < 1 ORD> 255 THEN 130
PRINT: PRINT
REM --- PLAY TONES --
FOR F = ST TO EN STEP INC
POKE 768,F: POKE 769,D: CALL 770
NEXT F
PRINT "PRESS ANY TO CONTINUE-SPACE BAR TO END"·
GET R$: IF R$ = CHR$ (32) THEN 299 1

GOTO 40
END

5
7
10
20
30
35
40
50
60
70
80
90
100
110
120
130
140
150
155
160
170
180
190
200
210
299

•

MACHINE LANGUAGE TONE GENERATOR

There are a limited number of sounds available from the G-bell and from peeking
location -16336. For a greater variety of sound and musical tunes you can use a routine
in BASIC that will generate a machine language routine. There are various machine
language routines to generate sound. One such routine is presented in the following
programs.

You can use the machine language routine in your BASIC programs by setting two
variables-frequency and duration-and then issuing a CALL command.

The frequency refers to the pitch and is represented in the following programs by F,
where F can range from 1 to 255. with 255 representing the lowest pitch and l the highest
pitch. Duration refers to the length of time the tone is played and is represented by D,
where D ranges from a value of l to 255. with 255 the longest duration and 1 the shortest.

The sounds generated bytheG-bell and by peeking location-16336 are limited to low
frequency sounds. With a machine language program you can obtain a higher frequency
resulting in a greater range of sounds. Poke in the values for frequency and duration and
call the subroutine, and you have a sound. Put this in a loop that pokes a pattern of
frequencies and durations and you have music.

Although many memory locations are dedicated to particular functions, there are
several unused or free locations in which to place your own machine language routines.
The following music generator routine is stored at address 770-790. Address 768 holds
the frequency, address 769 stores the duration, and the CALL 770 command accesses the
routine. The routine is not relocatable. If you want to use a different memory location for
the music program. you will have to use a different machine language program.

SOUND

AsCENDING/DESCENDING

BELLS, CLICKS, SOUNDS, AND TUNES ------------ 279

This program uses the machine language sound routine to generate ascending and
descending tones.

EXPLANATION _

The machine language routine is poked into memory at lines 10-30. starting at address
770. The values of the DATA statements represent instructions in machine language.

Lines 60, 80. and 100 let you enter the beginning. ending. and step size. The values are
checked in lines 70 and 90 to verify that they are within the limits l -255. Line JJO
determines if the step is positive or negative. The duration is entered in line 130 and
checked in line 140.

The routine at lines 160-180 plays the sequence of sounds.
The frequency is determined by the counter Fas F ranges from ST to EN in increments

of INC. When the value of the frequency F increases, the pitch decreases. and when the
value of the F decreases. the pitch increases.

278 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

MENU WITH SOUND EFFEC IS FOR WRONG RESPONSE

This program displays a menu and plays a set of tones when an illegal response is
made.

1010
2000
2010
2020
2030

RETURN
DATA 5
DATA QUIT
DATA TICKER TAPE,ASCENDING/DESCENDING
DATA STAR WARS,CHARGE!

EXPLANATION _

The program demonstrates one way to use the sound routine to produce random
sound effects.

Lines 10-30 poke the machine language into memory. Lines 40-50 read the names of
the programs available. The menu is printed at lines 60-110.

The subroutine starting at line 1000 selects a random number from 34 to 255 to
represent the frequency. It assigns a duration of 64 and plays the set of tones when an
illegal entry is made.

Line 130 captures the keypress. Line 140 checks for invalid entries. If an invalid entry is
made. the subroutine atlOOO is called and the program waits for the user to make another
entry. When a valid entry is made, the program runs the program associated with that
number.

Line 2000 contains the number of programs available. Line 2010 holds the Quit option,
while lines 2020-2030 store the names of the programs available.

To use this program, enter the number and names of your programs in lines 2000 and
2020-2030. respectively.

� REM === MENU WITH SOUND EFFECTS===
7 REM --- POKE IN MACHINE LANGUAGE TONE GENERATOR ---
10 FOR L = 770 TO 790: READ V: POKE L,V: NEXT L
20 DATA 173,48,192,136,208,S,206,1,3,240,9
30 DATA 202,208,245,174,0,3,76,2,3,96
35 REM --- DISPLAY MENU ---
40 READ N: DIM A$(N}
50 FOR X = 0 TON - 1: READ A$(X): NEXT X
60 HOME: VTAB 5:H = 10
70 INVERSE: HTAB 5: PRINT"<<< PROGRAMS AVAILABLE>>>"
: NORMAL
80 VTAB 8
90 FOR X - 0 TON - 1
100 HTAB H: PRINT X:"} ":A$(X): PRINT
110 NEXT X
115 REM --- GET RESPONSE ---
120 HTAB ll - 7: CALL - 868: PRINT "SELECT:":
130 GET R$:R - VAL (R$)
140 IF R > N - 1 OR ASC {R$) < 48 OR ASC {R$) > 57 TH\
EN VTAB PEEK (37) + 1: HTAB H: FLASH: PRINT "ILLEGAL
ENTRY": NORMAL: GOSUB 1000: FOR Z = 1 TO 100: NEXT Z:
VTAB PEEK (37): GOTO 120
150 VTAB 18: HTAB H: PRINT R$
160 IF R = 0 THEN 199
170 PRINT CHR$ (4)"RUN"A$(R)
199 TEXT: HOME: END
995 REM --- PLAY RANDOM SET OF TONES ---
1000 FORS= l TO 3:F = INT (RND (1) * 222) + 34: POK
E 768,F: POKE 769,40: CALL 770: NEXT S

