
COMPUTE I
LIBRARY
SELECTION

. .»
,! .. -.....,. _

ON THE APPLE IIGS
------William B. Sanders-----
The perfect introduction to programming sound and
graphics on the dazzling new Apple IIGS.

http://www.cvxmelody.net/AppleUsersGroupSydneyAppleIIDiskCollection.htm

COMPUTE!'s
GUIDE TO

KIRWAN OLD. 4814

William B. Sanders

One of the ABC Publishing Companies

Greensboro, North Carolina

Table of Contents

Foreword . v

Acknowledgments .
.

Vl

Copyright 1987, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107
and 108 of the United States Copyright Act without the permission of the copyright owner is
unlawful. ·

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Chapter 1
Text Graphics . 1

Chapter 2
Fundamentals of Animation . 19

Chapter 3
Low-Resolution Graphics . 39

Chapter 4
High-Resolution Graphics . 61

Chapter 5
Shapes and Bitmapped Graphics . 85

Chapter 6
Making Graphs and Circles . 109

Chapter 7
Super High-Resolution Graphics . 131

Chapter 8
Sound and Music on the Apple JIGS . 155

ISBN 0-87455-096-3

The author and publisher have made every effort in the preparation of this book to insure the accuracy of
the programs and information. However, the information and programs in this book are sold without war
ranty, either express or implied. Neither the author nor COMPUTE! Publications, Inc. will be liable for
any damages caused or alleged to be caused directly, indirectly, incidentally, or consequentially by the
programs or information in this book.

Chapter 9
PostScript Graphics

Appendices .

. 177

199 .

The opinions expressed in this book are solely those of the author and are not necessarily those of COM
PUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809,
is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Companies, and is not
associated with any manufacturer of personal computers. Apple is a registered trademark
and Apple IIGS is a trademark of Apple Computer, Inc.

Appendix A
Error Messages . 201

Appendix B
Selected Apple JIGS Toolbox Routines 205

Foreword

Appendix D
Selected Non-Toolbox Built-in Graphic Routines 229

ears ago, Apple promised "Apple II forever." The Apple IIGS
is the proof that Apple wasn't kidding. The newest addition to the
ten-year-old Apple II line, the IIGS is a powerful computer with
new features and capabilities, yet one that is compatible with most
Apple software.

That combination-added power and compatibility-extends
into the programming arena as well. If you've programmed on the
Apple II+, Ile, or Ile, you won't have trouble with the standard
graphics modes on the Apple IIGS. But the JIGS-specific graphics
and sound features, like super high-resolution graphics and sophis
ticated sounds, are new to everyone. You may be confused at first.
How can you create super hi-res pictures, for instance? How can
you get to the Iles' s Toolbox?

COMPUTE!'s Guide to Sound and Graphics on the Apple JIGS
· shows you how. Written by William Sanders, well-known author

of such books as The Elementary Apple and The Elementary Apple
JIGS, it's full of programming examples, tips, and techniques that il
lustrate the power of your new computer.

From the first chapter to the last, Sanders takes you on a
guided programming tour of the Apple IIGS. You'll be introduced
to the text screen and shown how that simple mode can generate
useful graphics. You'll discover the fundamentals of animation.
You'll explore the lo-res and hi-res Apple graphics modes, and will
even see how to create shapes and bitmapped graphics. You'll see
practical programming applications, such as drawing charts and
graphs. You'll find out how to access the super hi-res mode and
how to make superb music on the IlGS.

Scores of BASIC and machine language programs and routines
amply demonstrate the programming techniques Sanders offers.
Step-by-step instructions outline what you need to do and when to
do it. The clear writing leaves nothing to puzzle you.

COMPUTE!'s Guide to Sound and Graphics on the Apple JIGS is
your introduction and instructor to the world of sound and graph
ics programming on the newest, hottest Apple II computer ever.
With it and your imagination, you can turn out your most dazzling
programs ever.

v

Index . 231

Appendix C
Using the APW Assembler . 215

Acknowledgments
Just about every project requires the acknowledged author to ritual
istically thank others for their help. While several of those who lent
their assistance to this project suggested I send them lots of money
instead of a mere acknowledgment, it was impossible for me to be
stow filthy lucre upon such noble altruism. Therefore, it is with
pure sincerity, and in this case more than ritualistic gratitude, that
these acknowledgments are made.

The first three people who made it possible for this book to be
completed with some semblance of schedule were Roger Wagner,
Roger Wagner and Roger Wagner. First of all, Roger helped with
enlightening me to the mysteries of the new Apple IIGS Toolbox.
For the super high-resolution graphics and DOC sounds, this was
absolutely required. Secondly, he provided me with prerelease ver
sions of the Merlin Assembler for the 65816 chip that's the heart of
the Apple IIGS. Third, Roger was generally encouraging and help
ful in organizing excuses to our long-suffering editor who regularly,
but patiently, inquired as to the completion date.

Martha Steffen of Apple Computer, Inc. provided a prototype
Apple IIGS along with a ton of documentation and a great deal of
invaluable software. With all of the demands placed upon Martha
by developers and writers, her assistance is doubly appreciated.
Eric Goez, Bill Rupp, and many others in the Apple world in San
Diego provided different types of information right at the moment
it seemed to be most needed. My aforementioned, long-suffering
editor, Stephen Levy, is a case study of what a good editor should
be: helpful, encouraging, and understanding in the complexity of
preparing books for new computers. Likewise I am grateful to Bill
Gladstone of Waterside Productions for arranging things to make
the book possible.

Finally, my family has been wonderful in this occupation
where one is at home writing but not at home. My sons Bill and
David were considerate in keeping typical teenaged sounds down
to a bearable din and allowing me occasional use of the phone. My
wife Eli provided an intangible warmth, and our brave dog Jingle
kept robbers and ax murderers at bay while the work proceeded.

William Sanders
April, 1987

VI

t might seem strange to begin a book on graphics with a discus
sion of text-graphics-but there is a good reason. First of all, a
number of concepts introduced in this chapter will later be applied
to various graphics applications, and in order to focus on the con
cept and not the graphic element, text will serve better. Second,
there are many graphic elements which can be introduced using
text. This is especially true with combinations of inverse and regu
lar video. Using full graphics screens, you loose certain types of
built-in text capabilities. However, using full text screens, you can
arrange various inverse blocks of text to create graphic elements
along with all of the built-in Apple IIGS screen fonts and charac
ters. Finally, it will be a relatively easy introduction to screen map
ping. Screen mapping refers to addresses in your GS's memory that
correspond to locations on the screen. If you insert a given code in
a given address, some figure will appear in the corresponding loca
tion on the screen.

Normal, Inverse, and Flash
To get started, initialize a blank disk. While learning new concepts
and techniques, it's a good idea to use a disk which you can acci
dentally destroy without losing vital data. Keep a second disk
handy to transfer and save those programs that you want to keep.
Then you'll have both a disk of expendable experimental programs
and another of hold-and-keep programs.

Spaces
An important thing to understand about text graphics is the space.
Not just space, but the space-the empty room between words. In
Applesoft BASIC, there are two ways to make a space. First, you

3

CHAPTER 1

-
Text Graphics

can define a space by placing two quotation marks with a space be
tween them, as the next line illustrates.
8$ =

11 11 (One or more spaces between quotation marks)

The second method is to use the SPC function, which places a
specified number of spaces sequentially on the screen. It's different
from the defined space. First, you cannot define SPC as part of a
variable; second, SPC places spaces sequentially when there's no
formatting symbol (semicolor or comma) following it. The follow
ing shows SPC used in a typical format:
30 PRINT SPC(5)

That produces the same result as
30 PRINT 11 11;: REM 5 spaces between quote marks 50 PRINT II

60 PRINT"

11
: REM 3 SP ACES

11
: REM 4 SP ACES

Program 1-2.
10 TEXT: HOME
20 INVERSE
30 PRINT 11 11

: REM 1 SP ACE
40 PRINT 11 11

: REM 2 SP ACES

with graphics programming you don't want to do all the calcula
tions manually when your computer can do them, and do them
much faster. This not only saves you programming time, but helps
you think of mathematically-generated designs.

To see an example of this concept, let's create a stairway.
You'll do it two ways-the hard way first, then the easy (and
smart) way.

INVERSE
It's a bit difficult to see a space unless it's against a contrasting
background. You can easily reverse the screen on your Apple with
the INVERSE statement. Let's take a look at a simple program to
get going.

Program 1-1.
10 TEXT : HOME
20 8$=11 11

: REM 5 SPACES
30 INVERSE
40 PRINT 8$
50 PRINT
60 PRINT SPC(lO)
70 NORMAL

This program puts a couple of bars on your screen. Conceiv
ably, you could put anything you wanted on your Apple's screen
simply by adjusting the number of spaces between the quotes or
the value of SPC. That's exactly what you'll do, but you'll let your
Apple do most of the thinking.

Creating graphics programs is much the same as creating any
other kind of program. If you were writing a checkbook program,
for example, you wouldn't write it so that the user has to do all the
calculations. You want the computer to do the work. Similarly,

4

... Continue adding one space to each PRINT statement until you
reach 22.
240 PRINT II

250 NORMAL

That's a lot of work to get a staircase. Try it again, using the
next program.

Program 1-3.
10 TEXT : HOME
20 INVERSE
30 FOR X = 1 TO 22
40 8$ = 8$ + II II

50 PRINT 8$
60 NEXT
70 NORMAL

This program builds the size of the bars by concatenating S$
with a space each time through the loop. Notice that the second
version took only one-third as many lines as the first. In other
words, it was three times as much work to get the same results
using the first method. That's what was meant by the hard way and
the smart way. . .

Let's do the same thing with SPC. You can do it in only seven
lines since the loop variable (X) increases the length of each bar,

5

11
: REM 22 SP ACES

CHAPTER 1

avoiding the necessity of concatenating a string variable. You also
don't have to define 5$, though a line to provide the line feed or
carriage return after printing SPC must be added.

Program 1-4.
10 TEXT : HOME
20 INVERSE
30 FOR X = 1 TO 22
40 PRINT SPC(X)
50 PRINT
60 NEXT
70 NORMAL

These stairs look pretty steep. By changing a single line in the
program-line 30-you can make them easier to negotiate.

Program 1-5.
10 TEXT : HOME
20 INVERSE
30 FOR X = 1 TO 40 STEP 2
40 PRINT SPC(X)
50 PRINT
60 NEXT
70 NORMAL

A simple change in the program alters the entire graphic de
sign. In later chapters, you'll see again and again how to let your
Apple do the thinking and calculating for you.

FLASH
The FLASH statement is used sparingly in programming since it's
distracting and hard to read. However, it has some useful purposes
in text graphics. For example, you could make a flashing poster
with the next program.

Program 1-6.
10 TEXT : HOME
20 FLASH
30 FOR X = 1 TO 40
40 8$ = 8$ + " "

6

-
Text Graphics

50 NEXT
60 FOR X = 1 TO 22
70 PRINT 8$;
80 NEXT
90 VOTE$ = "VOTE FOR SENATOR SNORT"

100 VTAB 12: HTAB 20 - LEN (VOTE$)/ 2
110 PRINT VOTE$
120 TEXT
130 NORMAL

See if you can change the program to put a border of asterisks
(*) around the campaign poster.

By combining inverse and normal backgrounds, and adding a
little sound, you can make something that will really get people's
attention. (The following program gets a little complicated, but it
uses the same principles you've just seen.)

Program 1- 7.
10 TEXT: HOME :F$ = "=": PRINT "ENTER MESSAGE HERE:":

PRINT "(MUST BE EVEN# OF CHARACTERS.)": INPUT"==>
";YP$:YP$ = "**" + YP$ + "**":P = LEN (YP$)

20 HOME :LM = 20 - LEN (YP$) / 2
30 IF LEN (F$) < > 40 THEN F$ = F$ + "=": GOTO 30
40 PRINT F$;: FOR I = 1 TO 15: PRINT "I"; SPC(38);"I";: NEXT :

PRINT F$
50 INVERSE : FOR I = 2 TO 16: HTAB 2: VTAB I: PRINT SPC(38):

NEXT : NORMAL : FOR PAUSE = 1 TO 1000: NEXT
60 FORK= 2 TO 16: FOR W = 20 TO 21: VTAB K: HTAB W: PRINT

SPC(1): NEXT : NEXT : FOR I = 2 TO LEN (YP$) I 2
70 FOR J = 2 TO 16: VTAB J: HTAB I + 20: PRINT SPC(1): VTAB

J: HTAB 21 - I: PRINT SPC(1): NEXT: NEXT
80 VTAB 22
90 88$ = "*"

100 IF LEN (88$) < 40 THEN 88$ = 88$ + "*": GOTO 100
110 FLASH: HTAB 1: VTAB 18: PRINT 88$: NORMAL
120 SPEED= 150
130 L$ = LEFT$ (YP$, LEN (YP$) / 2)
140 R$ = RIGHT$ (YP$, LEN (YP$) / 2)
150 FOR V = 1 TO (LEN (YP$) / 2)
160 VTAB 9: HTAB 20 + V: PRINT MID$ (R$,V,l): GOSUB 250

7

CHAPTER 1

170 IF V = (LEN (L$)) + 1 THEN 190
180 VTAB 9: HTAB 21 - V: PRINT MID$ (L$, LEN (L$) - (V - 1),1):

GOSUB 250
190 NEXT : SPEED= 255
200 INVERSE: VTAB 22:H$ = "<HIT ANY KEY TO CONTINUE>":

HTAB 20 - LEN (H$) / 2: PRINT H$: NORMAL
210 WAIT - 16384,128: POKE - 16368,0
220 VTAB 16: HTAB LM: POKE 32,LM: POKE 35, 16: POKE 33,P:

POKE 34,2
230 FOR I = 1 TO 16: FOR J = 1 TO 50: NEXT J: CALL - 912: NEXT
240 VTAB 22: TEXT: FOR I= 1 TO 24: FOR J = 1 TO 50: NEXT J:

CALL - 912: NEXT: END
250 BZ = 49200: FOR I= 1 TO 15: FORJ = 1 TO I* (J -1): NEXT :B =

PEEK (BZ): NEXT
260 RETURN

A couple of things worth noting in this program are the sound
generation and the WAIT routine. Line 250 generates a buzzing
sound by PEEKing the speaker address, but it doesn't use the full
sound power of your IIGS. That will come later in this book, and
involves the Toolbox and the Ensoniq chip.

The WAIT routine on line 210 does two things. First, it holds
everything until a key is hit, then it clears the keyboard buffer. Sec
ondly, it waits for this keypress without a cursor or prompt to spoil
your graphics display. You may be more familiar with the GET
statement. Change line 210 to
210 GET A$

and see the difference.

Mapping the Text Screen
The easiest way to begin learning about mapping the IIGS screen is
with the 40-column text screen. The Apple IIGS text screen is a grid
of 24 rows and 40 columns.

The upper left corner is column 1, row 1 and the lower right
corner is column 40, row 24. Thus, if you think of the screen in
terms of x coordinates for the horizontal position and y coordinates

8

Text Graphics

for the vertical position, you can define an X, Y coordinate system.
The 1,1 position is the upper left, and the 40,24 position is the
lower right. Here's a grid with all of the points on the 40-column
screen.

Figure 1-1. 40-Column Text Screen

48 ColuMn Text Screen

Under this same coordinate scheme, the middle of the screen is
defined as position 20,12. The entire coordinate system is simple to
use, since you can plot anywhere you want.

To become familiar with the system, use the following pro
gram to place inverse spaces on the screen. The program uses
CHR$(32}, the ASCII code for a space.

Program 1-8.
10 TEXT : HOME : COUNT = 0
20 INPUT "HOW MANY PLOTS ";N
30 HOME
40 HTAB 1: VTAB 1
50 PRINT "X POSITION=";
60 INPUT X
70 HTAB 1: VTAB 1
80 PRINT "Y POSITION=";
90 INPUT Y

9

CHAPTER 1

100 HTAB X: VTAB Y
110 INVERSE
120 PRINT CHR$ (32)
130 NORMAL
140 COUNT = COUNT + 1
160 IF COUNT < > N THEN 40

See if you can draw a box with this program. Plan ahead so
that you can sequentially plot your box. Once you can do that, you
should have a pretty good idea where everything goes on the
screen.

Screen Addresses
Making the conceptual jump from understanding the screen as a
series of x,y coordinates to understanding the screen's addresses is
both simple and confounding at the same time. It's simple since the
addresses in a row are sequential, but it's confounding since the
addresses are not sequential from one row to the next. Let's start
with the simple part.

While thinking of your screen as a series of column and row
coordinates, also think of it as a series of addresses. If you place a
value into a screen address with a POKE statement, a character will
appear on the screen.

The upper left corner is address 1024 ($400 in hexadecimal).
The first row is made up of addresses 1024-1063. To see how to
POKE a character in the text screen, use an inverse space. POKE
the value 32 into an address in the first row to create an inverse
space.

The 32 you POKEd into memory is a screen code. It is differ
ent from the CHR$(32) we used before. (CHR$(32) is a normal
space, the screen code 32 is an inverse space.)

Program 1-9.
10 TEXT : HOME
20 FOR X=l024 TO 1024 + 39
30 POKE X,32
40 NEXT X

That small program put an inverse bar across the top of your
screen. Now let's try going another row or 40 addresses farther (for

10

Text Graphics

40 columns) and see what happens. Change line 20 to read
20 FOR X = 1024 TO 1024 + 79

Now when you run the revised program, you'll see two bars
separated by a considerable space, not stacked one on top of an
other as you'd expect. This is because the Apple's screen memory
is not sequential from one row to the next.

Bars Together
On the Apple IIGS, the address of the first character of each screen
line is 128 ($80), higher than that of the previous line. To draw
two adjacent bars, then, the program would look like this:

Program 1-10.
10 TEXT : HOME
20 FOR X = 1024 TO 1024 + 39
30 POKE X,32
40 NEXT
60 FOR X = 1152 TO 1152 + 39
60 POKE X,32
70 NEXT

Now you can begin to discern the pattern of screen addresses
on the IIGS. Refer to the table below for the address of each row's
beginning.

Row Address
1 1024
2 1152
3 1280
4 1408
5 1536
6 1664
7 1792
8 1920

.
After the eighth row, the sequence begins again with address

1064. Before continuing, however, type in and run the following
program.

11

CHAPTER 1

Program 1-11.
10 TEXT : HOME
20 FOR X = 1024 TO 1920 STEP 128
30 POKE X,32
40 NEXT

If there's a vertical bar, you know you're on the right track.
Just for fun and practice, try POKEing any screen address, and then
that address plus 128. You'll get stacked bars all over the screen.

Character Patterns
Generating inverse and normal screen characters can make interest
ing patterns. By POKEing normal and inverse spaces to the screen,
you can draw low-resolution figures in black and white. The differ
ence in screen code values between an inverse and a normal space
is 128, so a normal space's value is 160 (128 + 32).

This next program draws alternating normal and inverse
spaces.

Program 1-12.
10 TEXT: HOME: V = 0
20 FOR X = 1024 TO 1024 + 39
30 POKE X,32 + V
40 IF V = 0 THEN V = 128 : NEXT
50 IF V = 128 THEN V = 0 : NEXT

In addition to using the POKE statement to put something on
the screen, you can use the PEEK command to see what's there.
For example, if you used statements like
PRINT PEEK (1024)
PRINT PEEK (1025)
PRINT PEEK (1026)

and so on, to examine the top line after running Program 1-12,
you'd find alternating values of 32 and 160. Using this information,
you could write a program that would switch light and dark spaces,
giving the sensation of movement. Program 1-13 does just that.

12

Text Graphics

Program 1-13.
10 TEXT : HOME : V = 32
20 FOR X = 1024 TO 1063
30 POKE X, V
40 IF V = 32 THEN V = 160: NEXT
50 V = 32 : NEXT
60 FOR W = 1 TO 20
70 FOR X = 1024 TO 1063

80 POKE X,V: V = V + 128: IF V
> 160 THEN V = 32

90 NEXT X : V = V + 128 : IF V
> 160 THEN V = 32

100 NEXT W

The program draws a sequence of normal and inversed spaces
across the top of the screen. It then enters a loop which switches
the normal spaces to inversed ones, and the inversed spaces to nor
mal ones. This is what produces the animated affect. The following
program scans the screen memory sequentially and inverses what
ever it finds.

Program 1-14.
10 FOR PA= 1024 TO 1104 STEP 40
20 FOR X = PA TO 2039 STEP 128
30 FOR SCREEN = 0 TO 39
40 N = PEEK (X + SCREEN)
50 IF N > = 192 THEN F = N - 192
60 IF N < 192 THEN F = N - 128
70 IF N < 160 AND N > 31 THEN F = N + 128
80 IF N < 32 THEN F = N + 192
90 POKE X + SCREEN,F

100 NEXT SCREEN
110 NEXT X: NEXT PA

Machine Language Speed
You can greatly enhance the effect of text graphics by speeding up
the process. This can be done by using the native language of your
Apple IIGS, machine language. The POKEs and PEEKs you've been
using are actually simple machine language routines included

13

CHAPTER 1

within BASIC. In later chapters, when you get into the Toolbox
you'll be using more machine language programming. '

For no�, though, let's keep it simple. You'll load a space (the
value 160) into a register, and then will move it from that register
to screen memory. You'll do it sequentially from top to bottom,
half from right to left and the other half from left to right.

The process will happen so fast that it will seem like an invisi
ble hand is wiping the screen clean with two swipes-It's so fast
that you won't be able to see the addresses filled with spaces.

The first listing below is in BASIC, and the second is in assem
bly language source code. (If you don't have an assembler use the

• • I

rrum-assemblo- built into your Apple Iles. Just type CALL -151
and pres� Retu:n; then when you see the asterisk prompt, enter an
exclamation point Il) and press Return again. When the exclamation
point prompt appears, you're in the mini-assembler. See your Ap
ple Iles reference manual for an explanation of how to use the
mini-assembler.)

Program 1-15.
10 FOR X = 32768 TO 32945
20 READ D: POKE X,D: NEXT X
30 CALL 32768

9000 DATA 169, 160, 162, 39, 157
9010 DATA 0, 4, 157, 128, 4, 157
9020 DATA 0, 5, 157, 128, 5, 157
9030 DATA 0, 6, 157, 128, 6, 157
9040 DATA 0, 7, 157, 128, 7, 157
9050 DATA 40, 4, 157, 168, 4, 157
9060 DATA 40, 5, 157, 168, 5, 157
9070 DATA 40, 6, 157, 168, 6, 157
9080 DATA 40, 7, 157, 168, 7, 157
9090 DATA 80, 4, 157, 208, 4, 157
9100 DATA 80, 5, 157, 208, 5, 157
9110 DATA 80, 6, 157, 208, 6, 157
9120 DATA 80, 7, 157, 208, 7, 169
9130 DATA 127, 32, 168, 252, 169, 160
9140 DATA 202, 224, 19, 208, 172, 162
9150 DATA 0, 157, 0, 4, 157, 128
9160 DATA 4, 157, 0, 5, 157, 128

14

9170 DATA 5, 157, 0, 6, 157, 128
9180 DATA 6, 157, 0, 7, 157, 128
9190 DATA 7, 167, 40, 4, 157, 168
9200 DATA 4, 157, 40, 5, 157, 168
9210 DATA 5, 157, 40, 6, 157, 168
9220 DATA 6, 157, 40, 7, 157, 168
9230 DATA 7, 157, 80, 4, 157, 208
9240 DATA 4, 157, 80, 5, 157, 208
9250 DATA 6, 157, 80, 6, 157, 208
9260 DATA 6, 157, 80, 7, 157, 208
9270 DATA 7, 169, 127, 32, 168, 252
9280 DATA 169, 160, 232, 224, 20, 208
9290 DATA 172, 76, 3, 224, 96

Program 1-16.
10 ORG $8000
11 OBJ $8000
12
13

8000: A9 AO 14 LDA #$AO

8002: A2 27 15 LDX #$27

8004: 9D 00 04 16 START! STA $400,X

8007: 9D 80 04 17 STA $480,X

800A: 9D 00 05 18 STA $600,X

800D: 9D 80 05 19 STA $580,X

8010: 9D 00 06 20 STA $600,X

8013: 9D 80 06 21 STA $680,X

8016: 9D 00 07 22 STA $700,X

8019: 9D 80 07 23 STA $780,X

8010: 9D 28 04 24 STA $428,X

801F: 9D AB 04 25 STA $4A8,X

8022: 9D 28 05 26 STA $528,X

8025: 9D AB 05 27 STA $5A8,X

8028: 9D 28 06 28 STA $628,X

802B: 9D AB 06 29 STA $6A8,X

802E: 9D 28 07 30 STA $728,X

8031: 9D AB 07 31 STA $7A8,X

8034: 9D 60 04 32 STA $450,X

8037: 9D DO 04 33 STA $4DO,X

15

Text Graphics

CHAPTER 1

803A: 9D 50 05 34 STA $550,X
803D: 9D DO 05 36 STA $5DO,X
8040: 9D 60 06 36 STA $650,X
8043: 9D DO 06 37 STA $6DO,X
8046: 9D 60 07 38 STA $750,X
8049: 9D DO 07 39 STA $7DO,X
804C: A9 7F 40 LDA #$7F
804E: 20 A8 FC 41 JSR $FCA8
8061: A9 AO 42 LDA #$AO
8063: CA 43 DEX
8054: EO 13 44 CPX #$13
8056: DO AC 46 BNE STAR Tl
8068: A2 00 46 LDX #$0
805A: 9D 00 04 47 START6 STA $400,X
806D: 9D 80 04 48 STA $480,X
8060: 9D 00 06 49 STA $500,X
8063: 9D 80 05 60 STA $580,X
8066: 9D 00 06 51 STA $600,X
8069: 9D 80 06 62 STA $680,X
806C: 9D 00 07 63 STA $700,X
806F: 9D 80 07 64 STA $780,X
8072: 9D 28 04 56 STA $428,X
8075: 9D A8 04 66 STA $4A8,X
8078: 9D 28 06 67 STA $528,X
807B: 9D A8 05 68 STA $5A8,X
807E: 9D 28 06 59 STA $628,X
8081: 9D A8 06 60 STA $6A8,X
8084: 9D 28 07 61 STA $728,X
8087: 9D A8 07 62 STA $7A8,X
808A: 9D 60 04 63 STA $450,X
808D: 9D DO 04 64 STA $4DO,X
8090: 9D 60 05 66 STA $550,X
8093: 9D DO 06 66 STA $5DO,X
8096: 9D 60 06 67 STA $650,X
8099: 9D DO 06 68 STA $6DO,X
8090: 9D 50 07 69 STA $750,X
809F: 9D DO 07 70 STA $7DO,X
80A2: A9 7F 71 LDA #$7F
80A4: 20 A8 FC 72 JSR $FCA8
80A7: A9 AO 73 LDA #$AO

16

Text Graphics

80A9: EB 74 INX
80AA: EO 14 76 CPX #$14

80AC: DO AC 76 BNE START6
80AE: 4C 03 EO 77 JMP $E003

80Bl: 60 78 RTS

To use either of the two programs, put a lot of text on the
screen, run the program, and watch the screen clear.

Summary
This chapter represents a conceptual beginning to understanding
graphics. Since the text screen is the least difficult to manipulate,
it serves as a good beginning to understanding the concept of plac
ing information on the screen. By arranging inverse and normal
blocks of light on the screen, it's possible to produce a form of low
resolution graphics while maintaining all the text screen capabili
ties. More important, though, is learning the concept of how the
screen is mapped to memory.

Once the screen memory is understood, it's possible to better
understand the concept of screen addressing. The screen serves as a
place where information can be stored. Since information can be
stored there, it can be changed and manipulated (as you saw in
several program examples).

The crucial element is the fundamental simplicity of what's
happening. By building programs around these fundamental con
cepts, you can do a great deal in manipulating text and graphics.

17

his chapter continues to use text characters to explain con
cepts you'll apply to various graphics. For the moment, let's keep
things simple.

The Illusion of Movement
Movies are optical illusions, and so is animation on your computer.
Both involve showing a sequence of still photographs so rapidly
that your eyes are tricked into believing you see movement, not a
series of still pictures. With animation, you use this sequence:
• Put figure on the screen
• Erase figure
• Place figure in different location
• Erase figure
• And so on ...

You've already done some of this-in chapter 1, you created a
moving effect by changing spaces from normal to inverse and back

• again.

Horizontal Movement
The first thing we'll do is move a character horizontally. Let's
move it across the top of the screen using VTAB and HTAB to con
trol placement.

Program 2-1.
10 TEXT : HOME
20 FOR X = 1 TO 40
30 VTAB 1: REM ROW

21

CHAPTER 2

40 HTAB X: REM COLUMN
50 PRINT 11•11: REM CHA.RACTER
60 FOR PAUSE = 1 TO 20: REM SPEED CONTROL
70 NEXT PAUSE
80 VTAB 1: HTAB X
90 PRINT 11 11

100 NEXT X

By changing the value of the loop in lines 60 and 70, you can
increase or decrease the speed of the asterisk. To make a "trail" be
hind your moving object, put something other than a space after it.
For example, change line 90 so that a period (.) is within the quo
tation marks instead of a space.

Besides using HTAB and VTAB, you can use the screen ad
dresses to create the illusion of movement. The addresses in the
top row of your screen range from 1024 to 1063 (1024 + 39). By
alternating the value 170 (an asterisk) with 160 (a space), you can
do the same thing.

Program 2-2.
10 TEXT : HOME
20 FOR X = 0 TO 39
30 POKE 1024 + X,170
40 FOR PAUSE = 1 TO 20
50 NEXT PAUSE
60 POKE 1024 + X,160
70 NEXT X

The second program took fewer lines than the first. But since
the screen addresses are not consistently sequential from row to
row, the first method of horizontal movement is easier and quicker
to figure out when using vertical movement. With vertical move
ment, POKEing addresses is more difficult.

Vertical Movement
Vertical movement with HTAB and VTAB is essentially the same as
with horizontal movement except that the maximum VTAB is 24
instead of 40. By changing lines 20-40 and line 80 in the horizon
tal movement program, you can create vertical movement.

22

Fundamentals of Animation

Program 2-3.
10 TEXT : HOME
20 FOR X = 1 TO 24
30 HTAB 1: REM ROW
40 VTAB X: REM COLUMN
50 PRINT 11•11: REM CHA.RACTER
60 FOR PAUSE = 1 TO 20: REM SPEED CONTROL
70 NEXT PAUSE
80 HTAB 1: VTAB X
90 PRINT 11

"

100 NEXT X

When you run the program, the asterik will appear to bounce.
That's a problem with vertical movement caused by scrolling. By
placing a semicolon before the colon in line 50 and at the end of
line 90, it works without the bounce.

It takes a little more planning to move vertically through the
screen memory addresses, but it can be done. The first two lines ir.
the short program below set up a sequential arrangement for verti
cal movement. When you run the program, notice how the cursor
appears to bounce back to the top of the screen. That's because it
never left the bottom of the screen. If you add a line to print TEXT,
it will be at the bottom of the screen.

Program 2-4.
10 TEXT : HOME
20 FOR A= 1024 TO 1104 STEP 40
30 FOR X = A TO 2039 STEP 128
40 POKE X, 1 70
50 FOR PAUSE = 1 TO 20
60 NEXT PAUSE
70 POKE X,160
80 NEXT X
90 NEXT A

You may think that it's impractical to conduct movement in
any place other than the left column when POKEing the screen.
However, by using an offset from each address, you can place it in
any column you want.

23

CHAPTER 2

Program 2-5.
10 TEXT : HOME
20 INPUT "OFFSET (0-39) ";OF
30 FOR A= 1024 TO 1104 STEP 40
40 FOR X = A TO 2039 STEP 128
50 POKE X + OF,170
60 FOR PAUSE= 1 TO 20
70 NEXT PAUSE
80 POKE X + OF,160
90 NEXT X

100 NEXT A

Diagonal Movement
Now that you've seen how to show horizontal and vertical move
ment, :ake a look at moving something diagonally.

. With HTAB and VTAB it's easy, since all you need to do is
simultaneously change each value of the x and y position. For in
stance, the following program traces a diagonal path from the top
left corner to the bottom of the screen at its midpoint.

Program 2-6.
10 TEXT : HOME
20 FOR XY = 1 TO 22
30 HTAB XY
40 VTAB XY
50 INVERSE
60 PRINT CHR$ (32)
70 FOR PAUSE = 1 TO 100
80 NEXT PAUSE
90 NORMAL

100 HTAB XY
110 VTAB XY
120 PRINT CHR$ (32)
130 NEXT

. To bounce the ball to the upper right corner, add the following
lines to the program above:
140 FOR X = 20 TO 40
150 Y = (41 - X)
160 HTAB X

24

Fundamentals of Animation

170 VTAB Y
180 INVERSE
190 PRINT CHR$ (32)
200 FOR PAUSE = 1 TO 100
210 NEXT PAUSE
220 NORMAL
230 HTAB X
240 VTAB Y
250 PRINT CHR$ (32)
260 NEXT X

Notice in line 150 how the value for y (vertical position) is cal
culated. As the value of x increases, the value of y decreases. See if
you can write a program that moves the ball in a diagonal path op
posite from the program above. (Hint-use a FOR-NEXT loop for x
with a STEP -1.)

Moving with DATA and ARRAY Tables
Developing algorithms which trace a diagonal line through screen
memory can get pretty complicated. If the memory were consecu
tive it would be as easy as using HTAB and VTAB, but, since it's
not, now is a good time to introduce another method of cruising
through memory-a data table.

What you'll do is trace a path through memory using the
screen memory grid from Chapter 1. Make a copy of the grid (or
get some graph paper), and draw a series of dots representing the
path you want to follow. Let's start with a short diagonal path and
then see how to make it go somewhere.

Program 2- 7.
10 TEXT : HOME
20 FOR XY = 1 TO 9
30 READ D
40 POKE D,32
50 FOR PAUSE = 1 TO 100
60 NEXT PAUSE
70 POKE D,160
80 NEXT XY

100 REM *************

25

CHAPTER 2

Table 2-1. Address Data Table
1024 1026 1026 1027 1026 1029 1030 1031 1032 1033 1034 1035 1036 1037 1036 1039 1040 1041 1042 1043
11521153 1154 1155 1156 1157 1156 1159 1160 116111621163 1164 1165 1166 1167 1166 1169 1170 1171
1260 1261 1262 1283 1264 1286 1286 1267 1286 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
1406 1409 1410 1411 1412 1413 1414 1415 1416 1417 1416 1419 1420 1421 1422 1423 1424 1425 1426 1427
1636 1537 1538 1539 1540 1541 1542 1543 1544 1546 1546 1547 1548 1649 1550 1651 1552 1653 1554 1555
1664 1665 1666 1667 1666 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1661 1682 1683
1792 1793 1794 1796 1796 1797 1796 1799 1800 1601 1602 1603 1804 1606 1606 1607 1606 1609 1810 1811
1920 1921 1922 1923 1924 1926 1926 1927 1928 1929 1930 1931 1932 1933 1934 1936 1936 1937 1938 1939
1064 1066 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1076 1079 1060 1061 1082 1083
1192 1193 1194 1196 1196 1197 1198 1199 1200 1201 1202 1203 1204 1206 1206 1207 1208 1209 1210 1211
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1336 1339
1448 1449 1450 1461 1462 1463 1454 1466 1466 1467 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
1676 1577 1678 1579 1660 1581 1662 1583 1684 1686 1566 1687 1688 1589 1690 1591 1592 1693 1594 1696
1704 1706 1706 1707 1708 1709 1710 171117121713 1714 1715 1716 1717 1718 1719 1720 172117221723
1632 1833 1634 1636 1636 1837 1836 1639 1840 1641 1642 1843 1644 1646 1846 1847 1848 1649 1660 1661
1960 1981 1982 1963 1964 1966 1966 1967 1968 1969 1970 1971 1972 1973 1974 1976 1976 1977 1976 1979
1104 1106 1106 1107 1106 1109 1110 111111121113 1114 1115 1116 1117 1116 1119 1120 112111221123
1232 1233 1234 1236 1236 1237 1238 1239 1240 1241 1242 1243 1244 1246 1246 1247 1246 1249 1260 1261
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1376 1376 1377 1376 1379
1486 1489 1490 1491 1492 1493 1494 1496 1496 1497 1498 1499 1500 1601 1602 1503 1604 1606 1506 1607
1616 1617 1618 1619 1620 1621 1622 1623 1624 1626 1626 1627 1626 1629 1630 1631 1632 1633 1634 1635
1744 1746 1746 1747 1748 1749 1750 176117521763 1754 1755 1756 1757 1758 1769 1760 176117621763
1872 1873 1874 1875 1876 1877 1678 1879 1880 1881 1882 1883 1884 1885 1686 1887 1888 1889 1890 1891
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2016 2019

I

Fundamentals of Animation

1044 1046 1046 1047 1048 1049 1050 1061 1052 1053 1054 1066 1056 1057 1058 1069 1060 1061 1062 1063
1172 1173 1174 1176 1176 1177 1176 1179 1180 1161 1182 1183 1164 1186 1186 1187 1188 1169 1190 1191
1300 1301 1302 1303 1304 1305 1306 1307 1306 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
1428 1429 1430 1431 1432 1433 1434 1436 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
1666 1667 1658 1669 1660 1661 1662 1563 1664 1565 1666 1667 1668 1669 1570 1571 1672 1573 1674 1675
1684 1686 1686 1687 1688 1689 1690 1691 1692 1693 1694 1696 1696 1697 1698 1699 1700 1701 1702 1703
1812 1813 1614 1816 1616 1617 1618 1819 1820 1621 1822 1623 1624 1626 1626 1627 1626 1629 1830 1631
1940 1941 1942 1943 1944 1946 1946 1947 1946 1949 1960 1961 1962 1963 1954 1966 1966 1967 1966 1969
1084 1066 1066 1067 1066 1069 1090 1091 1092 1093 1094 1095 1096 1097 1096 1099 1100 1101 1102 1103
1212 1213 1214 1216 1216 1217 1216 1219 1220 1221 1222 1223 1224 1226 1226 1227 1228 1229 1230 1231
1340 1341 1342 1343 1344 1346 1346 1347 1346 1349 1360 1361 1362 1363 1354 1366 1356 1367 1358 1369
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1463 1484 1465 1486 1487
1698 1597 1698 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
1724 1725 1726 1727 1726 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
1852 1853 1854 1866 1856 1667 1858 1869 1860 1661 1862 1663 1664 1865 1866 1867 1666 1869 1670 1671
1960 1961 1982 1983 1964 1966 1966 1987 1986 1969 1990 1991 1992 1993 1994 1996 1996 1997 1996 1999
1124 1126 1126 1127 1126 1129 1130 113111321133 1134 1136 1136 1137 1138 1139 1140 1141 1142 1143
1252 1263 1254 1266 1266 1267 1256 1269 1260 1261 1262 1263 1264 1266 1286 1267 1266 1269 1270 1271
1380 1361 1362 1383 1354 1365 1366 1387 1386 1389 1390 1391 1392 1393 1394 1396 1396 1397 1398 1399
1608 1609 1510 1611 1612 1613 1614 1616 1516 1617 1618 1619 1620 1521 1622 1623 1624 1526 1626 1527
1636 1637 1638 1639 1640 1641 1642 1643 1644 1646 1646 1647 1648 1649 1650 1651 1652 1653 1654 1656
1764 1766 1786 1767 1768 1769 1770 177117721773 1774 1775 1776 1777 1778 1779 1780 17811782 1783
1892 1893 1894 1896 1696 1897 1896 1699 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
2020 2021 2022 2023 2024 2026 2026 2027 2026 2029 2030 2031 2032 2033 2034 2036 2036 2037 2038 2039

L...--- ·�IL ".--·
110 REM DIAGONAL DATA
120 REM•••••••••••••
130 DATA 1024,1153,1283
140 DATA 1411,1640,1669
160 DATA 1798,1071,1200

Table 2-1 arranges the memory addresses sequentially from
left to right, top to bottom. You can pick any sequence you want
and put it in DATA statements. You can then use the screen mem
ory without having to calculate the positions.

Putting all of the data you need in DATA statements will give
you a bad case of "hacker's cramp," even though it provides a nice
roadmap of what you need. Instead of using DATA statements to
animate characters, make an array-it involves a lot less work.
Once the data are placed sequentially in the array, you can use the
array as your table. Since the addresses are now in sequential or
der, it makes it easier to program your movement.

The following program first places the screen addresses in a
sequence from left to right and top to bottom (lines 10-130). It's a
useful subroutine, and you might want to save it separately. The
second part of the program moves the ball along a diagonal trail.

26

:

'

The Y loop establishes the vertical position and the X loop incre
ments the horizontal position. Now that the addresses are sequen
tial, each row is a jump of 40, and, each column, a jump of 1.
Remember, though, you're going through the values of the array,
not the addresses directly. (By the way, when you run this pro
gram, there will be a noticeable pause while the addresses are
loaded into the array.)

Program 2-8.
10 REM ••••••••••••••••
20 REM PLACE SEQUENTIAL
30 REM TABLE IN ARRAY
40 R.EM ••••••••••••••••
50 TEXT : HOME
60 DIM V(960)
70 FOR PA= 1024 TO 1104 STEP 40
80 FOR X = PA TO 2039 STEP 128
90 FOR SCREEN = 0 TO 39

100 COUNT = COUNT+ 1
110 V(COUNT) = X + SCREEN

27

CHAPTER 2

120 NEXT SCREEN
130 NEXT X: NEXT PA
140 REM ****************
150 REM PLACE ON SCREEN
160 REM USING ARRAY DATA
170 REM ****************
180 X = 0
190 FOR Y = 1 TO 940 STEP 40
200 X = X + 1
210 POKE V(Y + X),32
220 FOR PAUSE = 1 TO 100
230 NEXT PAUSE
240 POKE V(Y + X),160
250 NEXT Y

Now that you have mastered some of the basics, let's take a
short detour to the 80-column screen before returning to animation.

80 Columns Two Memory Banks
Your Apple IIGs's 80-column screen works exactly like the 40-
column screen. For example, the following program runs a charac
ter across your 80-column screen. (If you're not currently in 80-
column mode, just press the Esc and 8 keys at the same time.)

Program 2-9.
10 TEXT : HOME
20 FOR X = 1 TO 80
30 HTAB X: VTAB 20
40 PRINT 11 > 11

50 FOR PAUSE= 1 TO 50
60 NEXT PAUSE
70 HTAB X: VTAB 20
80 PRINT CHR$ (32)
90 NEXT X

Earlier, you learned how to rearrange screen memory and
move through it sequentially. Even though 80-column mode has
the same screen addresses as 40-column mode, there's a catch to

28

Fundamentals of Animation

using 80 columns. Only every other column can be reached from
BASIC. This next program will demonstrate this. Run the program
in both 40- and 80-column mode.

Program 2-10
10 TEXT : HOME
20 FOR X=l TO 40
30 POKE 1023+X,65+128
40 NEXT X

In 40-column and 80-columns, the letter A was placed across
the top of the screen, but in the 80-column mode only every other
column was used. How do you fill the alternate columns?

Your Apple Iles has another bank of memory which uses the
same addresses for the alternating rows. When programming in
BASIC, you're automatically in bank 0. The problems are getting to
bank 1 and getting the memory for the alternate addresses. In ma
chine language programming, this isn't a problem, but from BASIC,
it's tough. You have to POKE in a short machine language routine
to access the other memory bank.

Bank-Switching in Machine Language
Let's examine a short machine language program to see what's go
ing on and then see how to access the long jump routine from
BASIC. (Long jump refers to jumping from one bank to another.)

00/8000: 20 58 FC JSR FC58
00/8003: A2 28 LDX #28
00/8005: A9 Cl LDA #Cl
00/8007: 9D FF 03 STA 03FF,X
00/800A: 9F FF 03 01 STA 0103FF,X
00/800E: CA DEX
00/800F: DO F6 BNE 8007 {-OA}
00/8011: 60 RTS

This routine fills the first row of an 80-column screen with the
letter A. It places the value for the letter A ($Cl) in each address of
the first row using a loop. The loop first puts $Cl in address $0427
(1063, the address of the upper right corner of the 80-column
screen), then in each address to the left.

29

, CHAPTER 2

Notice the STA instructions in the fourth and fifth lines. (STA
stands for STore the Accumulator.) The first STA instruction has a
machine language opcode of $9D (the first value after the 00 / 8007:),
and it works much like a POKE statement, except it stores a value
in an address indexed by x. The first time through the loop, the
value goes into address $03FF + $28, or $0427 (1063). The last
time through the loop, it goes into address $03FF + $01, or $0400
(1024).

However, there's no BASIC equivalent to the second STA,
which has an opcode of $9F. This version of STA stores the same
value in the same address, except this time the address is in bank 1
instead of bank 0. This is the long jump mentioned earlier. There's
no long jump POKE equivalent in BASIC. That means you must fig
ure out how to get a value which can be used from within a BASIC
program. Let's create a machine language routine to make the jump
from bank O to bank 1. This routine will allow us to place charac
ters in consecutive locations on the screen in 80-column mode.

First, translate the long jump STA machine language opcode
into decimal. The STA which places values in addresses directly,
not in addresses indexed from the X register, has an opcode of $8F
(143). The code for storing a character to the screen will then look
like this:
SF = Long jump STA - Works like POKE to other banks
FF = Low byte of $3FF (address to POKE bank number)
03 = High byte of $3FF (address to POKE bank number)
01 = Bank number

In decimal, then, the values to POKE are
143
255
3
1

There's some empty memory beginning at address $300 (768);
let's use it for writing the routine.

Fill the top line of the screen with inverse spaces. To do this in
the machine language routine, you must load into the accumulator
the value for an inverse space. The value for an inverse space is 32,

30

Fundamentals of Animation

and the opcode for loading the accumulator (the instruction is
LDA, for LoaD the Accumulator) is
LDA = 169

In hexadecimal, 169 is $A9.
Since the same range of addresses are used in Bank 00 and

Bank 01, you can use the same array table as for the 40-column
mode. The following program is the result.

Program 2-11.
10 REM ****************
20 REM PLACE SEQUENTIAL
30 REM TABLE IN ARRAY
40 REM ****************
50 TEXT : HOME
60 DIM V(960)
70 FOR PA= 1024 TO 1104 STEP 40
80 FOR X = PA TO 2039 STEP 128
90 FOR SCREEN = 0 TO 39

100 COUNT= COUNT+ 1
110 V(COUNT) = X + SCREEN
120 NEXT SCREEN
130 NEXT X: NEXT PA
140 REM ••••••••••••••••
150 REM PLACE ON SCREEN
160 REM USING ARRAY DATA
1 70 REM ••••••••••••••••
180 FOR XY = 1 TO 40
190 POKE V(XY),32
200 N = V(XY)
210 GOSUB 270
220 NEXT XY
230 END
240 REM *******************
250 R.EM CONVERT TO 2 BYTE #

260 REM *******************
270 LB = N - INT (N / 256) * 256
280 HB = INT (N / 256)

31

CHAPTER 2

290 REM ****************
300 REM MACHINE LANGUAGE
310 REM ****************
320 POKE 768,169: REM LDA
330 POKE 769,32: REM INVERSE SP ACE
340 POKE 770, 143: REM LONG STA
350 POKE 771,LB: REM LOWBYTE
360 POKE 772,HB: REM HIGHBYTE
370 POKE 773,1: REM BANKOl
380 POKE 774,96: REM RTS
390 CALL 768: REM EXECUTE ROUTINE
400 RETURN

The program actually rewrites and then executes the short ma
chine language routine every time it goes through the loop.

Now that you can draw across banks, let's change the program
to animate across banks.

Alter the 40-column routine for diagonal movement through
memory so that it traces the same route in 80 columns.

Program 2-12.
10 REM ****************
20 REM PLACE SEQUENTIAL
30 REM TABLE IN ARRAY
40 REM ****************
50 TEXT : HOME
60 DIM V(960)
70 FOR PA= 1024 TO 1104 STEP 40
80 FOR X = PA TO 2039 STEP 128
90 FOR SCREEN = 0 TO 39

100 COUNT= COUNT+ 1
110 V(COUNT) = X + SCREEN
120 NEXT SCREEN
130 NEXT X: NEXT PA
200 REM ****************
210 REM PLACE ON SCREEN
220 REM USING ARRAY DATA
230 REM ****************
240X = 0

32

Fundamentals of Animation

250 FOR y = 1 TO 940 STEP 40
260X=X+l
270 POKE V(:f + X),32
280 FOR PAUSE = 1 TO 100
290 NEXT PAUSE
300 POKE vcc + X),160
310 N = V(:f + X)
320 GOSUB 430
330 FOR PAUSE = 1 TO 10
340 NEXT PAUSE
350 GOSUB 730
360 NEXT Y
370 END
400 REM *******************
410 REM CONVERT TO 2 BYTE#
420 REM *******************
430 LB = N - INT (N / 256) * 256
440 HB = INT (N / 256)
500 REM ****************
510 REM MACHINE LANGUAGE
520 REM *****�**********
530 POKE 768,169: REM LDA
540 POKE 769,32: REM INVERSE SPACE
550 POKE 770,143: REM LONG STA
560 POKE 771,LB: REM LOWBYTE
570 POKE 772,HB: REM HIGHBYTE
580 POKE 773,1: REM BANKOl
590 POKE 774,96: REM RTS
600 CALL 768: REM EXECUTE ROUTINE
610 RETURN
700 REM ************
710 REM NORMAL SPACE
720 REM ************
730 POKE 768,169: REM LDA
740 POKE 769,160: REM NORMAL SPACE
750 POKE 770,143: REM LONG STA
760 POKE 771,LB: REM LOWBYTE
770 POKE 772,HB: REM HIGHBYTE

33

CHAPTER 2

780 POKE 773,1: REM BANKO!
790 POKE 774,96: REM RTS
800 CALL 768: REM EXECUTE ROUTINE
810 RETURN

Animation Applications
One application of this animation is in games. In some computer
games, you need a way for the machine to animate characters to a
target-usually the player's character. There are many sophisticated
algorithms for doing this, but let's start with the basics. To get
started, make a guided missile on the 40-column screen. This little
program will have two moving characters:

• A target represented by a right arrow (>).
• A missile represented by a carat (").

The missile will track the target with a radar that scans the
path of the target. It will always move toward the target based on
the information it gets from scanning the addresses in the first row
(1024-1063) along which the target is moving. Then it compares
the position of the target with the position of the missile. It does
this by subtracting the variable F, which is the position of the mis
sile + 2. (It 'leads' the target with the + 2.) If the difference be
tween the missile's horizontal positon and the target is positive, the
program knows the target is to the left and subtracts from its hori
zontal value (MH). If the difference is positive, the program adds to
the horizontal position of the missile. This is a good example of
how to use the SGN function in Applesoft BASIC. The vertical
movement is constantly decreased for the missile.

Program 2-13.
10 GOSUB 270
20 TEXT : HOME .
30 FORT= 1 TO 40: HTAB T: VTAB 1: PRINT T$;
40 HTAB MH: REM MISSILE HORIZONTAL POS
60 VTAB MV: REM MISSILE VERTICAL POS .
60 PRINT M$;: REM PUT ON SCREEN
70 REM•••••

34

Fundamentals of Animation

80 REM RADAR
90 REM•••••

100 FOR X = 0 TO 39
110 p = PEEK (1024 + X): REM SEEK TARGET
120 IF P < > 160 THEN F = X + 2
130 NEXT X
140 REM•••••••••••••
160 REM EVALUATE DATA
160 REM *************
1 70 DH = MH · F:DV = MV - VT
180 IF SGN (DH)= 1 THEN MH = MH - 1
190 IF SGN (DH)= - 1 THEN MH = MH + 1
200 MV = MV - 1: IF MV < 1 THEN END
210 HTAB T: VTAB 1: PRINT 8$
220 NEXT T
230 END
240 REM ••••••
260 REM SET UP
260 REM ••••••
270 MH = 40:MV = 24:VT = 1
280 T$ = ">": REM TARGET
290 8$ = " ": REM SP ACE
300 M$ = r: REM MISSILE
310 RETURN

That program was fairly simple, and the target was moving in
a single direction. To provide a more interesting example of the
same principle, let's provide random horizontal movement for the
target. This time, change it just a bit.

This next program puts all of the horizontal addresses in an
integer array and then scans it. It also includes a more interesting
looking target and missile. The missile's radar is far more deadly. It
never misses, no matter how erratic a path the random number
generator devises. (And in the 80-column mode, it never hits.)

Program 2-14.
10 DIM C%(40)
20 FOR X = 0 TO 39:C%(X) = 1024 + X: NEXT
30 TEXT : HOME

35

CHAPTER 2

40 AV= l:AH = 10:VM = 20:HM = 20
50 FH = INT (RND (1) • (2) + 1)
60 IF FH = 1 THEN AH = AH + 3
70 IF FH = 2 THEN AH = AH - 3
80 IF AH < 1 THEN AH = 1
90 IF AH > 38 THEN AH = 38

100 VTAB AV: HTAB AH: PRINT "=O="
110 FOR X = 0 TO 39: IF PEEK (C%(X)) < > 160 THEN F = X
120 NEXT X
130 VTAB VM + 1: HTAB FF: PRINT CHR$ (32)
140 VTAB VM: HTAB F: PRINT "#":FF = F
150 VM = VM - 1: IF VM < 1 THEN END
160 HTAB AH: VTAB AV: PRINT SPC(3)
170 GOTO 50

Now that you can bounce a target around and program the
computer to track it, let's create an animated shoot-'em-up game
where an "alien" moves around the screen. Let's spice it up by
adding a time element and giving the target both downward and
random horizontal movement. The object of the game is to score as
many hits as possible either before time runs out or before the
alien lands. This simple game is written for 80 columns. (If you
want to display it in 40 columns, make the indicated changes, and
change the placement of the score box in line 360.)

Other Game Features
Pay close attention to the following features in this program that
haven't yet been examined in detail:

• The read-keyboard subroutine
• How the variable P is used in moving and firing
• The hit and fire subroutines

Basically, the program reads the keyboard and stores the value
of the last key pressed in the variable P. That value is then used in
the move/fire subroutine. The movement values in P are evaluated
in terms of the ASCII values of the left and right arrow keys on
your keyboard. When using a joystick, paddles, or mouse, use the
same concept.

36

Fundamentals of Animation

Each time the player fires, the alien moves down. That's why
the AV (Alien Vertical) variable is incremented in the FIRE! subrou
tine. If a hit is scored, a new alien is placed at the top of the .
screen. That's why the vertical movement of the alien is also m the
HIT subroutine.

Program 2-15.
10 TIME = 250:PTS = 0
20 TEXT : HOME :FLAG = 0
30 H = 15:V = 22:AV = l:AH = 40
40 REM•••••*•••••••
50 REM READ KEYBOARD
60 REM•••••••••••••
70 p = O: IF PEEK (- 16384) > 127 THEN P = PEEK (- 16384) - 128:

POKE - 16368,0
80 REM••••••*•••••••••••••••••••••
90 REM RANDOM ALIEN HORIZONTAL MOVE

100 REM ••••••••••••••••••••••••••••
110 FH = INT (RND (1) • (2) + 1)
120 IF FH = 1 THEN AH = AH + 3
130 IF FH = 2 THEN AH = A.H - 3
140 IF AH < 2 THEN AH = 2
150 IF AH > 78 THEN AH = 78: REM CHANGE TO 38 FOR 40 COL
160 VTAB AV: HTAB AH: PRINT "=O="
170 REM•••••••••••••••••••
180 REM MOVE OR FIRE PLAYER
190 REM •••••••••••••••****
200 IF P = 32 THEN GOSUB 400
21 O IF P = 8 THEN H = H - 1
220 IF P = 21 THEN H = H + 1
230 IF H > 79 THEN H = 79: REM 39 FOR 40 COL
240 IF H < 1 THEN H = 1
250 IF V > 23 THEN V = 23
260 IF V < 1 THEN V = 1
270 HTAB H: VTAB V: PRINT"""
280 FOR HOLD = 1 TO 100: NEXT HOLD
290 HTAB AH: VTAB AV: PRINT " "
300 HTAB H: VTAB V: PRINT 11 11

37

340 REM••••••••••••••••••••••

320 REM••••••••••••••••••••••
310 IF FLAG= l THEN 20

II 480 HTAB AH: VTAB AV: PRINT "
490 AV = AV + 1: IF AV = 22 THEN PRINT "THEY GOT YOU!": END
500 RETURN
600 REM•••••••••••
610 REM ••• HIT •••
620 REM•••••••••••
630 HTAB AH: VTAB AV: PRINT "BOOM!"
640 PRINT CHR$ (7)
650 FOR PAUSE= 1 TO 500: NEXT PAUSE
660 AV= 1: HOME
670 PTS = PTS + 1
680 GOTO 500

350 TIME = TIME - l: IF TIME = 0 THEN HOME : PRINT "FIN AL
SCORE = II ;PTS: END

360 HTAB 1: VTAB 23: INVERSE: PRINT II TIME = ";TIME;
SPC(1): HTAB 70: VTAB 23: PRINT " SCORE = ";PTS: NORMAL

370 GOTO 70
400 REM•••••
410 REM FIRE!
420 REM•••••
430 FOR F = 22 TO 1 STEP - 1
440 HTAB H: VTAB F: PRINT 11•"

450 HIT= (H =(AH+ 1)) AND (F = AV)
460 IF HIT THEN FLAG = l: GOTO 600
470 HTAB H: VTAB F: PRINT " ": NEXT

38

330 REM DISPLAY TIME AND SCORE

CHAPTER 2

Summary
Using text characters, you've simulated graphics applications in
volving movement or animation. There are two ways to move
things on the screen: One is to use BASIC VTAB and HTAB state
ments; the other is to POKE directly to the screen using sequen
tially arranged addresses. Since the screen address space in low
resolution is almost identical to the text screen, it's possible to use
many of the same routines used in text. Likewise, while not all of
the BASIC statements are the same in graphics and text, you can
use the same principles of screen placement with both.

41

Color
There are 16 low-resolution colors numbered from O to 15.

8 Brown
9 Orange

10 Gray
11 Pink
12 Green
13 Yellow
14 Aqua
15 White

....., ow-resolution graphics are similar to text graphics, though
the results are a bit different. Instead of seeing text characters on
the screen, you'll see small blocks of colors.

The low-resolution graphics screen is divided into a matrix
that's 40 X 48 blocks (instead of one that's 40 X 24 blocks, as in
text). Except for its dimensions, the matrix is the same as that used
by text.

In this chapter, you'll first look at the BASIC statements regu
lating low-resolution graphics, then see some programs which use
such graphics. A lot of attention will be paid to colors, since they
are what make low-resolution graphics special. And you'll see how
low-resolution graphics work in memory.

An unusual thing happens when you go into low-resolution
graphics. No matter what background color the screen had been
before, it turns to black when it goes into the graphics mode.

First, let's take a look at the Applesoft statements you can use
with low-resolution graphics.