280 -------- APPLESOFT BASIC SUBROUTINES & SECRETS
•

BELLS, CLICKS, SOUNDS, ANO TUNES ------------ 281

•

TUNES
EQUIVALENT PIANO POKES FOR FREQUENCY

•

BELLS, CLICKS, SOUNDS, AND TUNES ------------ 283

FREQUENCY CHART B 34
36

Table 10-l lists the values for F that correspond to the frequency of musical notes.
A 36

40 6 43
TABLE 1 0-1. 45

F 48
FREQUENCY CHART E 51

54
Note F 0 57

Octa\€ 1 c 255 60
C# or O� 241 c 64
0 227
0# or El, 214

B 68
E 202 72 A 76
F 191 81
F# or GI, 180 6 65
G 170 91
G# or Al, 161 F 96
A 152 E 102
A# or sl, 143
B 135

108 0 114
Octa\€ 2 middle C 128 121

C# or ol, 121 midca. c 128
0 I 14
0# or El, 108

B 135
E 102 143

A 152
F 96 161
F# or GI, 91 6 170
G 85 160
G# or Al, 81 F 191
A 76 E 202
A# or sl, 72
B 68

214 0 227
Octa\€ 3 c 64 241

C# or sl, 60 c 255
0 57
0# or El, 54
E 51
F 48
F# or GI, 45
G 43 \ G#orA� 40
A 38
A# or sl> 36
B 34

282 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

DURATION CHART
CHANGING TEMPO (THEME FROM STAR WARS)

Table 10-2 indicates the values for D that correspond to the duration of different notes.
The following program plays the theme from Star Wars and allows you to change the

tempo.

TABLE 10-2.
DURATION CHART

Length of Note D
Whole note 255
Dotted half note 192
Half note 127
Dotted quarter note 96
Quarter note 64
Dotted eighth note 48
Eighth note 32
Dotted sixteenth note 24
Triplet 21
Sixteenth note 16

EXPLANATION----------------------

The machine language routine is poked into memo,y at line I 0. The values for the
machine language tone generator are at lines 1000-1010. Line 2000 holds the number of
notes to be played. The values in the DATA statements on lines 2010-2030 represent the
values for frequency and duration, respectively.

To enter your own song, use Table 10-1 and Table 10-2 to determine the values for the
frequency and duration of the notes. If you want to change the tempo. you can multiply
the duration value by a number such as 2, 3, or 3.5. This was done on line 70.

However, a problem arises when you try to use a duration greater than 255. The
computer will respond with a range error message. Line 80 checks for a value greater than
255 and stores the value in variable DU (duration). It then sets a flag FL equal to I and sets
the duration D to the maximum 255.

Line JOO checks the value of the flag FL. If the value isl, the program sets a delay loop of
length DU - 255.

BELLS, CLICKS, SOUNDS, AND TUNES ------------ 285

REM === STAR WARS===
FOR L = 770 TO 790: READ V: POKE L,V: NEXT L
TEXT: HOME
VTAB 12: HTAB 14: PRINT"** STAR WARS**"
READ N
FOR X = 1 TON
READ F,D

D = D * 3
IF D > 255 THEN DU= D:FL = l:D = 255
POKE 768,F: POKE 769,D: CALL 770
IF FL= 1 THEN FOR Z = l TO DU - 255: NEXT Z:FL =

5
10
20
30
40
50
60
70
80
90
100
0
110 NEXT X
199 END
995 REM --- SOUND ROUTINE DATA ---
1000 DATA 173,48,192,136,208,5,206,l,3,240,9
1010 DATA 202,208,245,174,0,3,76,2,3,96
1995 REM --- FREQUENCY, DURATION ---
2000 DATA 42: REM NUMBER OF NOTES
2010 DATA 170,21,170,21,170,21,128,127,85,l27,96,21,10
2,21,114,21,64,127,85,64,96,21,102,21,114,21
2020 DATA 64,127,85,64,96,21,102,21,96,21,ll4,127,170
,21,170,21,170,21,128,127,85,127,96,21,102,21,114,21
2030 DATA 64,127,85,64,9i,21,102,21,114,21,64,127,85,64
,96,21,102,21,114,21,128,64,128,21,128,21,128,21,128,64

\

•

DATA STATEMENTS 10 HOLD FREQUENCY
AND DURATION

284 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

The follovving programs store the values for the frequency and duration in DATA
statements.

Since the computer reads the DAT A statements in the order in which t�ey appear in the
program. the order is important especially if your program contains other DATA
statements.

The DATA statements can be placed anyvvhere in a program (beginning. middle. or
end); however. they must be placed in the order in which they will be read. The d�ta for
the machine language sound generator routine must precede the data that contain the
frequency and duration.

PLAYING A TUNE

ADDING A REST f''CHARGEl''J
CALL MUSIC OR CALL SOUND

This shows you how to add a rest to your song.

EXPLANATION _

If you want to add a rest add a piece of dummy data and check for that value during
the program. When the computer reads the dummy data on line 90. it sets up a delay loop
so the computer will pause to simulate a rest. The ending value of the delay loop will be
the value of the duration. It takes the duration value and doubles it to arrive at the rest. If
you want a longer rest, change the 2 in line 90 to a larger number.

This program uses a dummy value of a negative number to flag the rest. Use Table 10-3
to enter the values for the duration that will determine the type of rest.