O Black
1 Magenta
2 Dark blue
3 Purple
4 Dark green
5 Gray
6 Blue
7 Light blue

42

CHAPTER 3

Program 3-2.
10 GR
20 COLOR= 16
30 HLIN 0,39 AT 20
40 VLIN 0,47 AT 20

The first thing to notice is that you still have four lines of text
at the bottom of your screen, where the cursor is waiting. You can
also see where the vertical line fell out of the graphics page and
spilled onto the text page. The first two chapters of this book
pointed out that there was a connection between the text page and
the low-resolution graphics page. Now you can see it.

In many instances, you'll want to have the full graphics page
available. To use the entire graphics page, you need to "flip" the
full-page graphics soft switch with a POKE statement. From the
short list above, you can see that the soft switch for a full graphics
page is address 49234. POKEing O into that location flips the
switch, so to speak.

Add a POKE 49234,0 statement to the program, as well as a
WAIT statement that freezes the graphics without the cursor or a
prompt disturbing the display. Hit any key and the screen clears;
you're back in text for more programming .

Low-Resolution Graphics

43

the graphics mode, just type TEXT. (Program 3-1 does that for you
and LISTs the program as well. Lines 80 and 90 are a good routine
to stick on the end of your graphics programs while they're being
developed.) On return to the TEXT mode. the background is re-
stored to the default colors.

If the colors in the bars don't seem right, adjust your television
or monitor so that the colors correspond to those in the list above.
If they're never quite right, it might be a problem with the TV set
or monitor, or even with your IIGS.

Low-Resolution Graphics in BASIC
Now let's see what you can do with low-resolution graphics from
BASIC. Start off with HLIN and VLIN to see the limits of their
parameters.

Switch Function
Turn on graphics
Full text or full graphics mode
Mixed text and graphics mode
Display page 1
Display page 2
Low-resolution graphics

Command
GR
COLOR=x
PLOT x,y

HLIN
VLIN
SCRN(x,y)

Function
Turn on low-resolution graphics
Set color (x = 0-15)
Place block at specified position. Horizontal (0-39)
Y=Row/Vertical (0-47) '
Horizontal line from Xl to X2 at y (X=0-39)
Vertical line from Yl to Y2 at X (Y=0-47)
Returns the color code of position x y . 1 1 , in co or va ues 0-15.

A number of memory addresses can b PO .
special features on or off. e KEd with O to turn

Address
49232
49234
49235
49236
49237
49238
WAIT -16384,128
Sto til k ps un ey is pressed (no cursor is displayed)

Your first low-resolution BASIC
Using the HLIN statement d f;gram shows all 16 colors.
gram scrolls through the co��rs. a vana le for the colors, the pro-

Program 3-1.
10 K = 5
20 GR
30 FOR X = 0 TO 15
40 COLOR= X
50 HLIN 0,39 AT K
60K=K+2
70 NEXT
80 GET A$: PRINT A$
90 TEXT : HOME

100 LIST

The first thing to notice is that the b k
you had the default colors (blue ba k ac d ground turned black. If
still see a blue border but the b kc groud� and border)., you'll

., ac groun s changed. To get out of

CHAPTER 3

Program 3-3.
10 HOME
20GR
30 REM *************
40 REM FULL GRAPHICS
50 REM *************
60 POKE 49234,0
70 COLOR= 15
801 HLIN 0,39 AT 20
90 VLIN 0,47 AT 20

100\wAIT
- 16384,128

110 TEXT: HOME

You'll notice there are now some gray lines where the text
was. These are text spaces-ASCII value 160. In low-resolution
graphics, 160 is the value for black over gray. We want black over
black, which is ASCII value of 0. Put zeros in the addresses of the
bottom four lines.

The addresses run from 1616 to 2000. A loop (lines 50-90 in
the program below) can quickly POKE each address with black
over black.

Program 3-4.
10 GR
20 REM ***********
30 REM CLEAR LINES
40 REM ***********
50 FOR X = 1616 TO 2000 STEP 128
60 FOR L = X TO X + 39
70 POKE L,O
80 NEXT L
90 NEXT X

100 POKE 49234,0
110 COLOR= 15
120 HLIN 0,39 AT 20
130 VLIN 0,47 AT 20
140 WAIT - 16384,128
150 TEXT: HOME

44

Low-Resolution Graphics

More on screen memory locations is discussed later in this
chapter, but for now just remember that the low-resolution graph
ics screen is like the text screen, except that it generates stacked
color blocks instead of text.

PLOT It
Let's look at the PLOT statement. This next programs starts by
drawing an X on the screen with PLOT statements. (The program
uses yellow, but you may change it to another color if you want.)

Program 3-5.
10 HOME
20GR
30 FOR X = 1616 TO 2000 STEP 128
40 FOR L = X TO X + 39
50 POKE L,O
60 NEXT L
70 NEXT X
80 POKE 49234,0
90 COLOR= 13

100 REM ***********
110 REM PLOT POINTS
120 REM ***********
130 FOR X = 0 TO 39
140 PLOT X,X
150 PLOT 39 - X,X
160 NEXT
170 WAIT - 16384,128
180 TEXT: HOME: LIST

So far, so good. In a short time, we've managed to use every
low-resolution graphics BASIC statement, and most of the POKEs.

45

CHAPTER 3

The Low-Resolution Graphics Screen
Think of the low-resolution graphics screen as two text screens
stacked on top of one another. (See Figure 3-1.)

Figure 3-1. Lo-Res Screen

Top Color

Blue

Black

Purple

Green

4 8 = 1------t

J. 8 8 = 1------t

Bottol'I Color

Gray
Pink

Black

Purple
3 = 1--------i

J. 7 J. = 1------t

Every block is assigned a color based on the COLOR= state
ment from BASIC. When you plot a color block, you actually plot
half of it black and the other half the assigned color.

Let's take a look at some examples to demonstrate the point.
You'll first use pink and gray to plot a block in the upper left cor
ner. Pink will be on top while gray will be on the bottom.

Low-Resolution Graphics

Even though there are twice as many vertical positions (48
rows instead of 24) as on the text screen, there are the same num
ber of address spaces (1024 to 2039). What's going on?

Each block in the above grid is actually one half of a vertical
pair. On the low-resolution screen, the upper left corner is address
1024, as is the block directly below it.

Figure 3-2. Top Color/Bottom Color 1.863 Top Screen 1.824

2888 Bottol'I Screen 2839

Program 3-6.
10 GR
20 COLOR= 11
30 PLOT 0,0
40 COLOR= 10
50 PLOT 0,1
60 P = PEEK (1024)
70 PRINT P

46 47

CHAPTER 3 Low-Resolution Graphics

The way to check that each byte controls two blocks of color is Value Top Bottom
to take the value the program returned, and POKE it into address

Value Top Bottom

1024 with no PLOT statement at all.
22 Blue Magenta 61 Yellow Purple

10 GR
23 L Blue Magenta 62 Aqua Purple

20 POKE 1024,171
24 Brown Magenta 63 White Purple

. . . 25 Orange Magenta 64 Black D Green

T:y the same thing with green and blue. First plot the two col- 26 Gray Magenta 65 Magenta D Green

ors with the PLOT statement, then POKE them in with a single 27 Pink Magenta 66 D Blue D Green

POKE statement. 28 Green Magenta 67 Purple D Green

Since each address has a combination of colors, use that fea- 29 Yellow Magenta 68 D Green D Green

ture to have a little fu.n. The program below animates the upper 30 Aqua Magenta 69 Gray D Green

left corner by alternating black over purple with purple over black. 31 White Magenta 70 Blue D Green

Program 3- 7.
32 Black D Blue 71 L Blue D Green

33 Magenta D Blue 72 Brown D Green

10 GR
34 D Blue D Blue 73 Orange D Green

20 FOR X = 1 TO 100
35 Purple D Blue 74 Gray D Green

30 POKE 1024,3
36 D Green D Blue 75 Pink D Green

40 FOR PAUSE= 1 TO 10
37 Gray D Blue 76 Green D Green

50 NEXT PAUSE
38 Blue D Blue 77 Yellow D Green

60 POKE 1024,48
39 L Blue D Blue 78 Aqua D Green

70 FOR PAUSE= 1 TO 10
40 Brown D Blue 79 White D Green

80 NEXT PAUSE
41 Orange D Blue 80 Black Gray

90 NEXT X
42 Gray D Blue 81 Magenta Gray

The following chart shows all of the color combinations in
43 Pink D Blue 82 D Blue Gray

44 Green D Blue 83 Purple Gray

low-resolution graphics. Pick the combination you want then 45 Yellow D Blue 84 D Green Gray

POKE it into a memory address between 1024 and 2039. 46 Aqua D Blue 85 Gray Gray

47 White D Blue 86 Blue Gray

Value Top Bottom Value Top Bottom
48 Black Purple 87 L Blue Gray

0 Black Black 11 Pink Black
49 Magenta Purple 88 Brown Gray

1 Magenta Black 12 Green Black
50 D Blue Purple 89 Orange Gray

2 D Blue Black 13 Yellow Black
51 Purple Purple 90 Gray Gray

3 Purple Black 14 Aqua Black
52 D Green Purple 91 Pink Gray

4 D Green Black 15 White Black
53 Gray Purple 92 Green Gray

5 Gray Black 16 Black Magenta
54 Blue Purple 93 Yellow Gray

6 Blue Black 17 Magenta Magenta
55 L Blue Purple 94 Aqua Gray

7 L Blue Black 18 D Blue Magenta
56 Brown Purple 95 White Gray

8 Brown Black 19 Purple Magenta
57 Orange Purple 96 Black Blue

9 Orange Black 20 D Green Magenta
58 Gray Purple 97 Magenta Blue

10 Gray Black 21 Gray Magenta
59 Pink Purple 98 D Blue Blue

60 Green Purple 99 Purple Blue

48 49

CHAPTER 3
Low-Resolution Graphics

Value Top Bottom Value Top Bottom
100 D Green Blue 139 Pink Brown Value Top Bottom Value Top Bottom
101 Gray Blue 140 Green Brown 178 D Blue Pink 217 Orange Yellow
102 Blue Blue 141 Yellow Brown 179 Purple Pink 218 Gray Yellow
103 L Blue Blue 142 Aqua Brown 180 D Green Pink 219 Pink Yellow
104 Brown Blue 143 White Brown 181 Gray Pink 220 Green Yellow
105 Orange Blue 144 Black Orange 182 Blue Pink 221 Yellow Yellow
106 Gray Blue 145 Magenta Orange 183 L Blue Pink 222 Aqua Yellow
107 Pink Blue 146 D Blue Orange 184 Brown Pink 223 White Yellow
108 Green Blue 147 Purple Orange 185 Orange Pink 224 Black Aqua
109 Yellow Blue 148 D Green Orange 186 Gray Pink 225 Magenta Aqua
110 Aqua Blue 149 Gray Orange 187 Pink Pink 226 D Blue Aqua
111 White Blue 150 Blue Orange 188 Green Pink 227 Purple Aqua
112 Black L Blue 151 L Blue Orange 189 Yellow Pink 228 D Green Aqua
113 Magenta L Blue 152 Brown Orange 190 Aqua Pink 229 Gray Aqua
114 D Blue L Blue 153 Orange Orange 191 White Pink 230 Blue Aqua
115 Purple L Blue 154 Gray Orange 192 Black Green 231 L Blue Aqua
116 D Green L Blue 155 Pink Orange 193 Magenta Green 232 Brown Aqua
117 Gray L Blue 156 Green Orange 194 D Blue Green 233 Orange Aqua
118 Blue L Blue 157 Yellow Orange 195 Purple Green 234 Gray Aqua
119 L Blue L Blue 158 Aqua Orange 196 D Green Green 235 Pink Aqua
120 Brown L Blue 159 White Orange 197 Gray Green 236 Green Aqua
121 Orange L Blue 160 Black Gray 198 Blue Green 237 Yellow Aqua
122 Gray L Blue 161 Magenta Gray 199 L Blue Green 238 Aqua Aqua
123 Pink L Blue 162 D Blue Gray 200 Brown Green 239 White Aqua
124 Green L Blue 163 Purple Gray 201 Orange Green 240 Black White
125 Yellow L Blue 164 D Green Gray 202 Gray Green 241 Magenta White
126 Aqua L Blue 165 Gray Gray 203 Pink Green 242 D Blue White
127 White L Blue 166 Blue Gray 204 Green Green 243 Purple White
128 Black Brown 167 L Blue Gray 205 Yellow Green 244 D Green White
129 Magenta Brown 168 Brown Gray 206 Aqua Green 245 Gray White
130 D Blue Brown 169 Orange Gray 207 White Green 246 Blue White
131 Purple Brown 170 Gray Gray 208 Black Yellow 247 L Blue White
132 D Green Brown 171 Pink Gray 209 Magenta Yellow 248 Brown White
133 Gray Brown 172 Green Gray 210 D Blue Yellow 249 Orange White
134 Blue Brown 173 Yellow Gray 211 Purple Yellow 250 Gray White
135 L Blue Brown 174 Aqua Gray 212 D Green Yellow 251 Pink White
136 Brown Brown 175 White Gray 213 Gray Yellow 252 Green White
137 Orange Brown 176 Black Pink 214 Blue Yellow 253 Yellow White
138 Gray Brown 177 Magenta Pink 215 L Blue Yellow 254 Aqua White

216 Brown Yellow 255 White White

so 51

CHAPTER 3

These color combinations work just as well with double-low
resolution graphics.

Experiment with some short programs of your own to see
what you can draw on the screen. Later, you'll see several low
resolution graphics programs which will give you ideas for some
interesting projects.

Double-Low-Resolution Graphics
If you've tried any of the graphics programs up to now in the 80-
column mode, you may have found that when you go into the
low-resolution graphics mode, you're still in 40 columns. It's possi
ble to double the resolution of the graphics with a simple POKE to
the double-resolution soft switch located at address 49246. By writ
ing programs from the BO-column mode, you can double the hori
zontal (but not the vertical) resolution of low-resolution graphics.

Enter the 80-column mode now by pressing ESC and the 8 key
at the same time.

The following program sets the soft switch and draws a line on
the screen-don't forget to type this in and run it while in 80-column
mode.

Program 3-8.
5HOME

10 GR
20 COLOR= 15
30 POKE 49246,0
40 HLIN 0,79 AT 24
50 POKE 49247,0

Within BASIC, each of these 3 commands-PLOT, HLIN, and
VLIN-expects 2 numbers. The first falls within the range 0-79
and and the second falls in the range 0-47. You can also use all the
colors from BASIC in this increased resolution. To turn off double
low-resolution graphics, use the soft switch at location 49247.

Let's look at what's going on behind the scenes by POKEing in
a line of low-resolution points.

Since screen addresses are the same for the low-resolution
graphics page and text you can POKE a line across the top of the

52

Low-Resolution Graphics

screen from 1024 to 1024 + 79. (Remember to switch to 80-colurnn
mode, if you're not in it already.)

Program 3-9.
10 HOME
20 GR
40 POKE 49246,0
50 FOR X = 1024 TO 1024 + 79
60 POKE X,15
70 NEXT

You should see a checkerboard on the screen, with some white
dots across the top and just above the middle. The gray squares are
a mystery. Let's turn off low-resolution graphics and try it again.

Program 3-10.
10 HOME
20 GR
40 POKE 49247,0: REM TURN OFF DOUBLE-RESOLUTION
50 FOR X = 1024 TO 1024 + 79
60 POKE X,15
70 NEXT

This time you should see two solid lines. Here's what hap
pened: Both programs plotted 80 points, but the sec.ond could .only
fit 40 points in a line; that's why you saw two fu.ll lines, T�e first
program, however, used double-resolution graphics, and, like the
80-column text, used the parallel screen in bank 1 of your llGS. The
color gray came from the value 160 ($AO), whic� is stored in those
locations. (Remember that 160 is a blank space in text and a. gray.
block in low-resolution graphics.) Figure 3-3 shows the relationship
between the two banks in double-low-resolution graphics.

Earlier, you needed a short machine .l�ng�age routine to access
text graphics in bank 1-with some modification. you can u�e that
same program to POKE values into memory to create color instead
of inverse spaces.

53

CHAPTER 3

Figure 3-3. Bank 0-Bank 1

Bank 81
$488

$488

Program 3-11.
10 REM ••••••••••••••••
20 REM PLACE SEQUENTIAL
30 REM TABLE IN ARRAY
40 REM •••*************
50 GR
60 DIM V(960)
70 FOR PA= 1024 TO 1104 STEP 40
80 FOR X = PA TO 2039 STEP 128
90 FOR SCREEN = 0 TO 39

100 COUNT = COUNT + 1
110 V(COUNT) = X + SCREEN
120 NEXT SCREEN
130 NEXT X: NEXT PA
140 REM *************•••
150 REM PLACE ON SCREEN
160 REM USING ARRAY DATA
1 70 REM ************••••
180 FOR XY = 1 TO 40

54

Low-Resolution Graphics

190 POKE V(XY),15
200 N = V(XY)
210 GOSUB 240
220 NEXT XY
230 END
240 REM •••••••••••••••••••
250 REM CONVERT TO 2 BYTE #

260 REM •••••••••••••••••••
270 LB = N - INT (N / 256) * 256
280 HB = INT (N / 256)
290 REM ••••••••••••••••
300 REM MACHINE LANGUAGE
310 REM ••••••••••••••••
320 POKE 768,169: REM LDA
330 POKE 769,15: REM COLOR FOR WHITE
340 POKE 770, 143: REM LONG STA
350 POKE 771,LB: REM LOWBYTE
360 POKE 772,HB: REM HIGHBYTE
370 POKE 773, 1: REM BANK 1
380 POKE 774,96: REM RTS
390 CALL 768: REM EXECUTE ROUTINE
400 RETURN

If you change the value in line 190 to 151, you'll have a light
blue-over-orange line across the top of your screen.

Programs in Double-Low-Resolution
Since double-low-resolution graphics can more easily and just as
effectively be accessed from BASIC, there are only special occasions
where it's necessary to use machine language to get to them.

Take a look at the program below for an example of what you
can do with double-low-resolution graphics in BASIC.

Program 3-12.
10 HOME
20 GR
30 COLOR= CR
40 POKE 49246,0

55

CHAPTER 3

50 REM *************
60 REM READ KEYBOARD
70 REM *************
80 WAIT - 16384,128
90 K = PEEK (- 16384)

100 POKE - 16368,0
110 IF K = 136 THEN K = 1: REM LEFT
120 IF K = 149 THEN K = 2: REM RIGHT
130 IF K = 138 THEN K = 3: REM DOWN
140 IF K = 139 THEN K = 4: REM UP
150 IF K = 195 ORK= 227 THEN K = 5
160 IF K = 241 OR K=209 THEN VTA.B 22. END
1 70 ON K GOSUB 300,400,500,600 700 .
180 PLOT H,V '
190 FOR PAUSE= 1 TO 50: NEXT PAUSE
200 GOTO 80
300 REM *****
310 REM LEFT
320 REM *****
330 H = H - 1
340 IF H < O THEN H = 0
350 RETURN
400 REM *****
410 REM RIGHT
420 REM•••••
430H=H+l
440 IF H > 79 THEN H = 79
450 RETURN
500 REM••••
510 REM DOWN
520 REM****
530 V = V + 1
540 IF V > 47 THEN V = 47
550 RETURN
600 REM**
610 REM UP
620 REM**
630 V = V- 1

56

Low-Resolution Graphics

640 IF V < 0 THEN V = 0
650 RETURN
700 REM ************
710 REM CHANGE COLOR
720 REM ************
730 HOME
740 VTAB 22: HTAB 1
750 INPUT "Color Code 0-16 ";CL
760 COLOR= CL
770 RETURN

The program will give you the option to change colors when
you press C. To quit the program, press Q.

Animating Low-Resolution Graphics
Animating low- or double-low-resolution graphics involves the
same steps. Let's use double-low-resolution since it offers a larger
screen area to work with.

Animation in low-resolution graphics works much the same as
it does in text, except that instead of erasing with a blank space,
you erase with a black dot.

A feature of animation not covered in chapter 2 is using drawn
objects. In that chapter, you used single text characters instead of
several different characters to make a new character. In low-resolu
tion graphics, you probably want to move something other than a
single block of color.

The best way to deal with more complicated objects is with
subroutines that move a single unit at a time. First, draw your ob
ject in a subroutine using variables for the x and y positions of the
object. Next, run a loop that repeatedly jumps to the subroutine to
animate the object.

To make it clear how this works, start with simple horizontal
movement. A boat will serve as the animated object. The boat will
be gray with a yellow smokestack. To make it more interesting,
puffs of white smoke will come out of the stack. The following pro
gram shows all of the elements you need. The boat's superstructure
is drawn with HLIN, and the rest with PLOT. The puffs of smoke
are alternated to leave a smoke trail behind the boat.

57

CHAPTER 3

Program 3-13.
10 TEXT : HOME
20GR
30 POKE 49246,0
40 REM•••••
50 REM WATER
60 REM•••••
70 COLOR= 2: REM DARK BLUE
80 FOR X = 36 TO 39
90 HLIN 0,79 AT X

100 NEXT X 110 X = 35
120 FOR HP = 1 TO 73
130 GOSUB 160
140 NEXT HP
150 GOTO 430
160 REM•••••
1 70 REM ERASE
180 REM•••••
190 COLOR= O: REM BLACK
200 PLOT HP . l ,X
210 PLOT HP,X. 1
220 PLOT HP + 2,X _ 2
230 PLOT HP + 2,X _ 3
240 REM•••••
250 REM BOAT
260 REM••••
270 COLOR= 1 O
280 HLIN HP,HP + 6 AT X
290 HLIN HP+ l,HP + 4 AT X _ l
300 REM••••••••••
310 REM SMOKESTACK
320 REM••••••••••
330 COLOR= 13: REM YELLOW
340 PLOT HP+ 3,X _ 2
350 PLOT HP+ 3,X _ 3
360 REM•••••••••••
370 REM SMOKE PUFFS
380 REM•••••••••••

58

Low-Resolution Graphics

390 IF FLAG = 0 THEN COLOR= 15:FLAG = 1: GOTO 410

400 FLAG= 0: COLOR= FLAG
410 PLOT HP+ 3,X - 4
420 RETURN
430 WAIT - 16384,128
440 TEXT : HOME : LIST

With a little planning, it's not too difficult to move block fig
ures as easily as it is to move text. The only difference is that your

program jumps to an entire subroutine to make the move rather
than to a couple of PRINT statements.

Summary
Low-resolution graphics offer ease of use with lots of color. This
graphics mode is useful for making colorful drawings, action and
educational games, and, as you'll see in a later chapter, charts and
graphs.

Its major advantage lies in the powerful BASIC statements that
can be used for either low-resolution or double-low-resolution
graphics. It's possible to enhance the horizontal resolution without
losing any of the color and still enable full use of all Applesoft
statments for standard low-resolution.

59

End
16383 ($3FFF)
24575 ($5FFF)

Start
8192 ($2000)
16384 ($4000)

Page
Primary
Secondary

Command
HGR

HCOLOR=

Though not mentioned in previous chapters, text and low
resoluton graphics also have a secondary page. But since the sec
ondary page conflicts with BASIC, and since you used BASIC
extensively in Chapters 1-3, that page wasn't investigated. In this
chapter, however, you'll discover how the primary and secondary
page of graphics can be used together.

To get started, let's summarize the BASIC statements and so!lle
POKEs and CALLs used in this chapter. Note that some of the
statements are identical to those you used in the last chapter.

HGR2

he major distinguishing characteristic of high-resolution
graphics, besides its higher-resolution, is its location. Both color
and text reside in screen memory beginning at 1024 ($400) and
ending at 2039 ($7F7). Now, however, let's explore two different
areas of memory.

Function
Clears primary high-resolution screen and goes to high
resolution mode.
Clears secondary high-resolution screen and goes to high
resolution mode.
Set high-resolution color (0-7)
0 = black 4 = black
1 =green *S=check
2 = blue *6 = check
3=white 7=white

"These colors vary depending on type of TV or color monitor. Use the
"Color Check" program to test.

HPLOT X,Y Places a dot of light (pixel) at specified X,Y
position.
X = 0-279, Y = 0-191

63

CHAPTER 4

Function
Places a dot of light (pixel) at specified X,Y
position.
X = 0-279, Y = 0-191

HPLOT X,Y TO Xl,Yl TO X2,Y2... To draw lines in high-resolution graphics
�LOT from X,Y to Xl,Yl (and so on) using
single or multiple HPLOT statements.
HPLOT 10,10 TO 20,20 TO 0,55
HPLOT TO 99,111
From 40-column mode, clears the screen to
last plotted color. (Does not work in 80-
column mode even though resolution is the
same.)

. The following memory addresses act as soft switches. POKE
with O to turn on or off each special feature.
Address Switch Function
49232 Graphics mode
49233 Text mode
49234 All text or all graphics
49235 Mix text and graphics (4 lines of text only)
49236 Display page 1
49237 Display page 2
49238 Lo-res graphics
49239 Hi-res graphics

Simple Things in Hi-Res
To start, let's do something really simple-draw a box on the
screen.

Program 4-1.
lOHGR
20 FOR X = 3 TO 7 STEP 4
30 HCOLOR= X
40 HPLOT 0,0 TO 279,0 TO 279,159
50 HPLOT TO 0,159 TO 0,0
60 HOME : VTAB 21
70 PRINT "HIT ANY KEY "· ,
80 WAIT - 16384,128
90 NEXT X

100 VTAB 22

64

High-Resolution Graphics

In that program, two different whites were used. The white
with HCOLOR value of 7 and that with a value of 3 are different
press a key and change the HCOLOR from 3 to � to see ho� the
vertical lines change. Later, when you see how high-resolution
color is placed in memory, you'll see how this works. For now,
though, just be aware of it. .

Let's check out all of the colors on your TV set or monitor.

Program 4-2.
10 ROW= 10
20 HOME
30 HGR
40 FOR X = 1 TO 7
50 HCOLOR= X
60 FOR K = 1 TO 4
70 ROW = ROW + 1
80 HPLOT O,ROW TO 279,ROW
90 NEXT K

100 NEXT X
110 VTAB 21
120 PRINT "HIT A KEY"
130 WAIT - 16384,128
140 TEXT
150 HOME
160 LIST

Horizontal lines will give you a good idea of how your TV or
monitor shows color in high-resolution. However, vertical lines will
show you how different vertical columns give different colored
lines.

A slight change to the program above puts vertical lines on the
screen instead.

Program 4-3.
10 COL= 10
20 HOME
30HGR
40 FOR X = 1 TO 7
50 HCOLOR= X

65

CALL 62454

Command
HPLOT X,Y

CHAPTER 4

60 FOR K = 1 TO 4
70 COL = COL + 1
80 HPLOT COL,O TO COL,159
90 NEXT K

100 COL = COL + 5
110 NEXT X
120 VTAB 21
130 PRINT "HIT A KEY"
140 WAIT - 16384,128
150 TEXT
160 HOME
170 LIST

Make any ajustments with the color on your TV or monitor
using these two programs.

Before moving on to more complicated high-resolution graph
ics, let's have a little fun with some loops and the random number
generator.

These next programs create different colored triangles and
draw lines on the screen in different colors.

Program 4-4.
10 HGR
20 FOR C = 1 TO 7
30 FOR X = 1 TO 279
40 HCOLOR= C
50 HPLOT 139,0 TO X,100
60 NEXT X
70 NEXT C

Program 4-5.
10 HGR
20 FOR X = 1 TO 30
30 REM *************
40 REM RANDOM VALUES
50 REM **�******* •••
60 C = INT (RND (1) * (7) + 1)
70 V = INT (RND (1) * (159) + 1)
80 H = INT (RND (1) * (279) + 1)

66

High-Resolution Graphics

90 Vl = INT (RND (1) * (159) + 1)
100 Hl = INT (RND (1)"' (279) + 1)
110 HCOLOR= C
120 HPLOT H,V TO Hl,Vl
130 NEXT

Notice how the RND statement was used to generate random
lines that would stay within the screen boundaries.

Saving Graphic Drawings
There'll be times when you'll want to save something you've cre
ated on either page of your high-resolution graphics screen. The
random drawing program listed above may have created a terrific
design you want to look at later. Since it was created randomly, it
would be difficult to recreate.

In Applesoft BASIC, the BSAVE command saves binary files to
your disk as binary (BIN or B) files. You already know that the pri
mary page of high-resolution resides at addresses $2000-$3FFF,
and the secondary page is at $4000-$5FFF. That means each screen
is $2000 (8192) bytes long. All you have to do to save a screen is
type:
BSAVE filename,A$2000,L$2000 (primary page)
BSAVE filename,A$4000,L$2000 (secondary page)

Let's start with a simple example that will create a pattern for
you to save.

Program 4-6.
10 HGR
20 FOR X = 1 TO 100
30 C = C + 1
40 IF C = 8 THEN C = 1
50 HCOLOR= C
60 S = ABS(INT(SIN (X) * 100))
70 HPLOT 139,0 TO S, 139
80 NEXT

That's on the primary page, so you should use $2000 as the
starting address. Call it COLORSIN.

67

CHAPTER 4

BSA VE COLORSIN ,A$2000,L$2000

Since it's a large file, it will take a bit to save to disk. To reload
the file, do this:
HGR (press Return)
VTAB 21 (press Return)
BLOAD COLORSIN (press Return)

One problem with loading graphics saved in binary files is that
they're erased with an HGR or HGR2 command. For the time be
ing, use the above method to help you get by. Later on you'll see
some other tricks you can use with loading and saving graphics.

Switching Screens
Two of the important elements of high-resolution graphics are the
primary and secondary pages. You can switch pages without erasing
the contents of one screen to show the other. Not only can you
switch between primary and secondary graphics pages, but you can
switch between low- and high-resolution graphics without losing
anything.

The following program shows how to do this with POKEs to
the screen soft switches. Notice also that the lines are only drawn
once, and after switching to the opposite resolution, they are re
claimed without being redrawn.

Program 4- 7.
10 HOME
20 REM••••••••••••
30 REM LO- RES LINE
40 REM••••••••••••
50 GR
60 COLOR= 15
70 HLIN 0,39 AT 10
80 VTA.B 21
90 PRINT "LOW-RESOLUTION LINE"

100 WAIT - 16384,128: POKE 49168,0
110 REM••••••••••••
120 REM HI- RES LINE

68

High-Resolution Graphics

130 REM•••••••••••••
140 HGR
150 HCOLOR = 7
160 HPLOT 0,50 TO 279,50
170 VTAB 21
180 PRINT "HIGH-RESOLUTION LINE"
190 WAIT - 16384,128: POKE 49168,0
200 REM••••••••••••••••
210 REM SWITCH TO LO RES
220 REM••••••••••••••••
230 POKE 49238,0
240 HOME
250 VTAB 21
260 PRINT "LOW-RESOLUTION LINE"
270 WAIT - 16384,128: POKE 49168,0
280 REM ••••••••••••••••
290 REM SWITCH TO HI RES
300 REM••••••••••••••••
310 POKE 49239,0
320 VTAB 21
330 PRINT "HIGH-RESOLUTION LINE"
340 WAIT - 16384,128
350 TEXT : HOME : LIST

Animation with Page Switching
In case you're wondering what kind of applications use screen
switching, take a look at animation. Animation which uses screen
switching works much like other forms of animation.

One common use of screen switching in animation is to dis
play movement from side to side or up and down. In the next pro
gram, for instance, a can of paint is held by a rod between two
parts of a machine and is shaken back and forth. The results may
be crude, but they illustrate how good graphics animation is made
possible by drawing similar pictures on different screens.

Actually switching the screen is accomplished with a single
POKE. Returning to the original screen takes another POKE. If
HGR and HGR2 are used instead, the animation isn't as smooth
remember that HGR and HGR2 clear the screen each time they're
used.

69

CHAPTER 4

Try changing the value in the PA.USE loop to see the effect of
different speeds in screen switching.

Program 4-8.
10 HOME
20 HGR
30 GOSUB 200
40 HGR2
50 GOSUB 400
60 FOR X = 1 TO 20
70 POKE 49236,0
80 FOR PAUSE = 1 TO 100
90 NEXT PAUSE

100 POKE 49237,0
110 FOR PAUSE = 1 TO 100
120 NEXT PAUSE
130 NEXT X
140 WAIT - 16384,128
160 TEXT : HOME
160 LIST
170 END
200 REM ******
210 REM PAGE 1
220 REM ******
230 HCOLOR = 3
240 HPLOT 10,50 TO 100,50
250 HPLOT TO 100,100 TO 10,100
260 HPLOT TO 10,50
270 HPLOT 100,75 TO 120,75
280 HPLOT TO 120,60 TO 140,60
290 HPLOT TO 140,80 TO 120,80
300 HPLOT TO 120,75
310 HPLOT 140,76 TO 150,75
320 HPLOT 160,50 TO 190,50
330 HPLOT TO 190,100 TO 150,100
340 HPLOT TO 150,50
360 RETURN
400 REM ******

70

High-Resolution Graphics

410 REM PAGE 2
420 REM ******
430 HPLOT 10,60 TO 100,60
440 HPLOT TO 100,100 TO 10,100
450 HPLOT TO 10,50
460 HPLOT 100,75 TO 110,76
470 HPLOT TO 110,60 TO 130,60
480 HPLOT TO 130,80 TO 110,80
490 HPLOT TO 110,75
500 HPLOT 130,75 TO 150,75
510 HPLOT 150,50 TO 190,60
520 HPLOT TO 190,100 TO 160,100
630 HPLOT TO 150,50
540 RETURN

Slide Show
Two graphics screens can also present a "slide show" effect. Sup
pose, for example, that you have a number of pieces of computer
art to show an audience. While you're showing one, you can load
the other on the other screen. When you switch to the next picture,
it's there waiting-no delay.

Let's take a look at an example. First, however, you'll need a
simple high-resolution drawing program to create your "slides."

This program incorporates many of the features of th� double
low-resolution drawing program from chapter 3 and also includes a
BSAVE option to save the creations to disk.

Program 4-9.
10 HOME
20 HGR
30 HCOLOR= 7: REM START WITH WHITE
40 REM *************
60 REM READ KEYBOARD
60 REM *************
70 WAIT - 16384,128
80 K = PEEK (- 16384)
90 POKE - 16368,0

71

CHAPTER 4

100 IF K = 136 THEN K = l: REM LEFT
110 IF K = 149 THEN K = 2: REM RIGHT
120 IF K = 138 THEN K = 3: REM DOWN
130 IF K = 139 THEN K = 4: REM UP
140 IF K = 195 OR K = 227 THEN K = 5
150 :F K 241 OR K = 209 THEN VTAB 24: PRINT CHR$(4)·

BSAVE GRAPHIC1,A$2000,L$2000";: END '
160 ON K GOSUB 200,260,320,380,500
170 HPLOT H,V
180 FOR PAUSE= 1 TO 50: NEXT PAUSE
190 GOTO 70
200 REM •••••
210 REM LEFT
220 REM•••••
230 H = H - 1
240 IF H < O THEN H = o
250 RETURN
260 REM•••••
270 REM RIGHT
280 REM•••••
290 H = H + l
300 IF H > 279 THEN H = 279
310 RETURN
320 REM••••
330 REM DOWN
340 REM••••
350 V = V + 1
360 IF V > 151 THEN V = 15l
370 RETURN
380 REM••
390 REM UP
400 REM••
410 V = V - 1
420 IF V < 0 THEN V = o
430 RETURN
500 REM••••••••••••
510 REM CHANGE COLOR
520 REM••••••••••••
530 HOME

72

High-Resolution Graphics

540 VTAB 22: HTAB 1
550 INPUT "Color Code 0-7 ";CL
560 HCOLOR = CL
570 RETURN

Next, draw a graphics screen. Save it to disk by pressing the S
key. In line 150, change GRAPHICl to GRAPHIC2, then create
and save a second graphics screen. Change line 150 once more so
that it uses GRAPHIC3, then draw and save.

It really doesn't matter what you draw-just make sure the
three are different so you can tell when one is switched with
another.

Use this next program to retrieve and show your graphics.
Look at lines 60 and 70, which BLOAD a program to the primary
and secondary graphics pages, respectively. You BLOAD a graphic
to the primary page by specifying A$2000; using A$4000 sends the
graphic to the secondary page.

Program 4-10.
10 TEXT : HOME
20 REM•••••••••••••
30 REM LOAD GRAPHICS
40 REM •••••••••••••
50 D$ = CHR$ (4)
60 PRINT D$"BLOAD GRAPHIC1,A$2000"
70 PRINT D$"BLOAD GRAPHIC2,A$4000"

100 REM ••••••••••••••••
110 REM TURN ON GRAPHICS
120 REM ••••••••••••••••
130 POKE 49232,0
140 POKE 49234,0
150 POKE 49236,0
160 POKE 49239,0
170 WAIT - 16384,128
180 POKE - 16368,0
200 REM ••••••••••••••••
210 REM SWITCH TO PAGE 2
220 REM ••••••••••••••••
230 POKE 49237,0

73

CHAPTER 4 High-Resolution Graphics

Figure 4-1. Values 1-8

and ls. Depending on the bit or bits that are turned on (have a
value of 1), a pixel will be lit or not lit.

High-resolution color values 1-8 and their binary equivalents
are shown in Figure 4-1. The lit pixel is shown as a black dot. (The
shaded box indicates the control bit.)

240 REM •••••••••••••••••
250 REM LOAD NEXT GRAPHIC
260 REM •••••••••••••••••
270 PRINT D$"BLOAD GRAPHIC3,A$2000"
280 WAIT - 16384,128
290 POKE - 16368,0
300 REM ••••••••••••••••
310 REM SWITCH TO PAGE 1
320 REM ••••••••••••••••
330 POKE 49236 O ,
340 WAIT - 16384,128
360 POKE - 16368,0
360 TEXT : HOME
370 LIST

Notice that the pixels are in complementary positions relative to
the bit or bits turned on. In other words, when the rightmost bit is
on (has a value of 1), then the pixel at the far left is lit. In the color
value 8, the center pixel is atop the turned-on bit since the bit is in
the middle of the byte.

Depending on which address you use to store a value, the first
bit of a screen color byte will be considered either even or odd. The
first screen address, $2000 (8192) is considered even. The second
screen address, $2001 (8193) is odd. The addresses alternate in this
pattern of even-odd.

Let's say you store a color byte at location $2032 (8242). That's
an even address, so the first bit of the color byte is considered even
as well. Think of the addresses arranged as pairs, one even and an-

Color in Memory
}Color mem?ry is a lot more complex in high-resolution than in
ow-resolution graphics.

Each pixel is part of an eight-bit pattern. Seven of those bits
correspond to pixels visible on the screen, while the eighth bi t .
used as a control bit. 1

is

f
The following program gives you a quick look at the 255 dif-

erent color value combinations-each is seven pixels long.

Program 4-11.
5 C = 1

10 HGR
2° FOR X = 8192 TO 18382 STEP 40
30 POKE X,C
40 C = C + 1
50 NEXT X
60 WAIT - 16384,128
7(? TEXT : HOME
80 LIST

1
T� se� what's going on in this program, it's necessary to take a

c .oser o� at how the pixels get to the screen. The bytes used to
display pixels and color contain a binary number made up of Os

74 75

CHAPTER 4

other odd, and things may be clearer. Here's two color bytes, one
stored at $2000 and the other at $2001. (Both bytes show only
seven bits in Figure 4-2; consider the eighth bit, the control bit, as
off. More on the control bit and its effect shortly.)
Figure 4-2. Even and Odd Bytes and Bits

High-Resolution Graphics

Figure 4-3. Black, Magenta, Green, and White

D � e I e I e I e I e I e I e I 81 atk

$2888
Even Byte

EOE OE OE

�elelelelelil
Color=Hagenta
E=Even bit O=Odd bit

$2881
Odd Byte

OEOEOEO

�elelelelelil
Color=Green

1 � e I e I e I e I e I i I Magenta

Notice that both bytes have the same value-the difference is
that the byte on the left produces a magenta pixel and the one on
the right, a green pixel. If a lit pixel is in an even bit column, it's
magenta. Look at Figure 4-2 again and check that the bit which
creates magenta is in an even column (it is). If a pixel is set in an
odd bit column, it's green.

Thus, if you wanted to put two magenta-colored pixels in adja
cent addresses, you'll need to set an even bit in the even byte and
an even bit in the odd byte. The odd byte's value could be 2 (10 in
binary).

You've already seen how to create magenta and green-what
if two adjacent bits are set, one in an even bit column, the other in
an odd bit column? White is the result.

Any other combination yields black.
The first four color values show all these combinations (Fig

ure 4-3). Keep in mind, however, that these colors apply only when
the control bit is off.

When the eighth bit is turned on, 128 is added to the value.
Blue (cyan) replaces magenta, and orange replaces green. Figure 4-
4 shows what the color bytes would look like.

76

3
-

0
IO IO I i I i I White

Figure 4-4. Blue and Orange

12, �
 e I e I e I e I e I i I 81 ue

130 �
8

�

0 IO IO I i I a I Orange

131 • 0 IO IO I 1 I i I White

77

Black

Orange
White

Magenta
Green
Blue

Double-resolution graphics primary page
Clear bank 1 screen
Bank 1 addresses
Bank O addresses
Return to BASIC

*0054: 00 (press Return)
*00<01/2000.01/3FFFZ (press Return)
*01/2000: 01 02 (press Return)
*00/2000: 01 02 (press Return)
"'Q (press Return)

50 NEXT EVEN
60 WAIT -16284,128
70 TEXT: HOME

Replace the 8230 in line 20 with 16382 to fill the entire screen
with orange with lines. It's easy to see the three divisions of screen
memory when you do.

You should be back in BASIC.
That short routine gave you the magenta dots, but this time

they're closer together than before. With double the resolution, you
can get 560 dots across the screen.

Let's draw a white line across the screen. Addresses from
$2000 to $2027 must be filled with a value on both screens. A
technique to quickly do this in the monitor (the place you go after

79

High-Resolution Graphics

Double-High-Resolution Graphics
On your Apple JIGS, double-high-resolution graphics is a little like
double-low-resolution graphics. You flip the same soft switch at
address 49246 ($COSE) to turn it on. After that, however, it's far
more difficult to control.

First, BASIC statements are not recognized on the bank 1 screen.
That means all values have to be sent there by machine language
routines. As you've seen, that means a rather trying bout with
pixels. Another problem is putting graphics where y�u want the�
on both parts of the double high-resolution screen without running
out of memory. (Assume you're doing this without using more
than 48K of memory, and employing BASIC as much as you can.)

To get a sense of what's going on here, put your IIGS into 80-
column mode, and enter the following:
HGR (press Return)
CALL-151 (press Return)

At the * prompt of the monitor, type

Either gives you two magenta dots near the top of your screen.
Notice that the dots are not adjacent. What you've done is to place
the value 1 in the first even byte ($2000/8192) and the value 2 in
the first odd byte ($2001/8193).

To create a line of adjacent dots, you'll need combinations of
pixels which line up on the even or odd columns. This chart pro
vides the proper values.

Even Odd
85/$55 42/$2A
42/$2A 85/$55
213/$05 170/$AA
170/$AA 213/$05
127/$7F 127/$7F
255/$FF 255/$FF
0/$0 0/$0
128/$80 128/$80

Program 4-12.
10 HGR
20 FOR EVEN= 8192 TO 8230 STEP 2
30 POKE EVEN, 1 70
40 POKE EVEN+l,213

CHAPTER 4

78

Try POKEing in some of these values in consecutive high
resolution addresses to see what happens. For instance, enter this
program to draw an orange line across the top of the screen.

Storing Colors in Memory
To get an idea of how colors stored in memory look, type one of
the following from the immediate mode.

In BASIC, type
HGR (press Return)
POKE 8192,1 : POKE 8193,2 (press Return)

In machine language, type
HGR (press Return)
CALL-151 (press Return)

When you see the * prompt, type
2000: 01 02 (press Return)

CHAPTER 4

typing CALL-151) is to use the same method you just used to clear
the double-resolution graphics screen. The Z (for Zap) command in
the monitor fills the range of given addresses with the specified
value. The less than symbol (<) is used. You want to create a line
in white, and from the chart listed earlier, you know that either
$7F or $FF will do the trick (if you're not in 80-column mode, enter
it now-don't forget to set the soft switch at location 49246 also).
HGR (press Return)
CALL-151 (press Return) �

Again, at the * monitor prompt, type
*0054: 00 (press Return)
*7F<Ol/2000.0l/2027Z (press Return)
*7F<00/2000.00/2027Z (press Return) ·
*Q (press Return)

That white line at the top of your screen is 560 dots across, not
280 as in single-resolution graphics.

Using an Array
The next program loads up all of the addresses into a sequential ar
ray. Notice that other than the HGR statement, there are no graph
ics statements in the program. The screen begins to fill with
graphics, however.

Program 4-13.
10 POKE 49246,0
20 REM••••••••••••*•••
30 REM PLACE SEQUENTIAL
40 REM TABLE IN ARRAY
50 REM••••••••••••••••
60 HGR
70 INVERSE
80 VTAB 21
90 PRINT " BE PATIENT AND WATCH THE SCREEN "

100 DIM X%(8192)
110 FOR A= 8192 TO 8272 STEP 40
120 FOR B = 0 TO 896 STEP 128
130 FOR C = 0 TO 7168 STEP 1024

80

High-Resolution Graphics

140 FOR D = 0 TO 38 STEP 2
150 N = A + B + C + D
160 Xo/o(X) = N
170 X = X + 1
180 N = A + B + C + D + 1
190 Xo/o(X) = N
200X=X+l
210 NEXT D
220 NEXT C
230 NEXT B
240 NEXT A
250 NORMAL : HOME
260 PRINT CHR$ (7)
270 VTAB 21
280 PRINT "ALL DONE"
290 END

What's happened is that the array is so large that it starts fill
ing up the part of memory used by high-resolution graphics. You
may also notice the black columns between the graphics. These are
the bank 1 addresses not affected by the array.

You'll need a rearranged array to do graphics correctly, so let's
use the LOMEM statment. LOMEM sets the lower limits for storing
variable and array data. Such data is prevented from entering
memory addresses below this limit.

To make sure you've got enough room, set LOMEM to 16384
($4000), just above the primary page of high-resolution graphics.
This will give you enough room for the large array and still pre
serve the space needed for graphics.

The following program does this, drawing a sequential line
with the large array. It only uses 600 bytes in both banks (300 in
each), but it illustrates how to produce drawings in double-high
resolution graphics.

Program 4-14.
10 LOMEM: 16384
20 POKE 49246,0
30 REM ••••••••••••••••
40 REM PLACE SEQUENTIAL
50 REM TABLE IN ARRAY

81

CHAPTER4

60 REM ****************
70HGR
80 INVERSE
90 VTAB 21

100 PRINT II LOADING ARRAY II

110 DIM X%(8192)
120 FOR A = 8192 TO 8272 STEP 40
130 FOR B = 0 TO 896 STEP 128
140 FOR C = 0 TO 7168 STEP 1024
150 FOR D = 0 TO 38 STEP 2
160 N = A + B + C + D
170 X%(X) = N
180 VTAB 21: HTAB 19: PRINT 11 *11

190 X = X + 1
200 N = A + B + C + D + 1
210 X%(X) = N
220 X = X + 1
230 NEXT D
240 VTAB 21: HTAB 19: PRINT 11* 11

250 NEXT C
260 NEXT B
270 NEXT A
280 NORMAL
290 HOME: VTAB 22
300 REM *************************
310 REM POKE SEQUENTIAL ADDRESSES
320 REM *************************
330 FOR X = 0 TO 300 STEP 2
340 N = X%(X)
350 V = 170: REM EVEN ORANGE
360 POKE N,V
370 GOSUB 500
380N=N+l
390 V = 213: REM ODD ORANGE
400 POKE N,V
410 GOSUB 500
420 NEXT X
430 VTAB 22
440 END

82

High-Resolution Graphics

500 REM *******************
510 REM CONVERT TO 2 BYTE#
520 REM *******************
530 LB = N - INT (N / 256) * 256
540 HB = INT (N / 256)
600 REM ****************
610 REM MACHINE LANGUAGE
620 REM ****************
630 POKE 768,169: REM LDA
640 POKE 769,V: REM VARIABLE COLOR
650 POKE 770,143: REM LONG STA
660 POKE 771,LB: REM LOWBYTE
670 POKE 772,HB: REM HIGHBYTE
680 POKE 773,1: REM BANK 1
690 POKE 774,96: REM RTS
700 CALL 768: REM EXECUTE ROUTINE
710 RETURN
720 VTAB 21: HTAB 19: PRINT 11*

11

83

ealing with graphics shapes on the Apple IIGS takes some
careful organization and planning. Though the details may be a bit
intimidating at first, once you create a few shapes, it's really quite
easy.

It's easier to buy a commercial shape editor, or to get a public
domain editor from an Apple user group or one of the information
services-but then you may not fully understand how to use the
shapes. Creating shapes yourself will give you much more in-depth
experience in how they work. If you do decide to use a shape edi
tor, skip the first section of this chapter and go directly to the part
which concerns manipulating shapes.

Getting into Shapes
As with most programming, you'll deal with 8-bit bytes when gen
erating shapes and shape tables.

It's easier, however, to think of the eight bits in three pack
ets-one of two bits, and two of three bits each: 2, 3, 3. The first
packet of two bits is generally unused, so you'll work with two
three-bit sets for the most part.

The shape table you'll build is based on values entered into a
series of bytes using binary and hexadecimal codes. All of these, of
course, must be further translated into decimal numbers which can
be used from a BASIC program. With planning and clear explana
tion, you'll quickly grasp shape creation, and see what they can do
for your own programs.

Drawing a shape in memory is much like drawing with paper
and pencil. In fact, you can draw the shape on graph paper first,
then plot it in your computer's memory.

87

Shapes and Bitmapped Graphics

The three segments of the byte will be numbered from 1, 2,
and 3, respectively, so that you can keep the sequence in order.

1. Segment 1 = 111
2. Segment 2 = 100
3. Segment 3 = 11

The byte which holds the values for these moves and plots
looks like Figure 5-2.

Figure 5-2. Three Moves, One Byte

That was pretty simple.
Consider what would be required if you had the following

move, however. Note that it's just a slightly different sequence of
moves and plots.

Shape B = Move/plot to the left, move/plot up, move/plot up,
and move to the left.
1. Move/plot left = 111
2. Move/plot up = 100
3. Move/plot up = 100
4. Move left = 011 or 11

Since the third action involves a three-bit operation, you can't
use Segment 3. You have to go to the next byte.

Figure 5-3 shows what Shape B will look like when mapped.

Figure 5-3. Four Moves, Two Bytes

J. J.

SegMent J.
J. 8

J.
2

SegMent J.
J. 8 Byte SSJ.
J. J.

CJ.)

3 1 ""'2.__ J.=------- 8 Byte a 2
J. J. 0 8

(3)

4
J.

(4)

SegMent 2
4 3 12
8 8 J.

(2)

89

SegMent 2
I = 5 __ �4,__ _ __.;;;3"--�

J. 8 8

3

15
J.

SegMent 3
Bita 7 6

J. J.

BitSS � 7 __ �6----�15
8

SegMent
Bi ta 7 6

8 8
(*)

Figure 5-1. Moves and Values
Move Plot Binary Hex
Up No 000 0
Right* No 001 or 01 1
Down* No 010 or 10 2
Left* No 011 or 11 3
Up Yes 100 4
Right Yes 101 s
Down Yes 110 6
Left Yes 111 7

Imagine a shape as something you draw in memory by speci
fying directions and draw /not draw instructions with three-bit
packets; occasionally you can use a two-bit packet (see the chart
listed in Figure 5-1).

Each move or move/plot is recorded in a three-bit segment of
a byte, or a two-bit segment if appropriate. Notice the moves with
an asterisk and their binary value. If, in the sequence of plotting
and moving, one of those moves is to be recorded and the next
available segment is two bits long, then it can be recorded as a
two-bit value. Let's look at an example.

Shape A = Move/plot to the left, move/plot up, and move to the
left.
1. Move/plot left = 111
2. Move/plot up = 100
3. Move left = 011 or 11

88
\

CHAPTER 5

Draw in Memory
As you plot the shape in memory, you can move the drawing tool
(without actually drawing) up, down, left, or right. That's four
choices. You can also move and plot in those same four directions.
That's four more choices, for a total of eight.

It's easiest to understand drawing shapes if you use a com
bination of binary and hexadecimal numbers to start. Once you
have the hexadecimal values, you can translate them into decimal
numbers for a BASIC program.

Here are the available moves and the values they carry:

CHAPTER 5

The numbers in parentheses show the sequence of placing the
values. You can draw any shape in memory with the same proce
dure, although most shapes take many more steps than the short
examples you've seen so far.

You're ready to draw something you can see on your com
puter. Figure 5-4 shows a jet airplane drawn on graph paper.

Figure 5-4. Jet on Graph Paper

Beginning with a point above the nose of the jet, you can draw
a continuous line which ends at the tip of the nose. All entries will
be move and plot, so you'll be using these values:
� 111
t 100
.._. 101
i 110

And Figure 5-5 shows shows how to plot each point.

Figure 5-5. Plotting the Jet

90

Shapes and Bitmapped Graphics

Following the plotting arrows around the jet, you'd get the this
binary pattern:

1. 111 15. 111 28. 101
2. 100 16. 100 29. 110
3. 111 17. 111 30. 101
4. 111 18. 110 31. 101
5. 110 19. 110 32. 101
6. 111 20. 110 33. 101
7. 111 21. 110 34. 101
8. 111 22. 101 35. 101
9. 111 23. 101 36. 100

10. 111 24. 110 37. 101
11. 111 25. 101 38. 100
12. 100 26. 101 39. 101
13. 111 27. 101 40. 101
14. 100

The final step is to translate the binary into decimal and/or
hexadecimal. Consider two different methods for accomplishing
that task.

Translate by Hand
The first method is more time consuming, but it will give you a
better understanding of the translation process.

First, rearrange the byte breakdown. Instead of treating each
byte as three sets of bits (one two-bit packet and two three-bit
packets), think of a byte now as composed of two four-bit seg
ments. Let's look at what will be the first byte of the shape table.

Instead of Segments, you now have a high and a low nibble.
The binary values in the bits are the same, but to translate the byte
into a hexadecimal value, it's simply easier to break it into nibbles.

91

+start here

92

CHAPTER 5

.!..7 __ �6:..__.. _ __;::5::;...._ __ 4=--1 1 .-=- 3 __ --=2.__ 1 0 Byte u 1

8 8 .1 8 8 1 1 1

93

Shapes and Bitmapped Graphics

Program 5-1.
10 TEXT: HOME: GOSUB 440
20 INPUT "How many bytes in your shape ";BN
30 FOR B = 1 TO BN

100 R.EM •••••••••••••••••
110 REM BINARY CONVERSION
120 REM •••••••••••••••••

get everything organized, though, it's relatively simple-and, as
you'll see, well worth the effort.

Here's a complete shape table depicting the jet from Figure 5-4 .
Byte Segment 3 Segment 2 Segment 1 Hex Decimal

0 00 100 111 27 39
1 00 111 111 3F 63
2 00 111 110 3E 62
3 00 111 111 3F 63
4 00 111 111 3F 63
5 00 100 111 27 39
6 00 100 111 27 39
7 00 100 111 27 39
8 00 110 111 37 55
9 00 110 110 39 54

10 00 101 110 2D 45
11 00 110 101 35 53
12 00 101 101 2D 45
13 00 101 101 2D 45
14 00 101 110 2E 46
15 00 101 101 2D 45
16 00 101 101 2D 45
17 00 100 101 25 37
18 00 100 101 25 37
19 00 101 101 2D 45

Software Translation
A second method to get that same table would be to write a pro
gram which translates binary values into decimal and hexadecimal.
This is a lot easier when dealing with a large table of values.

The next program does this for you.

Low Nibble High Nibble
Figure 5-6. High Nibble/Low Nibble

Binary Hexadecimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 c
1101 D
1110 E
1111 F

Once you've broken it into nibbles, translating the byte into
hexadecimal is easy-just substitute the four-bit nibble for a single
digit hex value. Notice that in the following chart the full range of
four binary digits (0000-1111) exhausts the single-digit range of
hexadecimal numbers (0-F). That's another clue as to why hexa
decimal values are used with computers.

To translate the byte shown in Figure 5-6, for instance, you'd
first break it into its two nibbles:
High nibble: 0010 = $2
Low nibble: 0111 = $7
Thus the byte's value in hex is $27.

Turn to appendix C, which offers a hexadecimal-to-decimal
translation table, and you can see that $27 in hex is 39 in decimal.

You're done-with one byte. That's a lot of work. Once you

CHAPTER 5

130 INPUT "Binary number ";B$
140 IF LEN (B$) < > 8 THEN 130
150 FOR X = 0 TO 7
160 V$ = MID$ (B$,X + 1,1)
170 V = VAL (V$): IF V > 1 THEN X = 7: PRINT "All digits must be

'O' or 'l "' CHR$ (7): NEXT : GOTO 130
180 P = 7 - X
190 IF V = 1 THEN BV = 2 " P
200TD=TD+BV
210 BV = 0
220 NEXT X
230 PRINT "Your decimal value is ";TD
300 REM **************
310 REM CONVERT TO HEX
320 REM **************
330 POKE 780,TD
340 PRINT "Your hex value is";
350 CALL 768
360 PRINT
370 TD= 0
380 NEXT B
390 END
400 REM ****************
410 REM MACHINE LANGUAGE
420 REM HEX CONVERSION
430 REM ****************
440 FOR A = 1 TO 12
450 READ MB
460 POKE 767 + A,MB
470 NEXT
480 RETURN
490 DATA 169,164,32,237,253,173,12,3,32,218,253,96

Once you've translated the shape into decimal and hexadeci
mal values, let's see how to use them in shapes.

94

Shapes and Bitmapped Graphics

Entering the Shape Table
You can _either POKE in the de�imal numbe�s from BASIC or, using
the monitor, enter the hexadecimal values directly into a memory
location. In either case the procedure involves two things:
• Placing the shape somewhere in memory where it won't clash

with other information.
• Telling your Apple where to find the shape information.

First of all, store the starting address of your shape in a special
register (which draws shapes) at locations $E8 and $E9 (232 and
233). This register holds a pointer to shape definitions. For this
demonstration, store the shape in memory starting with address
$300 (decimal 768)-that's a location with some free memory. The
microprocessor of the Apple needs this information in a low byte,
high byte pattern. This is backwards to us humans, but it suits the
machine just fine.

Thus, the starting address will be stored in locations $E8 and
$E9 as
$E8:00
$E9:03

Do It from BASIC
To store this information from BASIC, you must break up the $300
into two parts and POKE the decimal equivalents into those loca
tions. Fortunately, you can make a direct translation from hex to
decimal.
Hex Decimal
00 00
03 03

Since the low byte is stored in the first address and the high
byte in the second, enter
POKE 232,0
POKE 233,3

95

CHAPTER 5

Finally, you must provide more information at the beginning
and end of the shape data.
First byte: Total number of shape definitions
Second byte: Unused
Third and fourth bytes: Relative offset for beginning of shape . »: relative offset indicates where the shape data actually be
gins. Its not an address, but the number of bytes after the starting
address. The relative offset makes the shape table relocatable-it
can be placed in any area of free memory.