This presents a statement to use CALL MUSIC or CALL SOUND in place of CALL 768.

EXPLANATION=--------------------

When �ou call a machine language routine by name, be sure to use a name that does
not contain any reserved words. TONE contains the reserved word ON and therefore
cannot be used in this case.

Make the following change� to set up variables such as MUSIC or SOUND to be equal
to 770 and then CALL the variable name rather than its value.

Add line 35 and change line 140:

35 MUSIC= 770

TABLE 1 0-3. RESTS
140 CALL MUSIC

Type of Rest Duration Value or
Whole 255
Half 127 35 SOUND= 770
Quarter 64
Eighth 32 140 CALL SOUND
Sixteenth 16

l TO DU - 255: NEXT Z:FL =

FOR Z = 1 TO 2 * D: NEXT Z: GOTO 160

E3ELLS, CLICKS, SOUNDS, AND TUNES ------------ 287

TUNE ---
NEXT X
END
REM --- FREQUENCY AND DURATION OF
DATA 7 : REM NUMBER OF NOTES
DATA 128,64,96,64,76,64,64,64
DATA -1,96
DATA 76,64,64,255

5 REM ===CHARGE!===
7 REM --- POKE IN MACHINE LANGUAGE TONE GENERATOR
10 FOR L = 770 TO 790: READ V: POKE L,V: NEXT L
20 DATA 173,48,192,136,208,S,206,1,3,240,9
30 DATA 202,208,245,174,0,3,76,2,3,96 �
40 HOME
50 HTAB 18: PRINT TAB(18)"CHARGE!"
55 REM --- PLAY SONG ---
60 READ T
70 FOR X = 1 TOT
80 READ F,D
90 IF F < 0 THEN
100 D = D * 1
110 IF D > 255 THEN DU= D:FL = 1:D = 255
120 POKE 768,F
130 POKE 769,D
140 CALL 770
150 IF FL= 1 THEN FOR Z -
0
160
199
995
1000
1010
1020
1030

286 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

ONE ARRAY TO SIORE TuNE (BEETHOVEN'S 9iH)

This program uses an array to store a tune to be used throughout your program. This is
useful when the program has other DATA statements. It is also convenient when the
same tune is to be played more than once in your program. The tune is "Ode to Joy" from
Beethoven's Ninth Symphony.

EXPLANATION _

The arrays F (XI and D (XJ hold the values for the frequency and duration. respectively.
Be sure that the first set of DATA statements contains the machine language routine. since
the computer reads the DAT A statements in the order in which they physically appear in
the program.

The DATA statements at lines 20 and 30 hold the machine language routine. while the
statements at 1000-1040 store the number of notes and the frequency and duration of
each note of the song.

Line 130 issues the command CALL MUSIC, since MUSIC has been assigned the value
770 in line 40.

5 REM === BEETHOVEN'S 9TH ===
7 REM --- POKE IN MACHINE LANGUAGE TONE GENERATOR ---
10 FOR L = 770 TO 790: READ V: POKE L,V: NEXT L
20 DATA 173,48,192,136,208,5,206,l,3,240,9
30 DATA 202,208,245,174,0,3,76,2,3,96
40 MUSIC= 770
50 TEXT: HOME
60 HTAB 12: PRINT "BEETHOVEN'S 9TH"
65 REM --- READ FREQUENCY/DURATION INTO ARRAY ---
70 READ N: DIM F{N),D(N)
80 FOR X = 1 TON: READ F(X),D{X): NEXT X
85 REM --- PLAY TUNE ---
90 FOR X = 1 TON
100 IF F{X) < 0 THEN FOR Z = 1 TO 2 * D(X): NEXT Z: GO
TO 150
110 D(X) = D{X) * 2
120 IF D(X) > 255 THEN DU= D(X):FL = 1:D(X) = 255
130 POKE 768,F{X): POKE 769,D(X): CALL MUSIC
140 IF FL= 1 THEN FOR Z = 1 TO DU - 255: NEXT Z:FL =
0
150 NEXT X
199 END
995 REM --- FREQUENCY AND DURATION OF TUNE --- ,
1000 DATA 63: REM NUMBER OF NOTES ,
1010 DATA 102,64,102,64,96,64,85,64,85,64,96,64,102,64,
114,64,128,64,128,64,114,64,102,64,l02,96,ll4,32,ll4,127
1020 DATA 102,64,102,64,96,64,85,64,85,64,96,64,l02,64,
114,64,128,64,128,64,ll4,64,102,64,114,96,128,32,l28,l27

288 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

1030 DATA 114,64,114,64,102,64,128,64 114 64 102 32 96 32,102,64,128,64,114,64,102,32,96,32,102,64,114,64,128 6
4,114,64,170,64,102,64 '
1040 DATA 102,64,102,64,96,64,85,64,85,64 96 64 102 64 114,64,12s,64,128,64,114,64,102,64,114,96,i2a;32;128;127

BELLS, CLICKS, SOUNDS, ANO TUNES ------------ 289

FOR Z = 1 TO DM(X): NEXT X: GOT

FOR Z = 1 TO DT(X): NEXT X: GOT

85,64,85,64,96,64,96,64,102,64,102,64,114,12
85,64,85,64,96,64,96,64,102,64,102,64,114,l2
128,64,128,64,85,64,85,64,76,64,76,64,85,127
96,64,96,64,102,64,102,64,114,64,114,64,128,