In this example, there's only one shape, and the shape data
begins immediately after the relative offset information. That will
be in the fifth byte, but since the first byte is considered zero, the
value will be four (4).
Byte O = 01 (Number of shapes)
Byte 1 = 00 (Unused)
Byte 2 = 04 (Low byte of offset)
Byte 3 = 00 (High byte of offset)
Byte 4 = 39 (First value of shape)
Bytes 5-N (N=last value of shape table)
Byte N + 1 = 00 (Indicates end of shape table)

. Afte� you've managed all this, you're ready to write a program
which will place the shape information in memory and use the
shape.

The table for the jet shape includes 20 bytes. There are 25
bytes total, however, since you have to use 4 bytes at the begin
ning of the table and 1 byte at the end. That means you'll have to
POKE 25 shape values into memory, beginning at $300 (768).

Let's use the following loop.
FOR X = 768 TO (768 + 24)

To make it easy, put all the information in DATA statements,
t�en have the loop read the data and sequentially place it in the as
signed addresses. Before that, though, remember to indicate where
the shape information is stored. Thus, $E8 and $E9 (232 and 233)
will be POKEd with
POKE 232,0 : POKE 233,3

This program does everything for you.

96

Shapes and Bitmapped Graphics

Program 5-2.
10 REM•••••
20 REM SETUP
30 REM"'****
40 POKE 232,0: POKE 233,3
50 TEXT : HOME

100 REM ************
110 REM READ IN DATA
120 REM ************
130 FOR X = 768 TO 768 + 24
140 READS
150 POKE X,S
160 NEXT
170 DATA 1,0,4,0
180 DATA 39,63,62,63,63,39,39,39,55,54
190 DATA 45,53,45,45,46,45,45,37,37,45,0

Run this program. Nothing happens. The shape is in memory,
but you haven't drawn it yet. You need more statements and com
mands to see the shape. You'll learn how that's done in a moment.
For now, though, let's see how to enter the shape table data in
memory with the monitor .

Do It from the Monitor
First of all, you need to store the starting address information in
memory locations $E8 and $E9.

Here's how.
CALL -161 (press Return)

When you see the monitor's asterisk (*) prompt, type
*E8: 00 03 (press Return)
*Q (press Return)

You're now back in BASIC.
Now you're ready to enter the same data as you placed in

memory with BASIC-this time with the monitor. You'll enter
hexadecimal values.
CALL-151 (press Return)

97

CHAPTER 5

Wait for the * prompt to appear; then type in the starting address
($300), a colon (:), and the 25 byte values.
*300: 01 00 04 00 27 3F 3E 3F 3F 27 27 27 37 39 2D 35 2D 2D 2E
2D 2D 25 25 2D 00 (press Return)

"'Q (press Return)

You may have one question-why bother with the monitor when
a program automatically does everything for you from BASIC?

Two reasons. First, if you want to quickly edit the shape, you
can enter the monitor and make changes quickly and easily byte
by-byte. Secondly, you can save your shape as a binary (BIN) file,
which can be loaded into memory from disk at any time.

To save the above shape as a binary file, for instance, type this
after you've exited the monitor and returned to BASIC:
BSA VE JET,A$300,L$19 (press Return)

or
BSA VE JET,A 768,L25 (press Return)

This command saves the 25 (L$19) values stored in memory
starting with 768 ($300) as the binary file JET (BSAVE JET).

You could have done the same thing from BASIC. By entering
it in the monitor, however, you can get a better idea how shapes
are stored in memory.

To use the shape table in another program, use this line:
100 PRINT CHR$(4);"BLOAD JET,A$300"

That single line can replace lines 100-190 in the last BASIC
program.

Shape Manipulation
You've done a lot of work in creating a shape; now it's time to use
it. Let's first take a look at the special shape statements you can use.

• SCALE. The SCALE statement sets the size of your shape. A
SCALE value of 1 uses the single-pixel plot resolution you created
your shape with. Higher value scales create larger shapes with
lower resolution.

98

Shapes and Bitmapped Graphics

• ROT. The ROT value ROTates your shape in one of eight angles.
ROT recognizes values 0, 8, 16, 24, 32, 40, 48, and 56. Other ROT
values are dropped to the next lower value (for example, 12 will
be treated as 8). At angles other than 0, 90, 180, or 360, the
shapes are distorted.

• DRAW. Using the ·high-resolution pixel matrix, you plot the X and
Y coordinates using the following format: DRAW N°/o AT X,Y
where N°/o is the shape number and X and Y are the horizontal
and vertical coordinates on your high-resolution screen.

• XDRAW. XDRAW has the same format as DRAW except it draws
the complement of the color existing on the screen. When using
animation, XDRAW is preferable to DRAW.

Add these lines to Program 5-2.
Place shape on screen.
200 REM *******************
210 REM PUT SHAPE ON SCREEN
220 REM *******************
230 HGR
240 HCOLOR = 3
250 SCALE= 1
260 ROT= 1
270 DRAW 1 AT 100,100
(You can use either XDRAW or DRAW to place a figure on the screen.)

Move shape.
200 REM **********
210 REM MOVE SHAPE
220 REM **********
230 HGR
240 HCOLOR = 3
250 SCALE= 1
260 ROT= 1
270 FOR X = 0 TO 279
280 DRAW 1 AT X,70
290 FOR PAUSE= 1 TO 2
300 NEXT PAUSE
310 XDRAW 1 AT X,70
320 NEXT X

99

CHAPTER 5

. For movement, it's best to alternate DRAW and XDRAW It
�imply helps to think of it as a draw and erase sequence. It ;ould

e pos�ible to use XDRAW for both, but that makes it a bit m
confusing. ore

Notice the short pause loop in lines 290-300 Th t
the sc f 1

. · a prevents
. reen rom c ouding ov�r the shape as it moves. Remove the

lines .to see what happens without that short delay. On some moni
t�rsd it may not m�ke a difference, but if your screen seems to dro l
s a ows over moving shapes, put in a short delay loop. p

Change the program to see if you can make the jet fly from th
upper left corner to the lower right. e
Rotate shape.
200 REM ••••••••••••
210 REM ROTATE SHAPE
220 REM ************
230 HGR
240 HCOLOR = 3
250 SCALE= 1
260 FOR R = 0 TO 56 STEP 8
270 ROT= R
280 XDRAW 1 AT 30 + R,30 + R
290 FOR PAUSE= 1 TO 400
300 NEXT PAUSE
310 NEXT R

it
lo!�t�i�o��a� gi:e s�ec�acular animated effects. In the example,

Ad
e e Jet is sp1nn1ng out of control or performin a loo

d and change the following lines for another view of th� fl' p.
290 FOR PAUSE = 1 TO lOO ip.
305 XDRAW 1 AT 30 + R,30 + R
320 R=O
330 XDRAW 1 AT 30 + R,30 + R

f
�hat h second view really lets you see the animation possibilities

O using s ape tables.
Change scale.
200 REM ************
210 REM CHANGE SCALE
220 REM ************

100

Shapes and Bitmapped Graphics

230 HGR
240 HCOLOR = 3
250 ROT= 0
260 FORS= 1 TO 4
270 SCALE= S
280 DRAW 1 AT 50 + 8,20 * S
290 NEXT S

Changing the scale lowers the resolution of your shape, but
you can see the vectors better. In the jet you created, for instance,
it's possible to see a gap between the nose and the cockpit area.

Some shapes may actually look better if they're scaled upwards.
For the most part, though, larger scaling is most often used for editing
shapes. See if you can figure out what would have to be added to
the jet shape to fill in the gap near the nose. (Hint-move back
ward without plotting from the tip of the nose, then plot the gap.)

Try experimenting with the color and your shapes. Change the
white value from 3 to 7 in HCOLOR. Even that will give you a dif
ferent appearing shape. Other colors may break up the shape, and
by filling in a more or less blank area of a shape, you can get inter
esting color results. The key is to experiment, then judge the results
yourself.

Bitmapped Graphics
Another type of graphics character generation is bitmapped graphics.
This process involves drawing a graphics figure with a bit configu-
ration instead of plotting vectors.

Graphics blocks are built using seven bits of each byte in a
character. The bytes are then stored in the high-resolution memory.
By changing the addresses of the bytes, it's possible to program
animation. You can use as many bytes as you have room for, in
memory and on the screen. And since color is determined by the
bit pattern, it's possible to create multicolored characters.

Color and High Bits
The reason that bitmapped graphics use seven bits in creating a fig-
ure is that the eighth bit controls the color. Figure 5-7 shows which
on bits create which colors. Note that color not only depends on
which bits are set on, but also whether the eighth bit (also called
the high bit) is on or off.

101

102

CHAPTER 5

Remember that the rightmost bit controls the color in b�t- .
mapped shapes-since the shape includes white only, the high bit
(rightmost in this case) is always zero. It's set off from the rest of
the data by a vertical line.
Left Data Right Data
1. 1 0 0 0 0 0 0 IO O O O O O O O IO
2. 1 1 0 0 0 0 0 I O O O O O O O O I O
3. 1 1 1 1 1 1 1 IO 1 1 1 0 0 0 0 I O
4. O 1 1 1 1 1 1 I O 1 1 1 1 1 0 0 I O
5. 1 1 1 1 1 1 1 I O 1 1 1 1 1 1 1 I O

Shapes and Bitmapped Graphics

Figure 5-8. The Shuttle

103

There's a violet line in the top left corner, isn't there? Now,
while you're still in the monitor, enter
*2001: 55 (press Return)

This time the line is green. The zero byte ($2COO) is even, and
the first byte ($2001) is odd. That's why, although both bytes con
tain the value $55, one is violet, the other green.

You have to use $2A every other btye to get two violet lines in
a row. That's because on odd bytes, the color for green is $55; for
violet, it's $2A.

A Space Shuttle
To start with, let's try something simple. The next shape uses only
white, so it doesn't matter whether bytes are even or odd.

Even Odd
u u u u u u u

6 6 6 6 6 6 6
B B B B B B B

0 0 0 0 0 0 0
1. 1 1. 1. 1. 1 1. 1. 1. 1. 1. 1. 1. 1.
8 8 8 8 8 8 8 8 8 8 8 8 8 8

Figure 5- 7. Bitmapped Graphics Colors

V = bit is on, color is violet
G = bit is on, color is green
B = bit is on, color is blue
0 = bit is on, color is orange

High Bit:8
High Bit:8
High Bit:1.
High Bit=!.
White
Black

Within a single byte, it's possible to have up to four colors
(black, white, and green/violet or blue/orange).

To see how bitmapped graphics and color work, let's look at
some examples using the monitor. You'll start with the color violet.
According to Figure 5-7, you need the following configuration.

Violet in binary
Low bit --> 1 0 1 0 1 0 1 0 <-- High bit

Important note: Remember that what shows above is the reverse of
what you'd normally find in examining a binary number. It's re
versed, meaning that the high bit is on the right and the low bit is
on the left. Using the binary-to-decimal/hexadecimal conversion
program which you used to convert binary values in making shape
tables, start with the rightmost bit and enter the binary number
from right to left. Running that through the conversion program
should give you the hexadecimal value of $55.

Now type the following.
TEXT:HGR (press Return)
OALL-151 (press Return)

You're now in the monitor, and should see the asterisk prompt.
Type
*2000: 55 (press Return)

104

These values are translated to

CHAPTER 5

105

Shapes and Bitmapped Graphics

Program 5-3.
10 HOME
20 REM *******•••••••••••••
30 REM REARRANGE HGR MEMORY
40 REM ********************
50 LOMEM: 16383
60 DIM HR%(8l92) s 050
70 FOR A= 8192 TO 8272 STEP 40: REM $2000- 2

- A TO 9168 STEP 128: REM $23DO STEP $80
80 FOR

BX-
B TO 16383 STEP 1024: REM $3FFF STEP $400 90 FOR =

100 FOR y = XTO X + 39: REM $27
110 HRo/o(Vo/o) = Y
120 Vo/o = V% + 1
130 NEXT Y
140 K = V% I 8192
150 p = K • 100
160 Po/o = INT (P) + 7

II II

170 HTAB 1: VTAB 22: PRINT STR$ (Po/o); %
180 NEXT X
190 NEXT B
300 NEXT A
310 REM *****************
320 REM FILL SEQUENTIALL y
330 REM *****************
340 HGR
350 POKE 49234>0: REM ALL GRAPHICS

360 FOR F = 0 TO 8192
370 POKE HR%(F)> 123
380 NEXT

. t here First LOMEM was set
There are a couple of things to no e or storin the array was

to 16383. That me�ns the 10';_�\f::or;o�am ha} not done that,
right at the beg1nrung of H�

d � Pfge
1 of the high-resolution the array would have store a a on

screen.
Just for fun, change line 50 to read

50 HGR .
th hi h resolution screen fill with color bits

and you t:n ang ��: da�a t�a;'s loaded into that part of memory. represen i

$0/0
$0/0
$7/7
$1F/31
$7F/127

1. $1/1
2. $3/3
3. $7F/127
4. $7E/126
5. $7F/127

Plug the graphic into memory from the monitor to see it on
the screen. To enter it in the correct order, it's necessary to place
each pair of bytes in consecutive rows. Remember that your Ap
ple's high-resolution memory is not consecutive or linear-each
row begins $400 above the previous row.
TEXT : HGR (press Return)
CALL-151 (press Return)
*2COO:Ol 00 (press Return)
*3000:03 00 (press Return)
*3400:7F 07 (press Return)
*3800:7E lF (press Return)
*3C00:7F 7F (press Return)

That should create your space shuttle. Crude, but you get the idea.

Moving and Sequential Memory
If you want to move the graphic, it will be a complex task trying to
figure out the path unless you devise a way to sequentially line up
the memory. Using assembly language, this could be done very ef
ficiently. However, it is possible from BASIC. Here's how.

The trick is to store the addresses of high-resolution memory
in an array, just like you did for screen memory. That is, the ad
dresses-beginning in the upper left corner and proceeding from
left to right to the lower right corner-will be put into an integer
array. Then, using the array data, you can POKE the data for the
graphics character into sequential locations on the screen.

The following program does just that, and also provides a run
ning record of the array space filling as it configures the array into
a linear set. Finally, it fills the screen sequentially with a white, vio
let, and green pattern.

CHAPTER 5

Graphics on the Screen
The following program, which uses rearranged memory, shows
how a bitmapped graphic can be placed on the screen. (Remember
that each row is 40 bytes wide-to jump a row, add 40 since you
can treat the high-resolution screen sequentially.)

Program 5-4.
10 HOME
20 REM ••••••••••••••••••••
30 REM REARRANGE HGR MEMORY
40 REM ••••••••••••••••••••
50 LOMEM: 16383
60 DIM HRo/0(8192)
70 FOR A= 8192 TO 8272 STEP 40: REM $2000-$2050
80 FOR B = A TO 9168 STEP 128: REM $23DO STEP $80
90 FOR X = B TO 16383 STEP 1024: REM $3FFF STEP $400

100 FOR Y = X TO X + 39: REM $27
110 HR%(V%) = Y
120 V% = V% + 1
130 NEXT Y
140 K = V% I 8192
150 P = K * 100
160 P% = INT (P) + 7
170 HTAB 1: VTAB 22: PRINT STR$ (P%);11% 11

180 NEXT X
190 NEXT B
200 NEXT A
300 REM •••••••••••••••••••••••
310 REM MAKE BITMAPPED GRAPHIC
320 REM •••••••••••••••••••••••
330 HOME : TEXT
340 HGR
350 FOR J = 1 TO 5
360 READ A,B
370 POKE HR%(G%),A: POKE HR%(G% + l),B
380 G% = G% + 40
390 NEXT J
400 REM ••••••••••••••••

106

Shapes and Bitmapped Graphics

410 REM DATA FOR GRAPHIC
420 REM ••••••••••••••••
430 DATA l,0,3,0,127,7,126,31,127,127

Finally, you'll want the graphic to "ride the array." If you
hadn't rearranged the screen, it would have been difficult to move
the graphic diagonally while keeping it in one piece. However, since
you can track it on the array instead of on the screen directly, it's
simply a matter of using a step loop. This next program shows how.

Program 5-5.
10 HOME
20 REM ••••••••••••••••••••
30 REM REARRANGE HGR MEMORY
40 REM ••••••••••••••••••••
50 LOMEM: 16383
60 DIM HR%(8192)
70 FOR A= 8192 TO 8272 STEP 40: REM $2000-$2050
80 FOR B = A TO 9168 STEP 128: REM $23DO STEP $80
90 FOR X = B TO 16383 STEP 1024: REM $3FFF STEP $400

100 FOR Y = X TO X + 39: REM $27
110 HR%(V%) = Y
120 V% = V% + 1
130 NEXT Y
140 K = V% I 8192
150 P = K * 100
160 P% = INT (P) + 7
170 HTAB 1: VTAB 22: PRINT STR$ (P%);11%

11

180 NEXT X
190 NEXT B
200 NEXT A
300 REM •••••••••••••••••••••••
310 REM MOVE BITMAPPED GRAPHIC
320 REM •••••••••••••••••••••••
330 HOME : TEXT
340 HGR
350 FOR F = 1 TO 1640 STEP 41
360 Go/o = F: RESTORE

107

CHAPTER 5

370 FOR J = 1 TO 5
380 READ A,B
390 POKE HR%(G%),A: POKE HR%(G% + l),B
400 G% = G% + 40
410 NEXT J
420 FOR PAUSE= 1 TO 30: NEXT PAUSE
430 G% = F
440 FOR E = 1 TO 6
460 POKE HR%(G%),O: POKE HR%(G% + 1),0 : REM Erase graphic
460G% = G% + 40
470 NEXT E
480 NEXT F
600 REM ••••••••••••••••
510 REM DATA FOR GRAPHIC
520 R.EM ••••••••••••••••
530 DATA l,0,3,0,127,7,126,31,127,127

That was a bit jerky, and you might want to experiment with
the delay loop in line 420 to see if you can smooth it out. If you
want to see a straight downward vertical move (not diagonal) use
STEP 40 in the movement loop.

Summary
If you want to create arcade and graphics games, you'll want to fur
ther explore vector and bitmapped graphics. The power of your Ap
ple IIGS is considerable. And as you've seen, even though BASIC
has its limitations, there's a great deal of flexibility and control at
your fingertips. Using shape tables and shape statements in BASIC,
and creating and manipulating shapes is not as difficult as it may
first seem. The trick is to get organized and take things a step at a
time. The planning is well worth the results, and with more ex
plorations into how your Apple IIGS works, you'll be able to create
more and more spectacular effects.

Bitmapped graphics offer a real challenge to the programmer,
but they also offer a lot of opportunities. What's here can only
whet your appetite for this part of high-resolution graphics.

108

ow that you know something about both low- and high
resolution graphics, how about putting that knowledge to use? This
chapter shows you how to create graphs, charts, and circles in both
resolutions and how to combine them. You'll see how to construct
bar graphs, scatter graphs, and line graphs.

Low-Resolution
When drawing on the low-resolution screen, you're limited by a
40 X 48 matrix. With text at the bottom of the screen, the matrix is
further restricted to 40 X 40. Since you may want to label charts
and graphs, we'll need those four lines of text at the bottom. Plan
on using the smaller 40 X 40 matrix most of the time.

Since a chart or graph is a graphic representation of data, you
need a way to translate that data into a visual graphic. To start,
let's draw a couple of bars which have the same base, but are of
different colors and heights.

Program 6-1.
10 GR
20 COLOR= 3
30 FORA= 1 TO 3
40 VLIN 5,39 AT 5 + A
50 NEXT A
60 COLOR= 4
70 FOR B = 1 TO 3
80 VLIN 20,39 AT 10 + B
90 NEXT B

If that graph represented data of, say sales of two different
types of software packages, you could see at a glance that the first
bar (magenta) illustrates considerably higher sales than the second

111

CHAPTER 6

bar (green). A range from O to 39, however, doesn't allow for sales
above 40 units.

What you do is make the graphic data proportionately repre
sentative of the data. For example, each vertical step could repre
sent 10, 20, 100, 1000 or even a million units instead of just one.
In fact, it doesn't matter what unit a vertical bar represents as long
as all the data are proportional. The problem is how to make that
data proportional.

Proportional Data
To understand how to make the data equally proportional and still
fit on the screen, let's start with a simple example. Suppose you
want to chart two sets of data. One set has a maximum value of 10
and the other has a maximum value of 1000. Instead of using 40
(0-39) as the maximum, use 39.9-that provides the limit up to,
but not including, 40. (You could be even more precise and use
39.9999, but that's unnecessary.)

With the first set of data with a maximum of 10, you'll want to
use more than just 10 vertical positions. You want all 40. So you'll
need to change the basic unit from 1 to something else. By dividing
39.9 by 10, the basic unit becomes 3.99. For each full data point,
the bar should be incremented by 3.99. To represent 7 units, for in
stance, you'd calculate the following:
D= 7
D= 7 * 3.99
D= 27.93

Let's take another number-five-and do that same thing.
D= 5
D= 5 * 3.99
D= 19.95

In other words, 7 has the same relationship to 27.93 as 5 has
to 19.95.

Now let's see if a simple bar chart will provide the correct pro
portions. This next program compares the raw figures and the pro
portional figures (the first set uses the raw figures, and the second
set uses the proportional ones).

112

Making Graphs and Circles

Program 6-2.
10 GR
20 COLOR= 7
30 VLIN 39-7,39 AT 10
40 VLIN 39-5,39 AT 12
50 COLOR= 9
60 VLIN 39-27.93,39 AT 15
70 VLIN 39-19.95,39 AT 17

Notice in lines 30 and 40, and in lines 60 and 70, how the
value to plot was subtracted from 39. That's because lower v.alues
are higher on the screen. To reverse that, all you have to do is sub-
tract the converted value from 39. .

Now let's look at the data where 1000 is the max1mu� value.
Again you divide 39.9 by the maximum value �1000), but instead
of getting a whole number, the result is a fraction, .0399. There
fore, each unit will be less than 1. Using the values 500 and 700,
let's see what happens:
500 * .0399 = 19.95
700 * .0399 = 27.93

You get the same values as you did when the m�ximum value
was 1 o and you used 5 and 7. As long as the proportions are co� -
sistent, you can chart any values you want. Thus, you can use this
formula:
Ratio = 39.9 /Maximum Value
N = N * Ratio

Now, any value, assuming it's equal to or less than. the max.i
mum value, will fit proportionately into the low-resolution matrix.
The following simple program does that.

Program 6-3.
10 TEXT: HOME
20 INPUT "Maximum value ";MV
30 R = 39.9 I MV
40 FOR X = 1 TO 2
50 INPUT "Value ";N(X)
60 N(X) = N(X) * R

113

CHAPTER 6

70 NEXT
80 GR
90 FOR X = 1 TO 2

100 COLOR= X * 3 + 1
110 VLIN 39 - N(X),39 AT 3 * X
120 NEXT X

Draw a Proportional Chart
You're all set to create a program that will draw a proportional bar
chart. To �ake it more interesting, it will toggle between showing
the graphic and the raw numeric data, as well as automatically cal
culate the maximum value.

The program needs a variable to represent the maximum value
entered. It uses the variable K, which is placed in the data entry
lo�p to determin� the maximum value. Each time through the loop,
K is compared with the last data entered. If the new data is larger
than K, then K is changed to the larger number. In that way, no
matter when the maximum value is entered, it's always stored in
the variable. To establish a ratio, using R, 39.9 is divided by K. (See
lines 100-200.)

To toggle between the raw data and the graphic requires that
the program have two arrays. The first array (D) stores the raw
data, �nd the second array (G0/o) stores the graphic data. An integer
array is used for the graphic data since fractions are ignored in
plotting graphics. Finally, the program limits the number of entries
to 15 so that it doesn't have to repeat the colors of the bars. If you
want, you can change the program to accept up to 40 entries.

Program 6-4.
10 TEXT : HOME
20 INVERSE
30 K = 0
40 VTAB 10
60 PRINT II HOW MANY ENTRIES:<16=MAX> «.

' 60 NORMAL
70 INPUT MAX
76 IF MAX> 16 THEN PRINT CHR$ (7): GOTO 10
80 HOME

114

Making Graphs and Circles

90 DIM D(MAX): DIM G%(MAX)
100 REM **********
110 REM DATA ENTRY
120 REM **********
130 FOR X = 1 TO MAX
140 INVERSE
160 PRINT " ENTER VALUE=> 11;

160 NORMAL
1 70 INPUT 11 ";D(X)
180 IF D(X) > K THEN K = D(X)
190 NEXT X
200 R = 39.9 I K
300 REM ••••••••••••••••
310 REM CONVERT TO SCALE
320 REM••••••••••••••••
330 FOR X = 1 TO MAX
340 G%(X) = INT (D(X) * R)
360 NEXT
400 REM••••••••••
410 REM MAKE GRAPH
420 REM••••••••••
430 GR
440 FOR X = 1 TO MAX
460 COLOR= X
460 P% = 40 - G%(X)
470 VLIN P%,39 AT X * 2
480 NEXT
490 INVERSE
600 PRINT" PRESS ANY KEY FOR NUMERIC DATA";
610 NORMAL
620 WAIT - 16384, 128: POKE - 16368,0
600 REM *****************
610 REM VIEW NUMERIC DATA
620 REM *****************
630 TEXT : HOME
640 VTAB 4
660 FOR X = 1 TO MAX
660 X$ = STR$ (X)
670 PRINT X$ + 11• = > ";D(X)

115

CHAPTER 6

680 NEXT
690 PRINT
700 INVERSE
710 PRINT II PRESS ANY KEY FOR CHART DATA II

720 PRINT II PRESS 'Q' TO QUIT II

730 WAIT - 16384,128
740 IF PEEK (49168) = 209 OR PEEK (49168) = 241 THEN

NORMAL:END
750 POKE 49168,0
760 GOTO 400

You could have simply toggled the graphics on and off with a
POKE instead of redrawing each time. That creates the graphic
representation of the text from the numeric data. To see this at
work, change line 760 as shown below and add four new lines.
760 POKE 49232,0
770 POKE 49235,0
780 POKE 49236,0
790 POKE 49238,0
800 NORMAL

In the next section you'll see how to toggle between high
resolution and low-resolution graphics.

Labeling Charts
The difficulty level in labeling a chart depends on whether you're
using 40 or 80 columns. In 40-column mode, numbers will line up
directly under the vertical bars. In 80-column mode, though, you'll
have to adjust text position a good deal; the advantage to 80 col
umns, of course, is that you can get more information under the
chart.

VTAB position 21 places the text directly under the chart in
either 40 or 80 columns. Starting with a simple 40-column text ex
ample, you can see that the horizontal alignment of text is the
HTAB position, plus one, of the horizontal position of the low
resolution plot.

116

Making Graphs and Circles

Program 6-5.
10 TEXT: HOME
20 A= 30
40 B = 20
50 GR
60 COLOR= 4
70 VLIN 39 - A,39 AT 10
75 COLOR= 5
80 VLIN 39 - B,39 AT 20
90 VTAB 21

100 HTAB 10 + 1
110 PRINT 11A11;

120 PRINT SPC(9);11B11

With only two plots, labeling the bars is simple. With a gr.eater
number of plots, though, it's easier to set up a loop that reset� .
VTAB 21 and uses a variable for HTAB. For example, by modifying
one of the above programs, you can change it from a general plot
and graph program to a monthly one with both data entry and
graph labels. By using READ and DATA, you can -�ut all of the
data entry and chart labels together. In tha� way, it s easy to
change the nature of the chart just by altering the data entry and
graph labels.

Program 6-6.
10 TEXT : HOME
20 INVERSE
30 K = 0
40 MAX= 12
50 DIM D(MAX): DIM G%(MAX)

100 REM **********
110 REM DATA ENTRY
120 REM **********
130 FOR X = 1 TO MAX
140 READ D$
150 INVERSE
160 PRINT II ENTER VALUE FOR ";D$
170 NORMAL

117

\

CHAPTER 6

180 INPUT " ";D(X)
190 IF D(X) > K THEN K = D(X)
200 NEXT X
210 R = 39.9 I K
220 HOME
300 REM ****************
310 REM CONVERT TO SCALE
320 REM ****************
330 FOR X = 1 TO MAX
340 G%(X) = INT (D(X) * R)
350 NEXT
400 REM **********
410 REM M.AKE GRAPH
420 REM **********
430 GR
440 FOR X = 1 TO MAX
450 COLOR= X
460 P% = 40 - G%(X)
470 VLIN P%,39 AT X * 2
480 NEXT
500 REM ***********
510 REM MONTH LABEL
520 REM ***********
530 FOR X = 1 TO 12
540 READ M$
550 VTAB 21
560 HTAB 2 * X + 1
570 PRINT M$
580 NEXT
600 REM *************
610 REM CALENDER DATA
620 REM *************
630 DATA JANUARY,FEBRUARY,MARCH,APRIL
640 DATA MAY,JUNE,JULY,AUGUST,SEPTEMBER
650 DATA OCTOBER,NOVEMBER,DECEMBER
660 DATA J,F,M,A,M,J,J,A,S,O,N,D

In 80-column mode, you can place two digits directly under a
horizontal .bar. However, since an 80-column text character takes up
half the_ width of a low-res�lution plot, it's possible to get two char
acters directly under a vertical line. Program 6-7 shows how.

118

Making Graphs and Circles

Program 6- 7.
10 TEXT : HOME
20 GR
30 FOR G = 1 TO 15
40 COLOR= G
50 VLIN 39 - G ,39 AT G * 2
60 VTAB 21
70 REM *********************************
80 REM CALCULATE FOR 80-COLUMN CHARACTER
90 REM *********************************

100 HTAB (G * 4) + (G < 10) + 1
110 PRINT G
120 NEXT

Notice line 100-an additional space was added by summing
the truth value of G < 10. As long as G is less than ten, the truth
value is one, which is added to the HTAB value until two digits are
present. The first digit of the two-digit number replaces the space
which preceded numbers less than ten. (Remember, if the truth
value is false, the value is zero.)