114,64,114,64,114,128
102,64,85,64,85,127
102,64,114,64,128,64,114,64,102,64,102,64,102
114,64,114,64,102,64,114,64,128,127
--- TWINKLE TWINKLE LITTLE STAR ---
42: REM NUMBER OF NOTES
128,64,128,64,85,64,85,64,76,64,76,64,85,127
96,64,96,64,102,64,102,64,114,64,114,64,128,

POKE 768,FT(X): POKE 769,DT(X): CALL 770
NEXT X
RETURN
REM --- FREQUENCY AND DURATION OF TUNE --
REM --- MARY HAD A LITTLE LAMB ---
DATA 26: REM NUMBER OF NOTES
DATA 102,64,114,64,128,64,114,64,l02,64,102,64,102

NT: PRINT
140 INPUT "ENTER THE NUMBER OF THE SONG ";NS
150 IF NS= 0 THEN 299
160 ON NS GOSUB 1000,2000
170 GOTO 90
299 END
995 REM --- PLAY MARY ---
1000 FOR X = 1 TO NM
1010 IF FM(X) < 0 THEN
0 1060
1020 DM(X) = 2 * DM(X)
1030 IF DM(X) > 255 THEN DU= DM(X):FL = 1:DM(X) = 255
1040 IF FL= 1 THEN FOR Z = 1 TO DU - 255: NEXT Z:FL =

0
1050 POKE 768,FM(X): POKE 769,DM(X): CALL 770
1060 NEXT X
1070 RETURN
1995 REM --- PLAY TWINKLE ---
2000 FOR X = 1 TO NT
2010 IF FT(X) < 0 THEN
0 2060
2020 DT(X) = 2 * DT(X)
2030 IF DT(X) > 255 THEN DU= DT(X):FL = l:DT(X) = 255
2040 IF FL= 1 THEN FOR Z = 1 TO DU - 255: NEXT Z:FL =

0
2050
2060
2070
4993
4995
5000
5010
,127
5020 DATA
5030 DATA
5040 DATA
,64,102,64
5050 DATA
5995 REM
6000 DATA
6010 DATA
6020 DATA
127
6030 DATA
7
6040 DATA
7
6050 DATA
6060 DATA
127

BELLS, CLICKS, SOUNDS, ANO TUNES ------------ 291

MODIFICATION---------------------

The naming of the arrays is up to you. The arrays Fl (}, Dt (L F2(}, 02(}, and F3{ l.
03(I can be used to store the frequency and duration, respectively, for the different tunes.
The variables Nt, N2, and N3 can represent the number of notes for each tune.

\

20 FOR L = 770 TO 790: READ V: POKE L,V: NEXT L
30 DATA 173,48,192,136,208,5,206,1,3,240,9
40 DATA 202,208,245,174,0,3,76,2,3,96
45 REM --- READ FREQUENCY/DURATION INTO ARRAY ---
47 REM --- READ MARY ---
50 READ NM: DIM FM(NM),DM(NM)
60 FOR X = 1 TO NM: READ FM(X),DM(X): NEXT X
65 REM --- READ TWINKLE ---
70 READ NT: DIM FT(NT),DT(NT)
80 FOR X = 1 TO NT: READ FT(X),DT(X): NEXT X
85 REM --- PRINT MENU ---
90 TEXT: HOME
100 PRINT TAB(18)"MUSIC": PRINT: PRINT
110 PRINT "0. QUIT PROGRAM": PRINT
120 PRINT "l. MARY HAD A LITTLE LAMB": PRINT
130 PRINT "2. TWINKLE TWINKLE LITTLE STAR": PRINT: PRI

5 REM === MARY AND TWINKLE===
10 TEXT: HOME: PRINT TAB(lB)"MUSIC"
15 REM --- POKE IN MACHINE LANGUAGE TONE GENERATOR --

290 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

MULTIPLE ARRAYS 10 SiORE TuNE
(''MARY'' AND ''TWINKLE'')

-

This program shows you how to store two songs in arrays and play either song. This is
:;eful if you want to play the songs in any sequence and not the order listed in the DATA

statements.

EXPLANATION _

When you have several tunes to play at various points in a program. use different arrays
to store the tunes at the start of the program and use the appropriate array when needed.

The arrays FM{ J and OM() store the frequency and duration for "Mary Had a Little
Lamb"; the variable NM holds the number of notes for that song. The arrays FT() and
OT() store the frequency and duration for"Twinkle, Twinkle Little Star," with NT holding
the number of notes.

The loop at lines 50-60 sets up the array with the notes of "Mary Had a Little Lamb,"
while the loop at lines 70-80 sets up the array with the notes from "Twinkle. Twinkle Little
Star."

This program sets up a menu of the two songs available and lets the user enter the
number of the song or a Oto quit the program. Lines 90-t 30 set up the menu and line 140
accepts the viewer's selection.

Linet 50 checks for the zero entry to quit the program. Line 160 instructs the computer to
execute the subroutine that plays the song requested. After the song is played. the
program returns to the menu.

This is an example of how you can use arrays to play two different tunes. Your program
may play one tune for a correct answer and another tune for an incorrect answer. You
could have your program select the tunes to coordinate the graphics pictures with the
music. For example, if you are showing scenes of different countries or cities. you might
want an appropriate tune. If your program involves different teams in football or the
Olympics, you might want to play the appropriate theme, college song, or national
anthem.

CHANGING PITCH (BRAHMS' LULLABYJ

This program lets you change the pitch of a song. The tune is Brahms' Lullaby.