High-Resolution Graphic Charts
Although high-resolution graphics provide greater resolution, you
still need to respect proportions. The work area is roughly 279 X
159 on the combined high-resolution graphic/four-line text page.
This gives you a finer (higher resolution) plotting map than the
low-resolution 40 X 40 screen.

Horizontal Spacing
With low-resolution graphs, bars are relatively fat. In high-resolution
graphics, however, there are 280 horizontal plots on the screen. If
you're not careful, you'll find yourself using only a small portion of
the screen, crowding the plots. For instance, this next program
plots ten different pieces of random data.

119

CHAPTER 6

Program 6-8.
10 TEXT : HOME
20 HGR
30 HCOLOR= 3
40 FOR X = 1 TO 10
50 REM•••••••••••••••••••••
60 REM Y POSITION FROM 1-158
70 REM •••••••••••••••••••••
80 Y% = INT (RND (1) • (159))
90 REM••••••••••••••••••••

100 REM X POSITION FROM 1-10
110 REM ••••••••••••••••••••
120 HPLOT X,Y%
130 NEXT

In this program, the y-axis was randomly generated to be be
tween 1 and 158, but the x-axis was set between 1 and 10. Even if
every other horizontal position were used, it would take up less
than ten percent of the horizontal screen. As with determining the
ratio with a maximum value, you need to find the ideal spacing be
tween plots on the horizontal screen.

Divide 279 by the number of plots to find this ideal spacing. It
can be rep resented as
SO/o = INT(279 /NP)

where S 0/o is the spacing variable and NP is the number of plots.
To see how this works, let's make a scatter graph. Each plot in

the scatter graph is a relative plot point on the high-resolution
screen. As with low-resolution graphic charts, you need to come to
a ratio based on the maximum value entered and multiply each
vertical point by that ratio. The formula
Ratio=158.9/Max Value

is used to establish the ratio (see line 130 below).

Program 6-9.
10 TEXT
20 HOME
30K = 0
40 INVERSE

120

Making Graphs and Circles

50 PRINT " HOW MANY PLOTS? ";
60 NORMAL
70 INPUT " ";Po/o
80 DIM P(P%),G%(P%)
90 FOR X = 1 TO P%

100 INPUT "PLOT VALUE" ;P(X)
110 IF P(X) > K THEN K = P(X)
120 NEXT X
130 R = 158.9 / K
140 FOR X = 1 TO Po/o
150 G%(X) = INT (159 - (P(X) • R))
160 NEXT
170 8% = INT (279 IP%)
200 R.EM •••••••••••••
210 REM SCATTER GRAPH
220 REM •••••••••••••
230 HGR
240 HCOLOR = 3
250 HPLOT 8% - (8% - l),G%(1)
260 FOR X = 2 TO P%
270 Y% = G%(X)
280 HPLOT ((X * 8%) - (8% - l)),Y%
290 NEXT X

Line Graphs
Depending on what values you entered, the scatter graph either
looked like a random set of dots scattered across the screen or
something more meaningful. By drawing lines bet�een the plot
points, you can more readily see a trend or something that looks
more sensible. To do that, use the HPLOT TO statement.

After plotting the initial point, all the other points a:e plotted
with HPLOT TO so that a line is drawn from the last point to the
next point. For example, the following program generates a random
line graph.

Program 6-10.
10 TEXT : HOME
20 HGR
30 HCOLOR= 3

121

CHAPTER 6

·40 8% = 279 ; 1 o
50 HPLOT 8%, INT (RND (l) * (l59))
60 FOR X = 2 TO 10
70 REM *********************
80 REMY POSITION FROM 1-158
90 REM *********************

lOO Y% = INT (RND (1) * (159))
110 REM **********************
120 REM DRAW LINE TO NEXT PLOT
130 REM **********************
140 HPLOT TO X * S%,Y%
150 NEXT

Keep typing RUN to watch it generate all kinds of plots.

Vertical Grid
Look at the following two line graphs.

Figure 6-1. Jagged Plot Line

122

Making Graphs and Circles

Figure 6-2. Smooth Plot Line

In Figure 6-1, it's clear where the plot points are since they go
up and down from plot to plot. However, in Figure 6-2, you can't
tell where the break points are, since there's a steady increase in
the plot values. To make it easier to see the plot points, it would be
useful to superimpose a vertical grid on the chart so that it looks
like Figure 6-3.

Now it's clear where the plot points are located.
You can use the same spacing variable to place the vertical

lines as you used to space the horizontal screen. At each horizontal

plot point, a vertical line is drawn from the top of the screen to the
bottom. Also notice that the HCOLOR for the vertical lines is a dif
ferent white than the HCOLOR for the graph lines. The vertical
lines will either be all orange or orange and blue, depending on the
number of plots. (They're not actually white since two horizontally
adjacent pixels must be lit to generate white, and only single hori
zontal pixels are used in the lines. To make white, use two adjacent
vertical lines to make the grid lines.)

123

CHAPTER 6

Figure 6-3. Plot with Vertical Grid

Program 6-11.
10 TEXT
20 HOME
30 K = 0
40 INVERSE
50 PRINT " HOW MANY PLOTS? ";
60 NORMAL
70 INPUT " "· P% ' 80 DIM P(P%),G%(P%)
90 FOR X = 1 TO P%

100 INPUT "PLOT VALUE";P(X)
110 IF P(X) > K THEN K = PCX)
120 NEXT X
130 R = 158.9 I K
140 FOR X = 1 TO P%
150 Go/o(X) = INT (169 - (P(X) * R))
160 NEXT
170 8% = INT (279 / P%)
200 REM **********

124

Making Graphs and Circles

210 REM LINE GRAPH
220 REM **********
230 HGR
240 HCOLOR = 7
250 FOR X = 1 TO P%
260 HPLOT ((X * 8%) - (8% - 1)),0 TO CCX * 8%) - (8% - 1)),159
270 NEXT
280 HCOLOR= 3
290 HPLOT 8% - (8% - l),G%(1)
300 FOR X = 2 TO P%
310 Y% = G%(X)
320 HPLOT TO ((X * So/o) - (8% - l)),Y%
330 NEXT X

Horizontal Grid Lines
Now that the graph has vertical grid lines, you can insert horizon
tal ones as well. Since the horizontal values are relative to the max
imum plot value, just use a standard measure between the horizontal
lines. If you put 16 spaces between each line, that would roughly
divide the vertical axis into ten groups. The following program gen
erates ten random plots and places the horizontal bars across the
screen in the same loop which generates the vertical grid bars.

Program 6-12.
10 TEXT : HOME
20K = 0
30 FOR X = 1 TO 10
40 P(X) = INT (RND (1) * (159))
50 IF P(X) > K THEN K = P(X)
60 NEXT X
70 R = 158.9 I K
80 FOR X = 1 TO 10
90 G%(X) = INT (159 - (PCX) * R))

100 NEXT
110 8% = INT C279 I 10)
200 REM ************
210 REM X ANDY GRID
220 REM ************

125

CHAPTER 6

230 HGR ·
240 HCOLOR = 7
250 FOR X = 1 TO 10
260 HPLOT ((X * 8%) - (8% - 1)),0 TO ((X * 8%) - (8% - 1)),159
270 HPLOT l,X * 16 TO 279,X * 16: REM HORIZONTAL LINES
280 NEXT X
290 HCOLOR = 3
300 HPLOT 8% - (8% - l),G%(1)
310 FOR X = 2 TO 10
320 Y% = G%(X)
330 HPLOT TO ((X * 8%) - (8% - l)),Y%
340 NEXT

Multiple Charts
There may be instances where you'll want to create several charts
using the same set of data. For example, you may need a low
resolution bar chart with a high-resolution line chart. The next pro
gram shows how to use two types of charts and how to mix low
resolution and high-resolution graphics in the same program with
the same set of data. Once all of the data are entered, and the
charts are drawn, all you have to do is switch viewing screens to
toggle the charts.

Program 6-13.
10 TEXT
20 HOME
30 K = 0
40 INVERSE
50 PRINT " HOW MANY PLOTS? <MAX= 15> ";
60 NORMAL
70 INPUT " ";Po/o
80 DIM P(P%),G%(P%)
90 FOR X = 1 TO P%

100 INPUT "PLOT VALUE ";P(X)
110 IF P(X) > K THEN K = P(X)
120 NEXT X
130 R = 158.9 I K
140 FOR X = 1 TOP%
150 G%(X) = INT (P(X) * R)

126

Making Graphs and Circles

160 NEXT
170 8% = INT (279 IP%)
200 REM ••••••••••••••
210 REM HI-RES GRAPHICS
220 REM **************
230 HGR
240 HCOLOR = 3
250 FOR X = 1 TO P%
260 HPLOT ((X • 8%) - (8% - 1)),0 TO ((X "' 8%) - (8% - 1)),169
270 NEXT
280 HCOLOR = 3
290 HPLOT 8% - (8% - 1),159 - G%(1)
300 FOR X = 2 TO P%
310 Y% = 169 - G%(X)
320 HPLOT TO ((X * 8%) - (8% - l)),Y%
330 NEXT
340 WAIT - 16384,128 : POKE 49168,0
400 REM ***************
410 REM LO-RES GRAPHICS
420 REM •••••••••••••••
430 R = 39.9 / K
440 FOR X = 1 TO P%
450 G%(X) = INT (P(X) * R)
460 GR
470 NEXT
480 FOR X = 1 TO P%
490 COLOR= X
500 P% = 40 - G%(X)
510 VLIN P%,39 AT X * 2
520 NEXT
530 WAIT - 16384,128
600 REM ***************
610 REM TOGGLE GRAPHICS
620 REM ***************
630 INVERSE
640 PRINT II PRESS ANY KEY TO TOGGLE SCREEN II

650 PRINT" PRESS 'Q' TO QUIT";
660 NORMAL
670 WAIT - 16384,128: IF PEEK (- 16368) = 209 OR PEEK (·

16368) = 241 THEN END

127

• CHAPTER 6

680 POKE 49239,0 : REM HI-RES
690 WAIT - 16384, 128: POKE - 16368,0
700 POKE 49238,0 : REM LO-RES
710 GOTO 670

Circles
Drawing circles involves using an algorithm, or specified set of
commands and techniques. Once you know the algorithm, it's a
simple matter to place the circle anywhere you want on your high
resolution screen.

Let's get started-this following program draws a circle near
the middle of your screen.

Program 6-14.
10 TEXT : HOME
20HGR
30 HCOLOR= 3

100 REM *****************
110 REM DEFINE PARAMETERS
120 REM *****************
130 RADIUS = 40
140 XSPOT = 100
150 YSPOT = 75
200 REM ***********
210 REM DRAW CIRCLE
220 REM ***********
230 FOR CIRCLE = 0 TO 6.3 STEP .007
240 X = RA.DIUS * COS (CIRCLE) + XSPOT
250 Y = (RADIUS/ 4) * SIN (CIRCLE)/ .3 + YSPOT
260 HPLOT X, Y
270 HPLOT TO X, Y
280 NEXT CIRCLE
290 WAIT - 16384,128
300 TEXT

The core of the algorithm is in lines 230-250, where the x and
y values are calculated. To change the precision of the circle, and
the speed at which it's drawn, change the step value in line 230.

128

Making Graphs and Circles

Try changing it to .1 for a rapidly-drawn circle.
By making a few changes, you can control the size and place-

ment of your circle.

Program 6-15.
10 TEXT : HOME
20 REM **********
30 REM ENTER DATA
40 REM **********
50 INPUT "Radius ";RADIUS
60 INPUT "Horizontal position ";XSPOT
70 INPUT "Vertical position ";YSPOT

100 REM ***********
110 REM DRAW CIRCLE
120 REM ***********
130 HGR
140 HCOLOR = 3
150 FOR CIRCLE = 0 TO 6.3 STEP .007
160 X =RADIUS* COS (CIRCLE)+ XSPOT
1 70 y = (RADIUS / 4) * SIN (CIRCLE) / .3 + YSPOT
180 HPLOT X,Y
190 HPLOT TO X,Y
200 NEXT CIRCLE
210 WAIT - 16384,128
220 TEXT

To fill a circle with color, all that's required is a line from the
center of the circle (XSPOT,YSPOT) to the side of the circle. All
you need to change is the HPLOT TO after the HPLOT X,Y. In
stead of using HPLOT TO X,Y from the last plot, change it to plot
from the center of the circle to X,Y.

In addition let's do something with color. Change the step on
the loop to .0088 so that there will be about 720 elements in the
loop (2 * 360) and then after 120 times through the loop: cha�ge
the color. That will place all the colors, including black, in a circle
segment. In turn, that should give you a hint as.to how.to make a
pie chart. (Determine which pr.oporti�n of the pie. any single set of
data requires, then make the pie portion to that size.)

129

CHAPTER 6

Program 6-16.
10 K = 1
20 TEXT : HOME
30HGR
40 REM *****************
50 REM DEFINE PARAMETERS
60 REM *****************
70 RADIUS = 40
80 XSPOT = 100
90 YSPOT = 75

100 REM *****************
110 REM DRAW COLORED ARC
120 REM ******************
130 FOR CIRCLE = 0 TO 6.3 STEP .0088
140 C = C + 1: IF C = 120 THEN C = O:K = K + 1
150 HCOLOR= K
160 X = RADIUS • COS (CIRCLE) + XSPOT
1 70 Y = (RADIUS / 4) * SIN (CIRCLE) / .3 + YSPOT
180 HPLOT X, Y
190 HPLOT XSPOT, YSPOT TO X, Y
200 NEXT CIRCLE
210 WAIT - 16384,128
220 TEXT

Line 190 draws from the center of the circle to the edge. Line
140 calculates when it's time to change colors.

Summary
One of the best possible programming exercises is one which in
cludes both data and graphic representations of that data. Such
exercies do two things.

First, they provide experience in working with graphics. Sec
ond, and more important, graphs and charts teach about translating
data into new formats.

130

\

uper high-resolution graphics on your Apple IIGS is much like
a good news/bad news joke.

The good news is that super high-resolution graphics are con
trolled by a set of routines built into your computer. Once you un
derstand how to use these routines, collectively called the Apple
Iles Toolbox, it's relatively easy to do all sorts of things.

The bad news is that machine language-or a language such
as C that gives more direct access to the system routines-is re
quired to really work with the Toolbox. Quite simply, there is no
easy way to use super high-resolution graphics from BASIC.

Let's Look
However, to get started and to give you something to look at in su
per high-resolution graphics, you'll see a BASIC program which
cr�ates a machine language program that uses the Apple IIGS's
QuickDraw routines. What's more, you'll examine programs written
in assembly language to see how to do it yourself.

You'll look at two programs. The first will be as simple as pos
sible and will use the super high-resolution tools. The second will
be a drawing program which uses the mouse. The first program
shows you the fundamentals of programming at this level; the sec
ond shows you what's possible.

Simple Super High-Resolution
This first program draws two lines of different brush widths using
separate colors for the lines and background color.

Type in the following BASIC program to see what super high
resolution graphics look like on your screen.

133

CHAPTER 7

Program 7-1.
10 TEXT : HOME
20 FOR X = 0 TO 277
30 READ D
40 POKE X + 32768,D
60 NEXT
60 CALL 32768

100 DATA 32,88,262,24,261, 194,48,244,0,0,244,0,0,244,226,0,244
110 DATA 0,32, 162,2,26,34,0,0,226,104, 133,6, 133, 167,104,133,8
120 DATA 133, 169,160,0,0, 169,0,0,161,167,200,200, 161, 167, 162,1,2
130 DATA 34,0,0,226,162,3,2,34,0,0,226,244,0,0,244,0, 16
140 DATA 162,3,32,34,0,0,226, 104,141, 128,2,244,0,0, 162,2,2
160 DATA 34,0,0,226,104,244,0,134,244,0,0,244,0,0,244,64,l
160 DATA 244,0,0,244,200,0,173,128,2,72,162,6,2,34,0,0,226
170 DATA 244,0,136,244,0,0,244,0,0,173,128,2,72,162,4,2,34
180 DATA 0,0,226,244,6,0, 162,4,66,34,0,0,226,244,6,0,244
190 DATA 6,0,162,4,44,34,0,0,226,244,119,119,162,4,21,34,0
200 DATA O ,226,244, 100, 0 ,244, 0, 0, 162, 4, 60,34, O, 0 ,226,244, 11
210 DATA 0, 162,4, 66,34, 0, 0,226,244, 10, 0 ,244, 10, 0, 162, 4, 44
220 DATA 34, 0, 0,226,244, 100, 0,244, 128, 0, 162, 4 ,60 ,34, O, O ,226
230 DATA 66,261,32,12,263,24,261,194,48,162,4,3,34,0,0,226,244
240 DATA 0,0,162,3,33,34,0,0,226,162,6,3,34,0,0,226,162
260 DATA 3,3,34,0,0,226,162,2,3,34,0,0,226,162, 1,3,34
260 DATA 0,0,226,66,261,96

Unless you know machine language programming using deci
mal values (instead of the more normal hexadecimal numbers t this
program probably didn't make much sense. All it did was to POKE
in a series of values and execute the program with CALL 32768,
the beginning address of the values stored in memory.

You should see a horizontal green line across the top of the
screen, a light blue vertical line, and an orange background.

To better see how this program works, here's a simple ex
planation of how to use the tools on your Apple IIGS, as well as a
commented listing of the machine language source code for this
simple graphics routine.

Use an Assembler
First, get a good assembler for the Apple IIGS. Merlin/816 (Roger
Wagner Publishing, Inc.) was used for this example. Many Apple

134

Super High-Resolution Graphics

programmers are familiar with Merlin or the Big Mac assembler
family, and the listing should look familiar. The program is orga
nized in blocks to make it easier to read.

The first step is to trick your Apple JIGS into giving up the
handle that "owns" the super high-resolution screen. This lets you
get an ID which can be used for your own programs. Once that's
completed, you can begin your path to the QuickDraw II Toolbox.
The path requires you to:

1. Start the Tool Locator.
2. Start miscellaneous Tools.
3. Get your ID and store it somewhere.
4. Start the Memory Manager.
5. Start the Event Manager.

Normally, the Memory Manager would be used to determine
what area of memory to use. For this and the next example, $8600
was used, since it was simpler and more illustrative than a Memory
Manager call for the same thing. In larger programs, use the Mem
ory Manager-it takes care of it automatically.

In QuickDraw II
Once the path to QuickDraw II has been laid down, you're ready
to start up QuickDraw. The following sequence does that.

1. Establish the beginning of direct page memory.
2. Set screen size (0 = visible screen).
3. Push your ID onto the stack and start QuickDraw.

Most of the work using the Toolbox requires that you push
values onto the stack, then jump to the Toolbox ($E10000) with a
long jump, JSL. The PEA is used to push parameters for various
tools onto the stack.

The value of the specific tool is loaded into the X register; then
you JSL to $E10000. If there's to be information returned on the
stack with the particular tool being used, you have to push space
onto the stack. This is done with PEA $0000.

Overall, the sequence is quite simple.

1. Push space onto the stack (if required).
2. Push parameters onto the stack (if required).
3. Load the X register in the immediate mode with the tool

value.
135

1 **

137

1 7 **

*
*

;Reset handle

;Fix ID

·;Set pointers

$08
$9F

$280
$El0000

LDY #$00
LDA #$00
STA [$9D],Y

STA
STA

FLA
STA $06
STA $9D

PEA $0000
PEA $0000
PEA $00El
PEA $2000
LDX #$1A02
JSL TOOLS

CLO
XCE
REP $30

JSR $FC58
XO
XO

6
7 ID EQU
8 TOOLS EQU
9

2 *
3 * Simple QuickDraw Lines

34
35

29 FLA
30

4 * *
5 **

36 INY
37 INY
38 STA [$9D],Y
39

26
27
28

Super High-Resolution Graphics

31
32 **
33

25 **

18
19
20
21
22
23
24

10
11
12
13
14
15
16

Program 7-2.

CHAPTER 7

136

4. Jump to $E10000 (sometimes using a tool requires only the
last two steps).

Let's take a look at using the QuickDraw Toolbox by closely
examining how the first line was drawn.

Draw a line
1. Push the ending X (horizontal) position of the line onto the

stack.
2. Push the ending Y (vertical) position of the line onto the

stack.
3. Load the X register with the line-to tool number.
4. Jump to $E10000.

The same thing was done with the second line-by changing
the values, the line's color, width, and direction were changed. All
you have to do is insert some more drawing routines, and add
more lines.

Clear screen to background color
1. Push background color onto stack (all values must be the

same for a solid color background).
2. Load the X register with the background color tool number.
3. Jump to $E10000.

Set the pen color
1. Push the color value ($05) onto the stack.
2. Load the X register with pen color setting routine number.
3. Jump to $E10000.

Set the pen size
1. Push the pen width on the stack.
2. Push the pen height on the stack.
3. Load the X register with the pen size tool number.
4. Jump to $E10000.

CHAPTER 7

40 **
41 * *

44 **
45 LDX #$0201 ;Tool locator
46 JSL TOOLS
47 **
48 LDX #$0203 ;Start misc tools
49 JSL TOOLS
50 **
51 PEA $0000 ;Get ID from misc tools
52 PEA $1000
53 LDX #$2003
54 JSL TOOLS
55 PLA ;Pull ID off stack and put it
56 STA ID ;in ID
57 **
58 PEA $0000
59 LDX #$0202 ;Start memory manager
60 JSL TOOLS
61 PLA
62 **
63 PEA $8600 ;Start address for one page work area
64 PEA $0000 ;Number of event records (0=20)
66 PEA $0000 ;Minimum X clamp for mouse
66 PEA 320 ;Max X clamp for mouse
67 PEA $00 ;Minimum Y clamp for mouse
68 PEA 200 ;Max Y clamp for mouse
69 LDA ID ;Get ID
70 PHA ;Push it to the stack
71 LDX #$0206 ;Event manager start up
72 JSL TOOLS
73 **

*
•
*

*

*
*

Super High-Resolution Graphics

;SetSolidPen Color

;Clear to scrn color
;Solid bkgnd requires
.all 4 values to be same

;SetPen Width
;SetPenHeight
;SetPenSize

;SetSolidPen Color

;SetPen Width
;SetPenHeight
;SetPenSize

;X pos of line end
; Y pos of line end
;Line To

$06
#$3704
TOOLS

$0064
$0000

139

$OB
#$3704
TOOLS

$000A
$000A
#$2004

First Line

Second Line

PEA
LDX
JSL

PEA
PEA

PEA $7777
LDX #$1604
JSL TOOLS

PEA $0005
PEA $0005
LDX #$2004
JSL TOOLS

PEA
PEA
LDX

LDX #$3004
JSL TOOLS

PEA
LDX
JSL

**

**

**

**

80 PEA $0000
81 PEA $0000 ;Screen size
82 LDA ID ;Give ID
83 PHA
84 LDX #$0204 ;QDStartup
86 JSL TOOLS
86 **

91
92
93

87 *
88 *
89 *
90 **

94 **

103 **

96
96
97
98
99

100
101
102

109 *
110 *
111 *

104
106
106
107
108

112
113
114
116
116
117
118
119

*
*
*

*
*

.Begiri direct page

138

Tools for Drawing

PEA $8700

QuickDraw II Path

**

74 *
76 *
76 *
77
78
79

42 *
43 *

CHAPTER 7 Super High-Resolution Graphics

130 ••

126 ••

141 ••

137 ••

SEC
XCE
RTS

161
162
163

160 ••

After the first line, you don't have to keep entering the ad
dress; but be sure to put a space between the exclamation point
prompt and the opcode (the three-letter combination). No space
goes between the beginning address (8000) and the prompt.

It doesn't matter which process you use-monitor or mini
assembler. Once the program is typed in, save it with the following
command.
BSAVE QD1,A$8000,L$116 (press Return)

When you want to run the program, just type BRUN QDl.

. . . .

If you don't have an assembler, you can enter the program
with your monitor or mini-assembler. If you're using the monitor,
just type in the address, a colon, and the machine language values
following each address. For example, to type in the first three lines
of the program below from the monitor, you'd enter:
"'8000: 20 58 FC (press Return)
"'8003: 18 (press Return)
"'8004: FB (press Return)
. . . .

From the mini-assembler, there are two steps. First, it's neces
sary to set your processor, along with your registers and accumu
lator, to the 16-bit mode. Do the following, using lowercase
characters only.
*O=e O=x O=m (press Return)

Next, enter the mini-assembler and type in the program:
*I (press Return)
!8000: jsr fc58 (press Return)
! clc (press Return)
I xce (press Return)

*
*

•

•

;Quit memory manager

;Quit misc tools

;Quit event manager

;Drop ID

;QUIT QD

;X pos of line end
;Y pos of line end
;Line To #$3C04

TOOLS

LDX #$0302
JSL TOOLS

LDX #$0303
JSL TOOLS

LDX #$0306
JSL TOOLS

PEA $0000
LDX #$2103
JSL TOOLS

LDX #$0304
JSL TOOLS

PEA $0064
PEA $0080
LDX
JSL

JSL TOOLS

Back out of QuicKDraw

••

••

••

••

••

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

138 *
139 *
140 *

131 SEC
132 XCE
133 JSR
134 CLC
135 XCE
136 REP $30

127 *

120
121
122
123
124
126

.128 * Hold Screen Until Keypress *
129 * *

157 ••

158
159

LDX
JSL

#$0301
TOOLS

;Quit tool locator

140 141

Super High-Resolution Graphics

143 142

Program 7-3. 00/8060: F4 00 00 PEA 0000

00/8000: 20 58 FC JSR FC58 00/8063: F4 40 01 PEA 0140

00/8003: 18 CLC
00/8066: F4 00 00 PEA 0000

00/8004: FB XCE 00/8069: F4 C8 00 PEA OOC8

00/8005: C2 30 REP #30 00/806C: AD 80 02 LDA 0280

00/8007: F4 00 00 PEA 0000 00/806F: 48 PHA

00/800A: F4 00 00 PEA 0000 00/8070: A2 06 02 LDX #0206

00/800D: F4 El 00 PEA OOEl 00/8073: 22 00 00 El JSL ElOOOO

00/8010: F4 00 20 PEA 2000 00/8077: F4 00 87 PEA 8700

00/8013: A2 02 lA LDX #lA02 00/807A: F4 00 00 PEA 0000

00/8016: 22 00 00 El JSL ElOOOO
00/807D: F4 00 00 PEA 0000

00/801A: 68 PLA
00/8080: AD 80 02 LDA 0280

00/801B: 85 06 STA 06 00/8083: 48 PHA

00/801D: 85 9D STA 9D 00/8084: A2 04 02 LDX #0204

00/801F: 68 PLA 00/8087: 22 00 00 El JSL ElOOOO

00/8020: 85 08 STA 08 00/808B: F4 05 00 PEA 0005

00/8022: 85 9F STA 9F 00/808E: A2 04 37 LDX #3704

00/8024: AO 00 00 LDY #0000 00/8091: 22 00 00 El JSL ElOOOO

00/8027: A9 00 00 LDA #0000 00/8095: F4 05 00 PEA 0005

00/802A: 97 9D STA [9DJ,Y 00/8098: F4 05 00 PEA 0005

00/802C: C8 INY 00/809B: A2 04 2C LDX #2C04

00/802D: C8 INY 00/809E: 22 00 00 El JSL ElOOOO

00/802E: 97 9D STA [9DJ,Y 00/80A2: F4 77 77 PEA 7777

00/8030: A2 01 02 LDX #0201 00/80A5: A2 04 15 LDX #1504

00/8033: 22 00 00 El JSL ElOOOO 00/80A8: 22 00 00 El JSL ElOOOO

00/8037: A2 03 02 LDX #0203 00/80AC: F4 64 00 PEA 0064

00/803A: 22 00 00 El JSL ElOOOO 00/80AF: F4 00 00 PEA 0000

00/803E: F4 00 00 PEA 0000 00/80B2: A2 04 3C LDX #3C04

00/8041: F4 00 10 PEA 1000 00/80B5: 22 00 00 El JSL ElOOOO

00/8044: A2 03 20 LDX #2003 00/80B9: F4 OB 00 PEA OOOB

00/8047: 22 00 00 El JSL ElOOOO 00/80BC: A2 04 37 LDX #3704

00/804B: 68 PLA 00/80BF: 22 00 00 El JSL ElOOOO

00/804C: 8D 80 02 STA 0280 00/80C3: F4 OA 00 PEA OOOA

00/804F: F4 00 00 PEA 0000 00/80C6: F4 OA 00 PEA OOOA

00/8052: A2 02 02 LDX #0202 00/80C9: A2 04 2C LDX #2C04

00/8055: 22 00 00 El JSL ElOOOO 00/80CC: 22 00 00 El JSL ElOOOO

00/8059: 68 PLA 00/80DO: F4 64 00 PEA 0064

00/805A: F4 00 86 PEA 8600 00/80D3: F4 80 00 PEA 0080

00/805D: F4 00 00 PEA 0000 00/80D6: A2 04 3C LDX #3C04

CHAPTER 7

•
•
•

145

$280
$El0000
$200

EQU
EQU
EQU

QUICKDRA W MOUSE 3 •

6
7 ID
8 TOOLS
9 XPOS

1 ••

2 •

4 •
6 ••

Super High-Resolution Graphics

40 POKE 32768 + X,QD
60 NEXT
60 CALL 32768

100 DATA 32,88,252,24,251,194,48,244,0,0,244,0,0,244,225,0
110 DATA 244,0,32,162,2,26,34,0,0,225, 104, 133,6, 133, 157, 104
120 DATA 133,8, 133, 159, 160,0,0,169,0,0,161,157,200,200, 161,157
130 DATA 162,1,2,34,0,0,226, 162,3,2,34,0,0,225,244,0
140 DATA 0,244,0,16,162,3,32,34,0,0,225,104,141,128,2,244
150 DATA 0,0,162,2,2,34,0,0,226,104,244,0,133,244,0,0
160 DATA 244,0,0,244,64, 1,244,0,0,244,200,0, 1 73, 128,2, 72
170 DATA 162,6,2,34,0,0,226,244,0, 134,244,0,0,244,0,0
180 DATA 173,128,2,72,162,4,2,34,0,0,225,244
185 DATA 9: REM PEN COLOR
190 DATA 0,162,4,56,34,0,0,225,244
192 DATA 9,0,244,9: REM FIRST AND LAST VALUES = PEN X

ANDY
194 DATA 0,162,4,44,34,0,0,226,244
200 DATA 119,119: REM BACKGROUND COLOR
206 DATA 162,4,21,34,0,0,226,162,4,146,34
210 DATA 0,0,225,244,0,0,162,3,24,34,0,0,225,244,l,O
220 DATA 162,3,25,34,0,0,225,244,0,0,244,0,0,244,0,0
230 DATA 162,3,23,34,0,0,225, 104,104, 141,2,2,104, 141,0,2
240 DATA 173,0,2,72,173,2,2,72,162,4,60,34,0,0,226,l 73
260 DATA 0,2,201,255,0,208,208,56,251,32,12,253,24,261, 194,48
260 DATA 162,4,3,34,0,0,225,244,0,0, 162,3,33,34,0,0
270 DATA 225,162,6,3,34,0,0,225,162,3,3,34,0,0,225,162
280 DATA 2,3,34,0,0,225,162,1,3,34,0,0,225,56,251,96

Here's the commented source code.

Program 7-5.

00/80D9: 22 00 00 El JSL ElOOOO
00/80DD: 38 SEC
00/80DE: FB XCE
00/80DF: 20 OC FD JSR FDOC
00/80E2: 18 CLO
00/80E3: FB XCE
00/80E4: 02 30 REP #30
00/80E6: A2 04 03 LDX #0304
00/80E9: 22 00 00 El JSL ElOOOO
00/80ED: F4 00 00 PEA 0000
00/80FO: A2 03 21 LDX #2103
00/80F3: 22 00 00 El JSL ElOOOO
00/80F7: A2 06 03 LDX #0306
00/80F A: 22 00 00 El JSL ElOOOO
00/80FE: A2 03 03 LDX #0303
00/8101: 22 00 00 El JSL ElOOOO
00/8105: A2 02 03 LDX #0302
00/8108: 22 00 00 El JSL ElOOOO
00/8100: A2 01 03 LDX #0301
00/810F: 22 00 00 El JSL ElOOOO
00/8113: 38 SEC
00/8114: FB XCE
00/8115: 60 RTS

Program 7-4.
10 TEXT : HOME
20 FOR X = 0 TO 303
30 READ QD
36 K = K + 1

144

CHAPTER 7

Mouse QuickDraw
This next program is a simple super high-resolution drawing rou
tine using the mouse. Certain key parameters have been isolated in
the BASIC program so that you can easily change the background
color, pen colors, and pen size.

Change only the first and last DATA values of line 192 to alter
the height and width of your pen. (If you change any other values,
the program will crash.) See how fine or how fat you can make
the pen.

*
*
*

Super High-Resolution Graphics

;Direct pagespace

;address for one page work area
;Number of event records (0=20)
;Minimum X clamp for mouse
;Max X clamp for mouse
;Minimum Y clamp for mouse
;Max Y clamp for mouse
;Get ID
;Push it to the stack
;Event manager start up

;Start memory manager

;Pull ID off stack and put it
.tn ID

;Get ID from misc tools

;Start misc tools

;Tool locator

147

$8600

#$0206
TOOLS

$8500
$0000
$0000
320
$00
200
ID

TOOLS

PEA

PEA
PEA
PEA
PEA
PEA
PEA
LDA
PHA
LDX
JSL

PEA $0000
LDX #$0202
JSL
PLA

PEA $0000
PEA $1000
LDX #$2003
JSL TOOLS
PLA
STA ID

LDX #$0203
JSL TOOLS

QuickDra w II Tools

LDX #$0201
JSL TOOLS

• • I • • • • • • O • I I I O • 0 • • • • • O I • I f f , I O • I • o , • • , o 1 1 o o o O I I O O I I •
1

o I

**

**

**

**

87
88

86 .

83 *
84 *
85 *

54
55
56
57
58
59
60
61
62
63
64
65

, 66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

*
*
*
*
*

*

;Set pointers

;Reset handle

146

$30

$06
$9D

#$00
#$00
[$9DJ,Y

[$9DJ,Y

EQU $202 49 * Path to QuickDraw II *
JSR $FC58 50 * Notice that this is the *
XC 51 * same as the first prgrn *
xc 52 * *

53 **
CLC
XCE
REP

PEA $0000 ;Find Handle
PEA $0000
PEA $00El
PEA $2000
LDX #$1A02
JSL TOOLS

PLA
STA
STA
PLA
STA $08
STA $9F

LDY
LDA
STA
INY
INY
STA

Recover ID Ownership
So that program can run
from BASIC.SYSTEM

**

10 YPOS
11
12
13
14
15
16
17

19 *
20 *
21 *
22 *
23 *

18 **

33
34
35
36
37
38
39
40
41
42
43
44
45
46

24 **
25
26
27
28
29
30
31
32 **

48 *
47 *************"'**************************

CHAPTER 7

Super High-Resolution Graphics

149 148

89 PEA $0000 128 PLA
90 PEA $0000 ;screen size 129 STA XPOS
91 LDA ID ;Give ID 130 **
92 PHA 131 LDA XPOS
93 LDX #$0204 ;QDStartup 132 PHA ;X pas of line end
94 JSL TOOLS 133 LDA YPOS
95 ** 134 PHA ; Y pas of line end
96 PEA $OB 135 LDX #$3C04 ;LineTo
97 LDX #$3704 ;SetSolidPen Color 136 JSL TOOLS
98 JSL TOOLS 137 **
99 ** 138 LDA XPOS

100 PEA $0004 ;SetPen Width 139 CMP #$FF
101 PEA $0002 ;SetPenHeigh t 140 BNE MOUSE
102 LDX #$2C04 ;SetPenSize 141 **
103 JSL TOOLS 142 * *
104 ** 143 * It is important to *
105 PEA $4444 ;Clear to color 144 * remember to switch to *
106 LDX #$1504 145 * emulation mode when using *
107 JSL TOOLS 146 * non-toolbox routines *
108 ** 147 * *
109 LDX #$9104 ;Show cursor 148 **
110 JSL TOOLS 149 SEC
111 ** 150 XCE
112 PEA $0000 151 JSR $FDOC
113 LDX #$1803 152 CLC
114 JSL TOOLS ;InitMouse 153 XCE
115 ** 154 REP $30
116 PEA $0001 155 **
117 LDX #$1903 156 * *
118 JSL TOOLS ;SetMouse 167 * Exit QuicKDra w *
119 ** 158 * *
120 MOUSE PEA $0000 ;ReadMouse 159 **
121 PEA $0000 160 LDX #$0304 ;QUIT QD
122 PEA $0000 161 JSL TOOLS
123 LDX #$1703 162 **
124 JSL TOOLS 163 PEA $0000 ;Drop ID
125 PLA 164 LDX #$2103
126 PLA 165 JSL TOOLS
127 STA YPOS 166 **

CHAPTER 7

CHAPTER 7 Super High-Resolution Graphics

1 72 ••

169 ••

And here's the listing you'll use if you're entering the program
with the monitor or mini-assembler.

Program 7-6.
00/8000: 20 58 FC JSR FC58
00/8003: 18 CLC
00/8004: FB XCE
00/8005: 02 30 REP #30
00/8007: F4 00 00 PEA 0000
00/BOOA: F4 00 00 PEA 0000
00/BOOD: F4 El 00 PEA OOEl
00/8010: F4 00 20 PEA 2000
00/8013: A2 02 lA LDX #1A02
00/8016: 22 00 00 El JSL ElOOOO
00/801A: 68 PLA
00/801B: 85 06 STA 06
00/801D: 85 9D STA 9D
00/801F: 68 PLA
00/8020: 85 08 STA 08
00/8022: 85 9F STA 9F
00/8024: AO 00 00 LDY #0000
00/8027: A9 00 00 LDA #QQOO
00/802A: 97 9D STA [9DJ,Y
00/8020: CB INY

00/802D: CB INY
00/802E: 97 9D STA [9D],Y
00/8030: A2 01 02 LDX #0201
00/8033: 22 00 00 El JSL ElOOOO
00/8037: A2 03 02 LDX #0203
00/803A: 22 00 00 El JSL ElOOOO
00/803E: F4 00 00 PEA 0000
00/8041: F4 00 10 PEA 1000
00/8044: A2 03 20 LDX #2003
00/8047: 22 00 00 El JSL ElOOOO
00/804B: 68 PLA
00/8040: 8D 80 02 STA 0280
00/804F: F4 00 00 PEA 0000
00/8052: A2 02 02 LDX #0202
00/8055: 22 00 00 El JSL ElOOOO
00/8059: 68 PLA
00/805A: F4 00 85 PEA 8500
00/805D: F4 00 00 PEA 0000
00/8060: F4 00 00 PEA 0000
00/8063: F4 40 01 PEA 0140
00/8066: F4 00 00 PEA 0000
00/8069: F4 CB 00 PEA 0008
00/8060: AD 80 02 LDA 0280
00/806F: 48 PHA
00/8070: A2 06 02 LDX #0206
00/8073: 22 00 00 El JSL ElOOOO
00/8077: F4 00 86 PEA 8600
00/807 A: F4 00 00 PEA 0000
00/807D: F4 00 00 PEA 0000
00/8080: AD 80 02 LDA 0280
00/8083: 48 PHA
00/8084: A2 04 02 LDX #0204
00/8087: 22 00 00 El JSL ElOOOO
00/808B: F4 OB 00 PEA OOOB
00/808E: A2 04 37 LDX #3704
00/8091: 22 00 00 El JSL ElOOOO
00/8095: F4 04 00 PEA 0004
00/8098: F4 02 00 PEA 0002
00/809B: A2 04 20 LDX #2004
00/809E: 22 00 00 El JSL ElOOOO

;Quit event manager

;Quit misc tools

;Quit MM

;Quit TL

LDX #$0306

LDX #$0303

LDX #$0302
JSL TOOLS

LDX #$0301
JSL TOOLS

SEC
XCE
RTS

••

••

167

170

168 JSL TOOLS

171 JSL TOOLS

173
174
175
176
177
178
179
180
181

150 151

CHAPTER 7

00/80A2: F4 33 33 PEA 3333
00/80A6: A2 04 16 LDX #1604
00/80A8: 22 00 00 El JSL ElOOOO
00/80AC: A2 04 91 LDX #9104
00/80AF: 22 00 00 El JSL ElOOOO
00/80B3: F4 00 00 PEA 0000
00/80B6: A2 03 18 LDX #1803
00/80B9: 22 00 00 El JSL ElOOOO
00/80BD: F4 01 00 PEA 0001
00/80CO: A2 03 19 LDX #1903
00/80C3: 22 00 00 El JSL ElOOOO
00/80C7: F4 00 00 PEA 0000
00/80CA: F4 00 00 PEA 0000
00/80CD: F4 00 00 PEA 0000
00/80DO: A2 03 1 7 LDX #l 703
00/80D3: 22 00 00 El JSL ElOOOO
00/80D7: 68 PLA
00/80D8: 68 PLA
00/80D9: 8D 02 02 STA 0202
00/80DC: 68 PLA
00/80DD: 8D 00 02 STA 0200
00/80EO: AD 00 02 LDA 0200
00/80E3: 48 PHA
00/80E4: AD 02 02 LDA 0202
00/80E7: 48 PHA
00/80E8: A2 04 3C LDX #3C04
00/80EB: 22 00 00 El JSL ElOOOO
00/80EF: AD 00 02 LDA 0200
00/80F2: C9 FF 00 CMP #QOFF
00/80F6: DO DO ENE 80C7 {-30}
00/80F7: 38 SEC
00/80F8: FB XCE
00/80F9: 20 OC FD JSR FDOC
00/80FC: 18 CLC
OW80FD: FB XCE
00/80FE: C2 30 REP #30
00/8100: A2 04 03 LDX #0304
00/8103: 22 00 00 El JSL ElOOOO
00/8107: F4 00 00 PEA 0000

152

Super High-Resolution Graphics

00/810A: A2 03 21 LDX #2103
00/810D: 22 00 00 El JSL ElOOOO
00/8111: A2 06 03 LDX #0306
00/8114: 22 00 00 El JSL ElOOOO
00/8118: A2 03 03 LDX #0303
00/811B: 22 00 00 El JSL ElOOOO
00/811F: A2 02 03 LDX #0302
00/8122: 22 00 00 El JSL ElOOOO
00/8126: A2 01 03 LDX #0301
00/8129: 22 00 00 El JSL ElOOOO
00/812D: 38 SEC
00/812E: FB · XCE
00/812F: 60 RTS

Summary
This chapter just begins to touch on the power of the QuickDraw II
routines and super high-resolution graphics. An entire book could
easily be written on using just the QuickDraw routines; volumes
would be required to explain how to use all of the Apple llGS Tool
box routines. For the time being, though, this should be enough to
launch you on a discovery path of QuickDraw II and super high
resolution graphics.

To work most efficiently with these powerful new Apple Iles
tools, it's strongly recommended that you learn machine language
programming on the 65816 microprocessor. In the meantime,
though, you can enjoy seeing your own creations with the simple
programs provided.

153

.,.
. "'

ou can create two types of sound on your Apple IIGS. The
first kind of sound clicks the speaker more or less directly by
accessing a special address in your computer. A wide range of
tones, sounds, and music can be generated by timing the speaker
clicks.

The second kind of sound is produced the Apple IIGS Toolbox
and the Ensoniq sound chip. This type of sound is extremely power
ful when accessed through assembly language programs in ProDOS
16. Unfortunately, it's difficult to access while the BASIC.SYSTEM
is in memory. What's more, it requires a development assembler
the current assembler requires a megabyte of memory and prefers
that a hard disk drive be connected. Because of the elaborate hard
ware and software needed to access the sound elements through
the Toolbox, let's concentrate on sound generation by tweaking the
speaker.

Speaker Tweaking
Imagine that the speaker inside your IIGS is a diaphram. It's either
out (full of air) or in (devoid of air.) Each time the diaphragm pulls
in or pushes out, it makes a sound, just as people do when they
exaggerate inhaling or exhaling. The speaker is just a paper cone
that pops in and out, making a click each time it pops.

To get the speaker to pop one way or the other (and thus
make a sound), all you need do is to access address $C030 (49200).
The easiest way to do that is to define a variable as the contents of
49200. For example, do the following:
P=PEEK(49200) (press Return)

157

CHAPTER 8

You should have heard a click when you pressed the Return
key. By controlling the timing of the clicks, you can make different
sounds.

For example, the following program clicks the speaker 30 times
for a buzzer sound.

Program 8-1.
10 TEXT : HOME
20 FOR X=l TO 30
30 P = PEEK(49200)
40 NEXT X

To change that sound to something a bit different, install a de
lay loop between the times the speaker is clicked.

Program 8-2.
10 TEXT : HOME
20 FOR X=l TO 30
30 P = PEEK(49200)
40 FOR PAUSE= 1 TO 40
50 NEXT PAUSE
60 NEXT X

That loop changed the sound to something akin to a deck of
cards being thumbed.

To find the range of clicks which can be generated by a pause
loop, generate a variable-length pause based on the number of
times the initial loop is run. Here's how.

Program 8-3.
10 TEXT : HOME
20 FOR X=l TO 100
30 P = PEEK(49200)
40 REM *************
50 REM VARIABLE LOOP
60 REM *************
70 FOR PAUSE = 1 TO X
80 NEXT PAUSE
90 NEXT X

158

Sound and Music on the Apple JIGS

As you can see, depending on how the speaker tweaking is
spaced, different sounds emerge.

Speed and Sound Control
Depending on whether you have your system speed set to Fast or
Normal on your Control Panel, different sounds will emerge.
Check your Control Panel to see what speed your IIGS is set at
now. In case you don't remember how to do that, press and hold
down the Open Apple and Control keys, then press the Esc key.
When the Desk Accessories window appears, move the cursor
using the arrow keys. Once in the Control Panel window, select
System Speed using the arrow keys again, and press Return. The de
fault condition is Fast speed, but whatever it is, press the right ar
row key to toggle it to the opposite. Press Return and then back
out of the Control Panel and Desk Accessories by choosing the
Quit option.

Once you're back to BASIC, run the last program once again.
If the computer was set on Fast, and now is on Slow, the sound
will be lower. If the computer is now on Fast, the sound will be
higher.

In addition to changing the system speed in the Control Panel,
you can also change the volume and pitch. Try different volume
levels and pitches.

Making a Racket
To really work with sound, it helps to use assembly language pro
grams. Machine language routines give you finer control since they
run a good deal faster than programs written in BASIC. The fol
lowing programs are simple and serve to illustrate different effects.
They're set to exit to BASIC as soon as you press any key.

Alarm or Alien?
The first two sets of programs illustrate how different system
speeds create different sound effects. The first program sounds like
a European police car if the system speed is set to Normal, but

159

CHAPTER 8 Sound and Music on the Apple JIGS

Program 8-6.
00/0300: AC FF 02 LDY 02FF
00/0303: AD 30 CO LDA C030
00/0306: 88 DEY

sounds like a space ship landing if the speed is set to Fast. (Since
these programs are so short, the monitor or mini-assembler can be
used to enter them. Of course, you may also use the accompaning
BASIC listing instead.)

Program 8-4.

Program 8-5.
10 TEXT : HOME
20 REM*****
30 REM ALARM
40 REM*****
50 FOR X = 0 TO 19
60 READ D
70 POKE 768 + X,D
80 NEXT
90 CALL 768

100 DATA 172,255,2,173,48,192,136,208,253,206,255,2,173,0,192,
201,128,144,237,96

Since so many sound effects and routines have been written
for earlier versions of the Apple II, you may want to change them
so that they sound right using the Apple Iles with a fast system
speed. The following program shows how to put a delay loop in
the above program to slow it down so that when it's run with a
Fast system speed, it sounds similar to the first Alarm program
with a slow system speed.

Program 8- 7.
10 TEXT : HOME
20 REM ******
30 REM ALARM2
40 REM ******
50 FOR X = 0 TO 24
60 READ D
70 POKE 768 + X,D
80 NEXT
90 CALL 768

100 DATA 172,255,2,173,48,192,136,208,253,206,255,2,162,255,
202,208,253,173,0, 192,201,128,144,232,96

ENE 0306 { -03}
DEC 02FF
LDX #FF <Delay loop begin
DEX
ENE 030E { -03} <Delay loop end
LDA COOO
CMP #80
ECC 0300 {-18}
RTS

00/0307: DO FD
00/0309: CE FF 02
00/030C: A2 FF
00/030E: CA
00/030F: DO FD
00/0311: AD 00 CO
00/0314: C9 80
00/0316: 90 E8
00/0318: 60

Sound Tricks
Since the basic way of creating sound is to vary the speed and fre
quency of speaker tweaking, one trick is to pick an address in
memory and then use it as an offset for generating random values.
For example, a well-known address among assembly language pro
grammers on the Apple II series is $FC58. That address is the be
ginning of a routine which clears the screen and homes the cursor.
By using it, or some other address where there's an assured collec
tion of different values, it's possible to create a "saw-tooth" type of
wave form for sound effects.

This next program uses $FC58 as an offset to generate a sound
resembling that of a jackhammer. There are three loops in this pro
gram. By using the X and Y registers along with an address (00 was
used in this example), it's possible to decrement (or increment) three
values at once. The accumulator is busy tweaking the speaker with
LDA $C030, so it's out of commission as an added index register.

LDY 02FF
LDA C030
DEY
ENE 0306 { -03}
DEC 02FF
LDA COOO
CMP #80
ECC 0300 {-13}
RTS

00/0300: AC FF 02
00/0303: AD 30 CO
00/0306: 88
00/0307: DO FD
00/0309: CE FF 02
00/030C: AD 00 CO
00/030F: C9 80
00/0311: 90 ED
00/0313: 60

160 161

CHAPTER 8 Sound and Music on the Apple JIGS

Program 8-8.
00/0300: A2 FO LDX #FO
00/0302: A9 OC LDA #QC
00/0304: 85 00 STA 00
00/0306: AD 30 co LDA C030
00/0309: BC 58 FC LDY FC58,X
00/030C: 88 DEY
00/030D: DO FD BNE 030C { -03}
00/030F: CA DEX
00/0310: DO F4 BNE 0306 { -OC}
00/0312: C6 00 DEC 00
00/0314: DO FO BNE 0306 {-10}
00/0316: 60 RTS

Program 8-9.
10 TEXT : HOME
20 REM **********
30 REM JACKHAMMER
40 REM **********
60 FOR X = 0 TO 22
60 READ D
70 POKE 768 + X,D
80 CALL 768

100 DATA 162,240,169,12,133,0,173,48,192,188,88,252,136,208,
253,202,208,244,198,0,208,240,96

Experiment with different loops and values to see what other
sounds you can create on your own.

Musical Tones
Making musical notes and music on your Apple IIGS requires that
you find the right combination of loops. The primary loops you
have to establish are:

• Pitch
• Duration

The pitch loop is the sound produced and represents the inside
loop. The number of times the pitch loop is repeated is the dura
tion. Thus, the duration loop is the outside loop. The longer the
duration, the more times the pitch loop is repeated.

Program 8-10.
00/0300: A6 OD
00/0302: A4 OE
00/0304: AD 30 CO
00/0307: 88
00/0308: DO FD
00/030A: CA
00/030B: DO F5
00/030D: 60

Program 8-11.
10 TEXT : HOME
20 FOR X = 0 TO 13
30 READ M
40 POKE 768 + X,M
50 NEXT
60 INPUT "Duration ";DUR
70 INPUT "Pitch ";P
80 IF P> 255 THEN 70
90 POKE 13,DUR

100 POKE 14,P
110 CALL 768

<Duration value stored here
<Pitch value stored here

DEY
BNE 0307 { -03} <Inside Loop Terminal
DEX
BNE 0302 {-OB} <Outside Loop Terminal
RTS

This next program is a combination of BASIC and machine
language. The machine language program is automatically gener
ated with the BASIC DATA statements, but it's important to see
how it works. The zero page addresses $OD and $OE are used to
store the duration and pitch values respectively. The duration value
is loaded into the X register and the pitch value into the Y register.
The contents of $OD and $OE are POKEd in from the BASIC pro
gram, controlled by an INPUT statement that allows you to control
the duration and pitch of each note. Using this program and a pi
ano or some other comparative instrument, you can create an entire
musical scale. Just keep putting in different values until you get the
right pitch, and then record the value you used to get that pitch.
Later you can use it in a program to recreate a song if you want.
(The program will produce sounds about as high as you want, but
for lower pitches, change the system speed from Fast to Normal.)

LDX OD
LDY OE
LDA C030

162 163

CHAPTER 8

120 IF P = 0 THEN END
130 GOTO 70
140 DATA 166,13,164,14,173,48,192,136,208,253,202,208,245,96

This next program shows how to translate the pitch values into
keyboard notes. Beginning with middle C in a single octave, this
next program shows how the notes C-B (C,D,E,F,G,A,B) can be
gener�ted from the keyboard. Use the Normal (slow) system speed
for this program and be sure to press the Caps Lock key so that
only uppercase letters will be read.

Program 8-12.
10 TEXT: HOME
20 FOR X = 0 TO 13
30 READ M
40 POKE 768 + X,M
50 NEXT X
60 DUR= 255
70 INPUT "Note A-G <Q> to quit ";N$
80 IF N$ = "A" THEN N = 113
90 IF N$ = "B" THEN N = 101

100 IF N$ = "C" THEN N = 191
110 IF N$ = "D" THEN N = 168
120 IF N$ = "E" THEN N = 151
130 IF N$ = "F" THEN N = 145
140 IF N$ = "G" THEN N = 128
150 POKE 14,N
160 CALL 768
170 IF N$ = "Q" THEN END
180 GOTO 70
200 DATA 166,13,164,14,173,48,192,136,208,253,202,208,245,96
300 PRINT X

Using the Keyboard to Generate Pitch
and Duration

Since all keys have an associated ASCII value, it's possible to use
the keyboard to make a. musical instrument. Just about everyone
who has ever �layed with the sound routines on the Apple has
made one version or another of this next program. Called the

164

Sound and Music on the Apple JIGS

Cheap Organ, the program emits the pitch of the note generated by
the ASCII value of the key pressed. The higher the ASCII value,
the lower the note. Since uppercase letters have lower ASCII val
ues than lowercase ones, the lower notes are generated by lower
case characters. (Just remember lower notes and lowercase.) The
notes will continue until another key is pressed-that's why it
sounds something like an organ. Press the Esc key to exit the pro
gram, and use the Normal setting on the system speed for a fuller
range of low notes and Fast for a fuller range of high notes.

Program 8-13.
10 TEXT : HOME : GOSUB 200
20 REM ***********
30 REM CHEAP ORGAN
40 REM ***********
50 FOR X = 0 TO 20
60 READ MUSIC
70 POKE X + 768,MUSIC
80 NEXT
90 CALL 768

100 DATA 172,0,192,152,170,224,155,240,ll,174,48
110 DATA 192,136,192,1,208,251,76,0,3,96
120 END
200 8$ = "PRESS ESC TO END"
210 HTAB 20 - LEN (8$) / 2
220 PRINT 8$
230 RETURN

Program 8-14.
00/0300: AC 00 co LDY COOO
00/0303: 98 TYA
00/0304: AA TAX
00/0305: EO 9B CPX #9B
00/0307: FO OB BEQ 0314 { +OB}
00/0309: AE 30 co LDX 0030
00/0300: 88 DEY
00/030D: CO 01 CPY #01
00/030F: DO FB BNE 0300 {-05}
00/0311: 40 00 03 JMP 0300
00/0314: 60 RTS

165

CHAPTER 8

Mixing Sound and Animated Graphics
Anyone who ever played an arcade game will recognize the impor
tance of combining sound and graphics. The trick is to coordinate
movement with sound so that one seems to go with the other. For
example, this next program creates a yellow beam that looks and
sounds like it's drilling its way across the screen.

Program 8-15.
10 GR
20 COLOR= 13
30 FOR X = 0 TO 39
40 FOR V=l TO 20
50 P = PEEK (49200)
60 NEXT V
70 PLOT X,20
80 NEXT X

Change the value of the delay loop in line 40 and you can get
sounds ranging from that of a ray gun to the pecking of a bird. Not
only does the loop affect the nature of the sound, it affects the ani
mation of the line as well.

With a few more changes, you can make a single animated
character racing across the screen. The delay loop holds the major
character on the screen a bit longer.

Program 8-16.
10 GR
20 FOR X = 1 TO 30
30 FOR V = 1 TO 12
40 P = PEEK(49200)
50 NEXTV
60 COLOR= 0
70 PLOT X - 1,20
80 COLOR= 13
90 PLOT X, 20

100 NEXT X

By changing the value of a single loop, not only do you
change the speed of the animation, but you also change the sound.

166

Sound and Music on the Apple JIGS

For bigger projects, more planning and care is required. An in
termediate level of animated programming can be found in double
low-resolution graphics. There's lots of color and somewhat better
resolution than simple low-resolution.

This next program simulates an ambulance driving through the
night with its siren on. Although its movement is slower and jerk
ier than you'd see in a commercial program, it gives you an idea of
how to meld complex animated graphics with sound. (It would be
a lot smoother and faster if it were written in machine language.)

Program 8-17.
10 TEXT : HOME
20 GR
30 POKE 49246,0: REM DOUBLE-LO-RES
40 FOR D = 0 TO 44
50 READ V
60 POKE 768 + D,V
70 NEXT

100 REM ••••••••••••••
110 REM DATA FOR SOUND
120 REM **************
130 DATA 127,0,173,48,192,136,208,5,206,l,3,240,9,202,208,245
140 DATA 174,0,3,76,2,3,255,0,173,48,192,136,208,5,206,23
150 DATA 3,240,9,202,208,245,174,22,3,76,24,3,96
200 REM ************••••••••••••
210 REM ANIMATED NIGHT AMBULANCE
220 REM ************************
230 FOR X = 1 TO 59
240 COLOR= 0
250 PLOT X,32
260 COLOR= 15
270 HLIN X + l ,X + 9 AT 32
280 COLOR= 0
290 PLOT X,33
300 COLOR= 15
310 HLIN X + l,X + 8 AT 33
320 COLOR= 9
330 PLOT X + 9,33
340 COLOR= 0
350 PLOT X,34

167

CHAPTER 8

360 COLOR= 15
370 HLIN X + l,X + 5 AT 34
380 COLOR= 11
390 PLOT X + 6,34
400 COLOR= 15
410 HLIN X + 7,X + 8 AT 34
420 COLOR= 9
430 PLOT X + 9,34
440 COLOR= 0
450 PLOT X,35
460 COLOR= 15
470 HLIN X + l ,X + 4 AT 35
480 COLOR= 11
490 HLIN X + 5,X + 7 AT 35
500 COLOR= 15
510 HLIN X + 8,X + 12 AT 35
520 COLOR= 13
530 HLIN X + 13,X + 20 AT 35
540 COLOR= 0
550 PLOT X,36
560 COLOR= 15
570 HLIN X + l ,X + 5 AT 36
580 COLOR= 11
590 PLOT X + 6,36
600 COLOR= 15
610 HLIN X + 7,X + 12 AT 36
620 COLOR= 0
630 PLOT X,37
640 COLOR= 15
650 PLOT X + 1,37
660 COLOR= 7
670 HLIN X + 2,X + 3 AT 37
680 COLOR= 15
690 HLIN X + 4,X + 8 AT 37
700 COLOR= 7
710 HLIN X + 9,X + 10 AT 37
720 COLOR= 15
730 HLIN X + 11,X + 12 AT 37
740 COLOR= 0
750 PLOT X + 1,38

168

Sound and Music on the Apple I/Gs

760 COLOR= 7
770 HLIN X + 2,X + 3 AT 38
780 COLOR= 0
790 HLIN X + 4,X + 8 AT 38
800 COLOR= 7
810 HLIN X + 9,X + 10 AT 38
900 REM••••••••••••••
910 REM CALL THE SOUND
920 REM ••••••••••••••
930 CALL 768
940 NEXT X

That should be enough to give you a start with sound and
some different things you can do with it.