2050
2060
2070
2080

DATA
DATA
DATA
DATA

64,127,76,32,96,32,85,127,102,32,128,32
96,64,85,64,76,64,102,64,85,64,l28,32,128,32
64,127,76,32,96,32,85,127,l02,32,128,32

96,21,85,21,96,21,102,64,114,64,128,127

68,32,76,32,85,64,68,64,64,127,128,32,l28,32

292 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

64,64,68,64,76,64,76,64,85,64,114,32,102,32
96,64,114,64,114,32,102,32,96,127,ll4,32,96

SAVING THE MACHINE LANGUAGE
TONE GENERATOR ROUTINE

BSAVE SOUND GENERATOR,A770,L21

BSAVE SOUND GENERATOR,A$302,L$15
or

This �tatement demonstrates how to save the machine language generator as a binary
file, which a!l�ws you to use the tone generator without having to include it in every
program. This ,s useful for a game, quiz, or adventure game.

EXPL.ANATION----------------------

Run_ one of the programs with th_e tone generator to get the routine in memory. The
following statement saves the machine language routine with a BSAVE command. It uses
the filename SOUND �EN ERA TOR, although you could replace that name with any legal
filename of your choice. You can express the address and length in either decimal or
hexadecimal notation.

BELLS, CLICKS, SOUNDS. ANO TUNES ------------ 293

FOR Z = 1 TO 2 * D(X}: NEXT Z: GO

PLAY SONG
1 TON
< 0 THEN

SOUND ROUTINE DATA ---
173,48,192,136,208,5,206,l,3,240,9

202,208,245,174,0,3,76,2,3,96
--- FREQUENCY, DURATION ---
54: REM NUMBER OF NOTES
102,32,102,32,85,127,102,32,l02,32,85,127,10

5 REM === BRAHM'S LULLABY===
7 REM --- POKE IN MACHINE LANGUAGE TONE GENERATOR ---
10 FOR L = 770 TO 790: READ V: POKE L,V: NEXT L
20 TEXT: HOME
30 VTAB 12: HTAB 11: PRINT"** BRAHM'S LULLABY**"
40 AF= 2: REM ADJUSTMENT FACTOR FOR PITCH
5 0 PF = 2 " ((1 / 12) * (- AF))
55 REM --- READ FREQUENCY/DURATION INTO ARRY ---
60 READ N: DIM F(N),D(N)
70 FOR X = 1 TON: READ F(X),D{X)
80 F(X) =PF* F{X): IF F(X} > 255 THEN PRINT "TRY A SM
ALLER AF": GOTO 199
90 NEXT X
95 REM ---
100 FOR X =
110 IF F(X)
TO 160
120 D(X} = 3 * D(X)
130 IF D(X) > 255 THEN DU - D(X}:FL = l:D(X) = 255
140 POKE 768,F{X): POKE 769,D(X): CALL 770
150 IF FL= 1 THEN FOR Z = 1 TO DU - 255: NEXT Z:FL =
0
160 NEXT X
199 END
995 REM ---
1000 DATA
1010 DATA
1995 REM
2000 DATA
2010 DATA
2,32,85,32
2020 DATA
2030 DATA
,32
2040 DATA

EXPLANATION _

The program allows you to change the pitch of a song by changing the adjustment
factor AF. The range of the values of AF vary with different programs.

Assign an adjustment factor AF, where AF ranges from a negative number to a positive
number, such as-5 through 5. lf AF= 0, then the original pitch will be played. If the value
of AF is a negative number, then the pitch will be lower, while a positive value of AF will
result in a higher pitch.

Line 50 calculates the pitch factor based on the value of AF in line 40. The value of 212

represents the ratio between the frequencies of two adjacent notes. AF represents the
number of half tones of change. PF represents the ratio of the original note and the
adjusted note.

ACCESSING THE TONE ROUTINE
(1TAKE ME OUT TO THE BALL GAME'')

APPENDIX A ASCII CO_D_E_ S______ -

DATA 76,192,68,192,64,192

294 -------- APPLESOFT BASIC SUBROUTINES & SECRETS

___ 295 _

ASCII CHARACTER CODES FOR
APPLE 11/11 PLUS

ASCII Screen ASCll Screen
Code KWttroke Display Code Keystroke Display

0 C L@ 32 space bar space
1 CTRLA 33 I I
2 CTRL 8 34 fl ,,

3 CTRL C 35 # #
4 CTRL D 36 $ $

5 CTRL E 37 O/o %
6 CTRL F 38 & &
7 CTRL G Bell 39 '

8 CTRL H Backspace or - 40 r r
9 CTRL I 41))

10 CTRLJ Linefeed 42 * *
11 CTRLK 43 + +
12 CTRL L 44
13 CTRLM Carriage return 45
14 CTRL N 46
15 CTRL O 47 I I
16 CTRL P 48 0 0
17 CTRLO 49 1 I
18 CTRL R 50 2 2
19 CTRL S 51 3 3
20 CTRL T 52 4 4
21 CTRL U Forward space or - 53 5 5
22 CTRLV 54 6 6
23 CTRLW 55 7 7
24 CTRLX Line cancel 56 8 8
25 CTRL Y 57 9 9
26 CTRLZ 58
27 ESC key 59 .

' • 28 na 60 < <
29 CTRL SHIFT M 61 - -
30 CTRL " 62 . > > 31 na 63 7 7

na = not available

FOR Z = 1 TO D(X): NEXT Z: GOTO 1
PLAY SONG
1 TON < 0 THEN

NEXT X
END
REM --- FREQUENCY, DURATION --
DATA 62: REM NUMBER OF NOTES
DATA 128,127,64,64,76,64,85,64,102,64,85,192,114,l

5 REM ===BALLGAME===
10 TEXT: HOME
20 VTAB 12: HTAB 3: PRINT"** TAKE ME OUT TO THE BALL G
AME**"
30 PRINT CHR$ (4)"BLOAD SOUND GENERATOR"
35 MUSIC= 770
40 AF= - 2: REM ADJUSTMENT FACTOR FOR PITCH
50 PF= 2 � ((1 / 12) * (- AF))
55 REM --- READ FREQUENCY/DURATION INTO ARRAY ---
60 READ N: DIM F(N),D(N)
70 FOR X = 1 TON: READ F(X),D(X)
80 F(X) =PF* F(X): IF F(X) > 255 THEN PRINT "TRY A LA
RGER AF": GOTO 199
90 NEXT X
95 REM ---
100 FOR X =
110 IF F(X)
60
120 D(X) = 1 * D{X) 130 IF D{X) > 255 THEN DU - D{X):FL = l:D(X) = 255
140 POKE 768,F(X): POKE 769,D(X): CALL MUSIC
150 IF FL= 1 THEN FOR Z = 1 TO DU - 255: NEXT Z:FL =
0
160
199
995
1000
1010
92 1020 DATA 128,127,64,64,76,64,85,64,102,64,85,319,81,64
1030 DATA 76,64,81,64,76,64,102,64,96,64,85,64,76,l27,9
6,64,114,192
1040 DATA 76,127,76,64,76,64,68,64,64,64,57,64,68,64,7
6,64,85,64,102,64,ll4,64
1050 DATA 128,127,64,64,76,64,85,64,102,64,85,192,114,1
92 1060 DATA 128,64,128,64,114,64,102,64,96,64,85,64,76,l9
2,-1,64,76,64,68,64
1070 DATA 64,192,64,192,64,64,68,64,76,64,85,64,91,64,
85,64
1080

This statement shows you how to access the machine language tone generator that
has been saved as a binary file and play the song "Take Me Out to the Ball Game."

EXPLANATION _

The tone generator routine saved as SOUND GENERATOR is BLOADed in line 30. The
frequency and duration are stored in arrays. The adjusted tune is played at lines 100-160.

The binary file SOUND GENERA TOR must be on every disk that has programs that
access it

ASCII CHARACTER CODES FOR
ASCII CHARACTER CODES FOR APPLE lie/ lie

APPLE 11/11 PLUS CCONTJ ASCII Screen ASCII Screen
ASCII Screen ASCII Screen Code K�troke Display Code Keystroke Display
Code K�troke Di@lay Code Keystroke Display 0 C L@ 32 space bar space
64 @ 96 na I CTRLA 33 ' I
65 A A 97 na 2 CTRL B 34 " ,,

66 B B 98 na ,, 3 CTRL C 35 # #
67 c c 99 na # 4 CTRL D 36 $ $

68 D D 100 na $ 5 CTRL E 37 OA, o/o
69 E E 101 na % 6 CTRL F 38 & &
70 F F 102 na & 7 CTRL G Bell 39
71 G G 103 na 8 CTRL H Backspace or - 40 ((
72 H H 104 na (9 CTRL I TAB key 41 })
73 I I 105 na) 10 CTRL J Linefeed or l 42 * *
74 J J 106 na * 11 CTRL K f 43 + +
75 K K 107 na + 12 CTRL L 44
76 L L 108 na 13 CTRLM Carriage return 45
77 M M 109 na 14 CTRL N 46
78 N N 110 na 15 CTRLO 47 I I
79 0 0 11 I na I 16 CTRL P 48 0 0
80 p p 112 na 0 17 CTRLO 49 1 I
81 0 0 113 na I 18 CTRL R 50 2 2
82 R R 114 na 2 19 CTRL S 51 3 3
83 s s 115 na 3 20 CTRL T 52 4 4
84 T T 116 na 4 21 CTRL U Forward space or - 53 5 5
85 u u 117 na 5 22 CTRL V 54 6 6
86 v v 118 na 6 23 CTRLW 55 7 7
87 w w 119 na 7 24 CTRLX Line cancel 56 8 8
88 x x 120 na 8 25 CTRL Y 57 9 9
89 y y 121 na 9 26 CTRLZ 58
90 z z 122 na 27 ESC key 59 .

• •
91 na f 123 na • 28 na 60 < <
92 na \ 124 na < 29 CTRL SHIFT M 61
93 SHIFT M] 125 na 30 CTRL " 62 > >
94 "' " 126 na > 31 na 63 ? ?
95 na 127 na 7 na = not available

na = not available.

296 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

___ 299 _

B APPENDIX
ASCII CHARACTER CODES FOR APPLE MEMORY MAP APPLE lie/ lie CCONT.J

ASCII Screen ASCII Screen
Code K�troke Di SR lay Code Keystroke Display
64 @ @ 96 \ \ The following chart is a simplified version of the Apple's memory map. It indicates the
65 A A 97 a a addresses that hold graphics, text and Applesoft programs, along with free memory that
66 B B 98 b b you can use for your own machine language routines. It assumes 64K of memory and
67 c c 99 c c Applesoft in ROM. If you have48K of memorywithApplesoft in ROM, the same map can
68 D D 100 d d be used, except that the addresses above 49151 are not available.
69 E E 101 e e
70 F F 102 f f
71 G G 103 g g MEMORY MAP
72 H H 104 h h

Address Address 73 I I 105
74 J J 106 J J in Decimal Function in Hexadecimal
75 K K 107 k k 65535 SFFFF
76 L L 108 I I INT BASIC/FP BASIC
77 M M 109 m m (only with 64KJ
78 N N 110 n n 49152 scooo
79 0 0 11 I 0 0 49151 SBFFF
80 p p 112 p p Disk operating system (OOS)
81 Q 0 113 q q 38400 $9600
82 R R 114 r (38399 S95FF
83 s s 115 s s Unused
84 T T 116 t t 24576 $6000
85 u u 117 u u 24575 S5FFF
86 v v 118 v v Hi-res graphics page 2
87 w w 119 w w 16384 $4000
88 x x 120 x x 16383 S3FFF
89 y y 121 y y Hi-res graphics page 1
90 z z 122 z z 8192 $2000
91 [[123 { { 8191 SlFFF
92 \ \ 124 I I Unused
93 SHIFT M] 125 } } 3072 scoo
94 " " 126 - - 3071 SBFF
95 127 Delete key � Text/lo-res graphics page 2 �

Start of Applesoft program
na = not available. 2048 5800

2047 S7FF
Text/lo-res graphics page 1

1024 $400
1023 S3FF

OOS vectors
960 S3CO
959 S38F

Unused
768 $300
767 S2FF

System functions
0 so

298 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

APPENDIX

LOW RESOLUTION GRAPHICS
COLOR

The following two charts represent the colors available in low and high resolution
graphics, respectively.

A 64K Apple computer has 65536 possible memory addresses numbered 0-65535.
The memory locations are expressed as either a positive number from Oto 65535 or as

an equivalent negative number. The negative address is often used when the address is
greater than 32767.

To convert a positive number to its equivalent negative number subtract 65536 from it.
positive number - 65536 = negative address

49152 - 65536 = -16384
49152 is equivalent to -16384

To convert a negative number to its positive equivalent. add 65536 to it.
negative address + 65536 = positive address

-16384 + 65536 = 65536 - 16384 = 49152
-16384 is equivalent to 49152

APPENDIX

CALL COMMANDS
MEMORY LOCATIONS

Color
Brown
Orange
Gray
Pink
Light green
Yellow
Aqua
White

Number
8
9

10
JI
12
13
14
15

Color
Black
Red
Dark blue
Purple
Dark green
Gray
Medium blue
Light blue

Number
0
I
2
3
4
5
6
7

HIGH RESOLUTION
GRAPHICS

COLORS
Number
0
1
2
3
4
5
6
7

Color
Black
Green
Violet
White
Black
Orange/red
Blue
White

PEEK

The PEEK command allows you to examine the contents of a memory address. The
general form is the following command, where A represents the address: PEEK(A).

PEEK(A) is equivalent to PEEK(A- 65536} and returns the contents of memory location
A or A - 65536.

POKE
The POKE command allows you to change the contents of a memory location. The

general form is the following command, where A represents the address and V the value
to be entered: POKE A,V.

POKE A,V is equivalent to POKE A - 65536.V and pokes the value V into location A or
A- 65536.

___ 301 _

)

___ 300 _

CALL

The CALL command transfers control from BASIC to a machine language subroutine
that starts at the memory location accessed. This subroutine can be a routine resident in
ROM or one you create and store in RAM such as the Sound Generator routine.

The general format of the CALL command is the following command. where A is the
starting address of the machine language subroutine: CALL A.

CALL A is equivalent to CALL A - 65536 and accesses the machine language
subroutine that starts at memory location A.

The following charts present some of the commonly used PEEK, POKE, and CALL
commands. The list is not complete but represents the commands used in this book.

•

302 --------- APPLESOFT BASIC SUBROUTINES & SECRETS

PEEK AND POKE MEMORY LOCATIONS

Paddles .
X = PEEK(-16286) reads button on paddle O

where X > 127 if button pressed
X = PEEK(-16287) reads button on paddle 1

where X > 127 if button pressed

Speaker
X = PEEK(-16336) clicks speaker

Keyboard
Holds ASCII value of keypress + 128

POKE -16384.0 resets keyboard reader
POKE -16368,0 clears high bit of keyboard reader

Explanation
DOS

RESET vector
POKE 1010,102:POKE 1011.213:POKE 1012,112

makes RESET RUN program (can disable with CTRL C)
POKE 1012.1 makes RESET boot disk

& vector
& = CATALOG:

POKE 1013.76:POKE 1014,110:POKE 1015.165
& = LIST:

POKE 1013.76:POKE 1014.165:POKE 1015.214
& = RUN:

POKE 1013,76:POKE 1014,18:POKE 1015217

POKE -25250,105:POKE -25249,0
traps and disables CTRL C

Disk drive number
Disk volume heading

Dlsplay Soft SWltches
POKE address.V or K = PEEK(address)

Sets graphics mode
Sets text mode
Sets full screen graphics
Sets mixed text/ graphics mode
Sets page 1
Sets page 2
Sets lo-res mode
Sets hi-res mode

-16287

-16286

-16336

-16304
-16303
-16302
-16301
-16300
-16299
-16298
-16297

-16368

-16384

-25250/-25249

Equivalent

APPENDIX o ----------------------- 303

49250

PEEK AND POKE MEMORY LOCATIONS CCONTJ

49249

49232
49233
49234
49235
49236
49237
49238
49239

49250

49168

49152

43624
45999-46010

40286-7

1013-1015

1010-1012

Command

Inverse
Flash
Normal
Invisible listing/catalog
Normal listing/catalog

Lo-res color value * 17
Holds ASCII value of text character if

GR. HLIN. or VLIN was used in text mode where:
0-63 Inverse character
64-127 Flashing character
128-191 Standard character

Text output format where:
POKE 50.63
POKE 50,127:POKE 243,64
POKE 50.255
POKE 50.128
POKE 50.255

Program line where DATA is read
Memory address of DATA

RUN flag
POKE 214.255 disables CTRL C and

interprets any command as RUN

ONERR flag
POKE 216,0 cancels ONERR

Returns error code (see Tables 2-1 and 2-2)

X-coordinate of last HPLOT
high byte in 225
low byte in 224

Y-coordinate of last HPLOT
Last HCOLOR value where:

O=O ..,/ 127=3 213=6
42=1 128=4 255=7
85=2 170=5

Hi-res plotting page where:
32= Page I 64= Page 2

Explanation
Pmge Zero

Last HCOLOR value
CALL - 3082 fills hi-res screen if
POKE 28.V is used where:
O=O 127=3 213=6
42=1 128=4 255=7
85=2 170=5

Left edge of text window 0- 39
Width of text window 1-40
Top edge of text window 0-23
Bottom edge of text window 1-24

Horizontal cursor position 0-39
Vertical cursor position 0-23

Equivalent

230

222
224-225

226
228

216

123-124
125-126

214

50

32
33
34
35
36
37

48

Command

28

Command Equivalent
64353 -1184
64484 -1052
64500 -1036

64528 -1008

64538 -998

64578 -958

64600 -936

64614 -922

64624 -912
64661 -875
64668 -868

64780 -756
64858 -678
64860 -676
65381 -155
65385 -151

Explanation
Prints Apple II at top of screen
Rings bell
Moves cursor right

Same as ESC K
Moves cursor left

Same as ESC J or CTRL H
Moves cursor up

Same as ESC I
Clears from cursor to bottom of page

Same as ESC F
Clears text screen

Same at HOME and ESC@
Moves cursor down

Same as ESC M
Scrolls up one line by issuing linefeed
Clears entire text line
Clears text line from cursor to right edge of screen window

Same as ESC E
Waits for keypress
Waits for carriage return
Rings bell and waits for carriage return
Enters monitor with bell
Enters monitor with no bell

APPENDIX E-- SUMMA_R_Y_O_F_C_O_M_MJ_A_N_D_S_
TO SAVE GRAPHICS OR TEX I

The following commands can be used in the immediate mode or in a program. where
filename is the name of the file being saved.
Save high resolution graphics page J:

BSAVE filename,A$2000,L$2000
BSAVE filename,A8192,L8192

Save high resolution graphics page 2:

BSAVE filename,A$4000,L$2000
BSAVE filename,Al6384,L8192

Save low resolution graphics page 1:

BSAVE filename,A$400,L$400
BSAVE filename,Al024,Ll024

Save low resolution graphics page 2:

BSAVE filename,A$800,L$400
BSAVE filename,A2048,Ll024

Save primary text page:

BSAVE filename,A$400,L$400
BSAVE filename,Al024,Ll024

COMMONLY USED CALL COMMANDS

304 --------- APPLESOFT BASIC SUBROUTINES & SECRETS ___ 305 _

I

- -

- - ...

APPLESOFT BASIC SUBR $ 3695 OUTJNES & SECRETS
21""86

I llllfl lllll fllll Ill/I lll: lllll l/lll /llll lllfl lllll-f I/I /Ill 0810467569
Technical Sook & Magazine Co, • •,., s s ,

.... J.__ - -- .. ·.�- � ·- - _ _

. - -

-d --;.. .- - C"
- \ ""· � ""'.- ·�c:- - - ,I'-, - -- - -�

APr=Lcc,:,,...- -,.:: . -- -r .. , . --.r: - •
... .. - -

4
·--. - ...

. .:. .,.,

--- __
L. .tf-�---- 1""""; • 1 .. ·7 �. ------- -·- ... - . ·--- - - .. , ., 1..: .,,:,,: 1 .- -i 1 - -- ----· - \.,I .., '-J- 1' ·--. -

. - - - ·:-·f·-·D - ' . t - :..- �c:-

• , •fL I - - - .. fi .. _ . --

-.,.,, .. -� - . ' ·� ' ... _.n __ � ��- \

------- -------._

	Applesoft BASIC Subroutines & Secrets by Jeanette Sullivan & Dave Sullivan
	Preface
	Contents
	Chapter 1: Program Entry and Disk Access
	Chapter 2: Data Entry and Error Trapping
	Chapter 3: Output Format
	Chapter 4: Special Effects
	Chapter 5: Sorting, Searching, and Scrambling
	Chapter 6: Low Resolution Graphics
	Chapter 7: High Resolution Graphics
	Chapter 8: Circles, Sines, Cosines, and Designs
	Chapter 9: Slide Shows
	Chapter 10: Bells, Clicks, Sounds, and Tunes
	Appendix A: ASCII Codes
	Appendix B: Apple Memory Map
	Appendix C: Color Charts
	Appendix D: Peek, Poke, and Call Commands
	Appendix E: Summary of Commands to Save Graphics or Text