Using the Sound Tools
T�is next �xa1:'ple is long and somewhat complex, but it will pro
vide a �egmn1n� to using the full power of your Apple IIGS. To
start with, theres no way that this program can be run from the
BASIC.SYSTEM environment. It requires one SOOK drive and a
one-megabyte RAM card, in addition to a second disk drive (either
51/4- or 31/2-inch drive). Alternatively, a hard drive and a one
megabyte RAM card will suffice. All of the RAM must be allocated
to the program, none may be used for a RAM drive.

This example was created using the Apple IIGS Programmer's
Workshop Version 1.0 from Byte Works, Inc. and Apple Computer,
Inc. If you don't have that assembler, you may have to make some
adjustments.

The program has extensive comments, but so that you'll better
understand what's going on, let's go over some of the key features.

First of all, this is a speaker tweaker program, but as you'll see
when you run it, it does things with the speaker that are truely as
tounding. That's because it uses DOC, the Digital Oscillator Chip.
It uses the system tools, which must be on a disk in the system
when you run the program. In particular, it requires Tool #025.
(It's over 250 lines, and without the tools, it would be even longer.)
Like the QuickDraw II Toolbox mentioned in Chapter 7, there's a

169

CHAPTER 8

different protocol required to write programs which use the tools.
However, there are several more tools in QuickDraw II than there
are in the Sound Toolbox. Also, there are more data elements in
this program (DC is something like DATA in BASIC.)

You can change the notes by changing the values in the DC
statements beginning with those labeled TRKl. The first value is
the note itself, and the second value is the duration of the note. For
example
DC 12'$5F,$8000'

indicates two integer values, the first (note) $SF and the second
(duration) $8000. When you first run the program, listen carefully
how the notes rise at an increasing speed and then accelerate more
when they fall. That's because the notes begin with a higher
value-$FFFF-than all the others. Further down the list, the val
ues lower to $COOO, $8000, and finally $4000. Try changing the
values to see what notes and note lengths you can create.

For the sound of the note, you can change the waveform and
other elements that affect the sound, but this is a little trickier, and
unless you have a full understanding of using the APW assembler
(or the Orea assembler), you might crash the program in doing so.
If you want to, though, keep it simple and change the decay rate or
something else that merely involves changing a single value in the
program. Then if it bombs, you can easily repair it.

Finally, as a suggestion for debugging and using APW assem
bler, save two copies of your program. Save one as TUNE.S and as
second as TUNE. When you assemble your program, enter
ASML TUNE (press Return)

If it indicates an error, first DELETE TUNE, then EDIT
TUNE.S and after debugging it, save the two programs again under
the two respective names. (Note: At the beginning of the program,
it reads KEEP TUNE. If you want to try different variations, change
TUNE to TUNEl, TUNE2, and so on, so that you can test different
arrangements of the program. Save the program you wish to as
semble and link under the same name as the KEEP name.)

170

Sound and Music on the Apple JIGS

Program 8-18.
••••••••••• Speed Scale ••
••

KEEP TUNE
MSB ON

MAIN START
Pl6 EQU $El00A8 ; Pl6

PHK
PLB
LDX #$0201 ; Tool Locator
JSL $El0000
PEA $0000 ; Start memory manager
LDX #$0202
JSL $El0000
PLA ; Get ID
STA ID ; stick it somewhere
LDX #$0203 ; Start misc. tools
JSL $El0000
PEA TOOLTABIJ-16 ; Tooltable bank
PEA TOOLTABL ; tooltable address
LDX #$0E01 ; Get the tools
JSL $El0000
PEA $0000 ; Results space
PEA $0000 ; Block size
PEA $0000 ; $000100 - Space required
PEA $0100 ; 1 page required
LDA ID ; Push your ID
PHA ; onto the stack
PEA $C001 ; MemAttributes - locked; fixed
PEA $0000 ; Use zero bank
PEA $0000 ; O = Let MemMan handle it
LDX #$0902 ; NewHandle
JSL $El0000
PLA ; TheHandle - bank
STA HNDL ; 'Put it in HNDL
PLA ; TheHandle - address
STA HNDL+2 ; Put it in HNDL+2
LDA 0 ; Get DP value
PHA
LDA 2
PHA
LDA HNDL
STA 0 ; Direct page
LDA HNDL+2 ; pointer setup

171

Sound and Music on the Apple JIGS

173 172

STA 2
LDA TRKl,X LDA [OJ · Pointer to low word
AND #$007F ; Check that it's less than $80

,
STA SNDDP ; Direct page sound

STA TONE LDX #$0308 · SoundSh u tdown first
INX

,
JSL $El0000

INX ; Increment two bytes - 1 word LDA SNDDP · WAPT - addrs of work area ptr.
LDA TRKl,X

,
PHA ; put it on the stack

STA DURTN LDX #$0208 ; SoundStartup
STX BYTENUM ; Bytenum update JSL $El0000 GENER PEA $0000 ; Room on stack for result LDX #Q .Begtn making waveform
PEA $0040 ; Mid priority LDA #40
LDX #$0919 ; Sound generator SEP #$30 ;Eight-bit words
JSL $El0000 LONG A OFF
BCC G2 LONG! OFF
BRK

SUSTAIN STA WAVEFORM G2 PLA ; Pull generator number of stack INC A ; Wave up from $40 to $CO
STA GENNUM ; put it somewhere INX NOTE ON LDA GENNUM ; Generator number CPX #128
PHA

ENE SUSTAIN
LDA TONE ; C = $60 for tone value RELEASE STA WAVEFORM
PHA

DEC A
PEA $007F ; Volume (<$80) INX
PEA INSTR UM ; Instrument loc. def. CPX #256
PEA INSTR UM BNE RELEASE
LDX #$0Bl9 ; NoteOn REP #$30
JSL $El0000 LONG A ON TAP DEC DUR TN ; Tap your feet to keep LONG I ON
ENE TAP ; count. (Beat-duration) PEA WAVEFORM ; Waveform bank
LDA GENNUM PEA WAVEFORM · Waveform address
PHA

,
PEA $0000 · DOCstart - start addr of DOC buff

LDA TONE •
PEA $0100 ; Write 100 Bytes

PHA LDX #$0908 ; Wri teRamBlock
LDX #$0019 ; Turn note off JSL $El0000
JSL $El0000 BOC STRTNOTE
BCC NEXT BRK
ERK STRTNOTE PEA 150 ; LFO update rate

NEXT LDA BYTENUM ; Note list position PEA $0000 ; no interrupt routine
CMP #DONE-TRKl ; Length of note list PEA $0000 ; (4 BYTES)
BCC PLAY LDX #$0219 ; Start up note synthesizer
LDX #$0319 ; Shutdown note synthesizer JSL $El0000
JSL $El0000 PEA MSGl ; Bank of first msg
BOC 82 PEA MSG! ; Address of first msg
BRK LDX #$2000 ; TextTool command

82 LDX #$0308 ; SoundShutdown JSL $El0000
JSL $El0000 BOC BEGIN
BOC QUIT BRK
ERK

BEGIN STZ BYTENUM ; Beginning of track
QUIT JSL Pl6 ; Stop this nonsense PLAY LDX BYTENUM

DC !2'$29' ; Quit code

CHAPTER 8

CHAPTER 8 Sound and Music on the Apple Iles

174

DC I2'$55,$FFFF'
DC I2'$56,$FFFF'
DC I2'$67,$FFFF'
DC I2'$58,$FFFF'
DC I2'$59,$FFFF'
DC I2'$5A,$FFFF'
DC I2'$5B,$COOO'
DC 12'$50,$0000'

DC I2'25,0

DC I2'$6D,$COOO'
DC I2'$5E,$COOO'
DC l2'$6F,$COOO'
DC !2'$60,$0000'
DC I2'$61,$COOO'
DC I2'$60,$8000'
DC I2'$5F,$8000'
DC I2'$6E,$8000'
DC I2'$5D,$8000'
DC I2'$5C,$8000'
DC I2'$5B,$8000'
DC l2'$5A,$8000'
DC 12'$59,$4000'
DC !2'$58,$4000'
DC I2'$67,$4000'
DC I2'$56,$4000'
DC !2'$55,$4000'
DC 12'$64,$4000'
DC I2'$63,$4000'

DONE ANOP ; Note list finished
END

175

Summary
The Apple IIGS is an incredibly flexible and powerful computer. On
a relatively simple level, it's possible to generate a whole plethora
of sounds and even musical notes. On a more complex level, it can
play music and talk to you. Like everything else you've examined
in this book, the key to working with sound is to start with some
thing simple, then work your way into the more complex designs.

Unfortunately, there's not a simple programming method (at
this time) that takes advantage of the DOC features, but with prac
tice and patience-and a lot of RAM-you can develop spectacular
programs with the machine.

; note value storage
; generator number storage
· current duration counter '
; current note number

; No. of wavepoints of osc a
; No. of wavepoints for osc b
;topkey,addr,size,ctrl,pitch

; for release as well
; STAGE 5
; STAGE 6
; STAGE 7
; 8 STAGES
; Release segment - 1
; increment priotiry
; pitch bend range
; vibrado rate
; and speed

; 4 bytes for storage
; $100 storage
; Ramp: $7FOO to $7F
; Decay at rate of $0060
· to $0000. Use this stage I

; ID space
; 1 TOOL

; Pathname pointer
; absolute quit
; Error break

; Param table address

Il' l'
11 '32'
Il '2'
Il '75'
Il '85'
Il 'O'
Il 'l'
Il'l'
11' 127,0,0,0,0,0'
Il '127 ,0,0,016,0'
I2'0'
I2'0'
I2'$0000'
I2'$0000'
I2'$54,$FFFF'

I4'0'
I4'0'
256
Il'$7F,0,$7F'
Il '$00,$60,&0'
Il '0,0,0'
Il '0,0,0'
Il '0,0,0'
Il'O O O' 1 I

C'This is a simple scale . .'
Il'l3,10,13,10'
C'not bad for an Apple'
Il 'O'
I2'0'
I2'1'

I4'$0000'
I2'$00'

I4'PARMBL'
ERROR

Il '0,0,0'
Il'O O O' . '

DC

DC

DC
BOS
BRK
DC
DC
BRK
DC
DC
DC
DC
DC
DC

TRKl

HNDL
SNDDP DC
WAVEFORM DS
INSTRUM DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

ALI ST DC
BLIST DC
TONE DC
GENNUM DC
DUR TN DC
BYTENUM DC

PARMBL
FLAG
ERROR
MSG!

ID
TOOLTABL

..

· ostScript is a programming language, just like BASIC or ma
chine language. However, PostScript is used only for calculating
and arranging what will be sent to a printer; thus it's called a page
description language.

Postscript has become the de facto standard page-description
language for laser printers. Both the Apple LaserWriter and the
LaserWriter Plus printers have PostScript built into them, as do
many other brands of laser printers.

The best thing about Postscript is that it's computer indepen
dent. As long as you can get the output into an ASCII text file
(TXT filetype), the Postscript interpreter inside the printer can
translate the text and print the desired results. Using a modem or
null modem cable and a communications program, you can send
the file from the Apple IIGS to the printer through the RS-232 port
on the laser printer. Alternatively, the text file can be sent to a
Macintosh and printed on the laser printer from the Mac.

The important question, of course, is why bother with Post
Script in the first place. Primarily, it has to do with the printing
resolution possible with Postscript output. On an 81/2-inch screen,
the Apple IIGS in the 640-pixel mode produces about 75 dots per
inch (dpi). Output to a standard printer is about the same. With
Postscript, the output resolution is determined by the printer, not
the screen. The Apple LaserWriter and LaserWriter Plus printers
can print at a resolution of 300 dpi output, or four times what you
can get on your screen. Some Postscript-based typesetting machines
achieve resolutions of up to 2400 dpi. The great thing is that the
same program which produces 300 dpi on a LaserWriter will pro
duce 2400 dpi on an advanced machine.

If you've used a programming language called FORTH, Post
Script will seem familiar. Both languages use the stack and develop
words that contain instructions. Both also use what's called reverse

179

CHAPTER 9 PostScript Graphics

0, 792

0,0

612,792

612,0

180

Positive values indicate a move upwards and to the right. To
move down and to the left, negative numbers are used. Thus, to
move one inch (72 points) to the right and two inches (144 points)
down would be expressed as
72 -144

in a Postscript program.

PostScript Conventions
Before you actually start programming in PostScript, there are some
key conventions you need to know.

Lowercase statements: All commands and statements in Post
script are in lowercase.

Comments: Use the percent sign (0/o) to indicate a comment
line. Comments must begin with 0/o. Everything is ignored by the
Postscript interpreter from that point to the end of the line.

Word definitions: Word definitions begin with a slash (/) and
end with the statement def. All fonts also begin with a slash.

To run a Postscript program, the statement showpage is placed
at the bottom of the program. When the interpreter reaches that
point, the laser printer prints everything which precedes the
showpage statement.

The easiest way to write a Postscript program is to use a text or
word processor that can save a file in text (ASCII) format. If your
word processor can't save a file as a text file or you don't have a
word processor program, use the following text editor program to
write your Postscript programs.

Program 9-1.
10 DIM A$(300): D$ = CHR$(4)
20 INPUT "Name of file ";NF$
30 PRINT "<N>ew OR <A>ppend ";
40 GET AN$
50 IF AN$ = "N" OR AN$ = "n" THEN OP$ = "OPEN"
60 IF AN$ = "A" OR AN$ = "a" THEN OP$ = "APPEND"
70 INPUT "PS=> ";A$(X)
80 IF A$(X) = "Q" OR A$(X) = "q" THEN 200
90X=X+l

100 GOTO 70

181

Polish or postfix notation. (Reverse Polish refers to the Polish math
ematician who developed the particular stack arrangement for cal
culations; the name PostScript was derived from postfix.)

The Work Area
In the world of typesetting, the basic unit of measurement is the
point. There are 72 points to the inch. (Notice how close that is to
the number of pixels per inch on an 81/2-inch screen in the 640 su
per high-resolution graphics mode on the Apple IIGS.)

In PostScript programs, the 72 dpi measure is used as well. On
a standard 81/2 X 11 inch sheet of paper, you're dealing with a 612
(8.5 X 72) by 792 (11 X 72) matrix. That's about half a million
points per page. Since Postscript is a very smart language, it can
translate those 72 dpi into 300 dpi on the LaserWriter, or into an
even higher dpi resolution on a larger printer.

Unlike most matrices, such as your computer screen which be
gins the X,Y 0,0 position in the upper left corner of a page, Post
Script begins in the lower left. The following figure shows the
relationship of point positions on an 81/2 X 11 inch page.

Figure 9-1. PostScript Point Positions

CHAPTER 9

200 PRINT D$;0P$;NF$
210 PRINT D$;"WRITE"NF$
220 FOR N = 0 TO X - 1
230 PRINT A$(N)
240 NEXT
250 PRINT D$;"CLOSE"

This crude editor doesn't give you much editing ability, but as
a last resort, it works.

Moving and Drawing
To get started, the operator, newpath, declares the current path to
be empty. The path refers to the course the imaginary pen takes as
you draw, place text, or move. After each activity, this imaginary
pen is at the end of the current path, and newpath simply indicates
it's starting a new path. Thus, the current point is not defined.

Having declared newpath, you can move to a current point
with the moveto operator. Remember that moving up and right is
a positive value and moving left and down is a negative value,
since you begin in the lower left corner of a page.

The moveto operator requires two values: the horizontal (x)
and vertical (y) coordinates preceding the operator. Thus, the line
100 150 moveto

places the current point 150 points from the bottom and 100 points
to the right. Figure 9-2 shows approximately where the current
point will be.

For many applications, you'll want some points away from the
lower left corner as a point of reference. For example, your page
margin may be one inch all the way around. Therefore, instead of
having the O O point in the lower left corner, you want it 72 points
(one inch) to the right and 72 points above the bottom.

The translate operator redefines, or translates, the new O O
point. Thus,
72 72 translate

would make the O O point one inch from the bottom and one inch
to the right. When more advanced programming is required, this
operator will be very handy.

182

PostScript Graphics

Figure 9-2. Up and to the Right

x

Lines
To draw something, you'll need a statement to tell the printer to
create lines, arcs, and other shapes, and then to draw them on the
screen. Let's start with lines.

There are two basic types of lines, absolute and relative. The
lineto operator draws an absolute line from the current point to the
point specified. For example, if the current point were 100 100, and
the lineto statement were
150 150 lineto

there would be a line drawn from 100 100 to 150 150.
In contrast, rlineto creates a relative line of a specified length.

The start of the line is the current point. Beginning at the same 100
100 point, a rlineto statement of
150 150 rlineto

creates a line from 100 100 to a point 150 points up and 150 points
to the right. The result is a line from 100 100 to 250 250.

183

CHAPTER 9

Figure 9-3. Iineto and rlineto

lineto rlineto
•

.I·.

PostScript Graphics

Figure 9-4. Three-Sided Box

150 150
/

250 250

/

%Three lines

At first glance, you might wonder why the lineto line and the
rlineto lines are the same length. The reason is that the first lineto
operator sent a line to vertical point 72 from the O O position (which
previously had been translated to be 72 72). The absolute vertical
point 72 is the same as the relative point 72, since the first current
point was O 0. If the current point had been anything else, the first
line would have been a different length than the second two.

To close the box, all that's required is the closepath operator.
This is a handy operator-once two nonstraight connecting lines
have been drawn, a single closepath operator will make a polygon.

Add the operator closepath right before stroke in the above
program and the fourth side is drawn.

Program 9-3.
%Box

newpath
72 72 translate %Now the O O point is 1 inch up and to the right
0 0 moveto %Starting point is actually 72 72
O 72 lineto %One inch straight up

Actually, the lineto and rlineto operators don't really draw a
line, but instead define the path of the line. The stroke operat�r
tells the printer to draw. Several lines at once can be stroked with a
single stroke operator.

When you want an actual drawing to appear on p�per, use the
operator showpage. As al�eady mentioned, showpage ts usually the
final operator in a PostScrzpt progra�. . .

At this point, you have enough information to write a Post-
script program. This first short PostS�ript prog�am draws t�ree
lines, making three sides of a box using both lineto and rlineto.

Program 9-2.

newpath
72 72 translate
O O moveto
O 72 lineto
72 O rlineto
o -72 rlineto

%Now the o o point is 1 inch up and to the right
o/oStarting point is actually 72 72
%One inch straight up
%One inch to the right
%One inch straight down

72 0 rlineto
0 -72 rlineto
closepath

%One inch to the right
%One inch straight down
%Completes the box

stroke %Draw the lines
showpage %Out to the printer

If you wrote the program correctly, the output should look like Fig
ure 9-4.

stroke %Draw the lines
showpage %Out to the printer

Before moving to curves, let's look at some other polygons
using more or less random lines.

184 185

CHAPTER 9

Program 9-4.

PostScript Graphics

Figure 9-5. Half-Circle
o/oStrange shape

72 72 translate
O O moveto
30 90 lineto
70 15 rlineto
-20 -40 rlineto
close path
stroke
showpage

Experiment with lines and shapes to see what you can draw.

Curves
Curves require a different approach. Instead of two parameters,
there are five.
X Y Radius Begin End

The arc operator draws arcs counterclockwise, while the arcn
operator draws them clockwise. The X and Y positions plot the
arc's center. It's best to think of the arc as a side of a circle and the
X Y position as the circle's center.

If the moveto operator is used before drawing the arc, there
will be a straight line from the current position to the beginning
point of the arc. It's best to plot the relative position with the trans
late operator, and then begin your arc. Let's take a look at an
example.

Program 9-5.

180

Figure 9-6. Half-Circle Reversed

180

0

0

%Who knows what it looks like?

Notice that the zero (0) point is at the 3 o'clock position and
180 is at the 9 o'clock positon. Change the operator from arc to
arcn, and the curve will look like the one in Figure 9-6.

newpath
200 200 translate
50 50 100 0 180 arc
stroke
showpage

This program makes an arc like the one shown in Figure 9-5.

186

Since there are 360 degrees in a circle, a beginning point of O
and an ending point of 360 makes a complete circle. The following
line does that.
50 50 50 0 360 arc

What would happen if the closepath operator were used?
Would it close the circle or draw a line from the beginning of the
path to the current point? The best way to find out is to try it.

187

%Arc one

o/oGi ve it some room
%From O to 180. Also try arcn

CHAPTER 9 PostScript Graphics

%Moon over Miami

Program 9- 7. %Before the stroke set the line width

%Fat and skinny circles

%Before the stroke set the line width

%25% white/75% black
%Fill enclosed area

Program 9-8.

100 100 translate
50 50 50 0 360 arc
5 setlinewid th

2 setlinewidth
stroke
showpage

stroke
150 150 50 0 360 arc

PostScript operators can make different-sized line thicknesses.
The operator setlinewidth does exactly what it says. The default is
1 point, but by specifying size, you can make any line width de
sired. For instance, this next program draws circles with different
line widths.

Figure 9-8. Shaded Fan

.25 setgray
fill
stroke
showpage

The program draws a fan-shaped object something like the one
in Figure 9-8.

..
%Curve over the top
%This will draw second straight line

%This will cause a line to begin-point of arc

%Fan
newpath
200 200 translate
0 0 moveto
O O 50 36 144 arc
closepath

Figure 9- 7. Moon Over Miami

newpath
200 200 translate
50 50 100 0 180 arc
closepath
stroke
showpage

The results should show an arc with a straight line from the
beginning to the ending point of the arch.

Program 9-6.

Fills and Line Width
An enclosed area can be filled with various shades of gray. A full
black is O and a full white is 1. Using the setgray operator and a
fraction, it's possible to establish a particular shade of gray. By
using fill, the enclosed area can be shaded with that gray scale.

To illustrate, let's draw a fan shape made up of an arc and two
straight lines. Neither the lineto nor the rlineto operator will be
used. This will also illustrate what happens if moveto is used
before an arc is drawn.

•

188 189

CHAPTER 9 PostScript Graphics

AvantGarde-Book
AvantGarde-BookOblique
A van tGarde-Demi
AvantGarde-DemiOblique
Bookman-Demi
Bookman-Demi! talic
Bookman-Light
Bookman-Ligh tltalic
Courier
Courier-Bold
Courier-Bold Oblique
Courier-Oblique
Helvetica
Helvetica-Bold
Hel vetica-BoldOblique
Helvetica-Narrow
Helvetica-Narrow-Bold
Helvetica-Narrow-BoldOblique

190

Helvetica-Narrow-Oblique
Helvetica-Oblique
NewCenturySchlbk-Bold
N ewCenturySchlbk-Boldltalic
NewCenturySchlbk-Italic
NewCenturySchlbk-Roman
Palatine-Bold
Palatino-Boldltalic
Palatine-Italic
Pala tine-Roman
Symbol
Times-Bold
Times-Boldltalic
Times- Italic
Times-Roman
ZapfChancery-Mediumltalic
ZapfDingbats

Remember, Postscript doesn't require that these fonts be in
your computer. As long as they're in the printer, you can use them
in writing PostScript programs on your Apple IIGS.

First set up a font. To do that, use this formula

/Font-Name findfont N scalefont setfont

where N is the size of the font in points.
For example, suppose you want to use boldface Helvetica in a

14-point size. You need to locate Helvetical-Bold with findfont,
then set the size with a value preceding scalefont. Finally, setfont
sets the type face and font size. The entire statement would be
/Helvetica-Bold findfont 14 scalefont setfont

Once the font is set, use moveto to place the first letter of the
text, then place in parentheses () the string of characters you want
to print. The operator show places the text, and showpage, as al
ways, prints it.

Program 9-9.
%Simple text printing

/Helvetica-Bold findfont 14 scalefont setfont
72 720 mo veto %Top of page with 1 inch

margin
(Printing text is as easy as 1,2,3.) show %Message out
showpage

And your message looks like this:

Printing text is as easy as 1,2,3.

Angled Text ·
Besides printing in a straight line, you can angle your text using the
rotate operator, and change its shape using scale.

Using the rotate operator, you can start in the middle of a
page.

Program 9-10.
%Flip out

/Helvetica findfont 8 scalefont setfont
72 396 translate %Middle of page with 1 inch left margin
0 0 moveto
30 rotate

191

Figure 9-9. Thick and Thin Circles

Text
Now that you have a way of expressing lines and curves, the next
step is to print text on the screen. The fonts must be in the laser
printer before they can be effectively used in a Postscript program.
Also, the fonts must be called exactly as they exist in your printer's
ROM or RAM. For example, the LaserWriter Plus has 35 fonts
called by the following names.

CHAPTER 9
• •

PostScript Graphics

(Flip out!) show %Note 3 spaces before second parenthesis
40 rotate
(Flip ou ti) show
50 rotate
(Flip out!) show
showpage

By combining text and graphics, it's possible to label yo
graph.ics. To. label a .triangle, for instance, draw the triangle, ��

en

label it. Notice that in Program 9-12 the label is set under the b
of the triangle. ase

Program 9-12.

Figure 9-10. Flip Out

Figure 9-11. Long, Tall Sally

%Back to O O position

newpath
72 72 translate
0 0 moveto
72 72 lineto
72 -72 rlineto
closepath
stroke
/Times-Roman findfont 12 scalefont setfont
40 -14 moveto
(Triangle) show
showpags

Figure 9-12. Triangle and Triangle

Triangle

%Labeled Triangle

Modifying Text
You can change text characters in other ways with Postscript. Two
placement operators are important here-gsave and grestore.

As you create more and more complicated graphics, you need
operators which can keep track of where you've been. The gsave
operator saves the current point and grestore restores it. For ex
ample, if you want to perform two different operations on the same
graphic, you may need to go back to the beginning point. The
gsave operator keeps the x,y position until it encounters grestore.

The operator charpath refers to the path of a character or char
acter path. Since all fonts are actually characters drawn in memory

o/oThe Long and Short of It
/Times-Roman findfont 12 scalefont setfont
newpath
72 720 translate
0 0 moveto
1 1 scale
(Normal Nelly) show
10 0 rmoveto
1 4 scale
(Long tall Sally) show
showpage

Normal Nelly

Program 9-11.

Note the arrangement of the string Flip out! and how each
string begins near the end of the preceding string. The current
point is always the end of a string until it's moved.

The scale operator expects two values: the x- and y-scale of a
string or graphic. Let's stick with text strings to see how it works.
By using a larger value for y than for x, it's possible to create tall,
narrow characters. For short squatty ones, a larger x value is in or
der. The following program shows both and introduces the oper
ator rmoveto.

192 193

CHAPTER 9
•

PostScript Graphics
• •

Program 9-13.

Program 9-15.
/Triangle { 0 0 moveto
72 72 lineto
72 -72 rlineto
closepath stroke } def
72 72 translate
Triangle
144 144 translate
Triangle
216 216 translate
Triangle
showpage

Defining Words
The structure of Postscript is centered around developing variables
and procedur�s. These are placed into a dictionary, then executed
when the variable or procedure name is placed in the program. In
other �ords, you can build a dictionary of words which consist of a
P_ostScrzpt �rogram. To see how this works, let's start with a simple
fi?�re, a t�iangl�, and define it as a procedure. Each procedure defi
nition begins with a slash (/) and ends with def. Braces ({ }) en
close the defined procedure.

Program 9-14.
/Triangle { 0 O moveto
72 72 lineto
72 -72 rlineto
closepath stroke } def
72 72 translate
Triangle
showpags

By itself, this isn't very interesting. However, if you have a
program that requires lots of triangles-or any other shape for that
matter-it's far easier to write Triangle several times than to rewrite
the entire triangle routine. To see how this works, let's change the
program to draw several triangles.

•

o/oDo it again

%Restore saved point grestore
O setgray
stroke
showpags

which can be stroked just like lines, text is actually outlines of
characters which can be drawn and filled. Using the true charpath,
the path can then be stroked (drawn) and filled with whatever
value of setgray you wish. To create a character with different
shades, it's necessary to first create them with true charpath instead
of using the show operator. The fill operator will fill the character
with the chosen setgray color, and stroke will treat it as a drawn
character.

Since you first have to fill the character, then stroke the path,
it's necessary to return to the character's starting position. Before
the fill, gsave is used-after the fill, grestore sets the positon for
stroke. Program 9-13 shows how to do all this.

Figure 9-13. COMPUTE! Filled

%Creative characters
/Helvetica-Bold findfont 72 scalefont setfont
72 396 translate
0 0 moveto
(Compute!) true charpath %Use instead of show
gsave %Save this point
.7 setgray
fill

194 195

\•

PostScript Graphics

197

40 rotate
Triangle
grestore
gsave
60 rotate
Triangle
showpage

Figure 9-15. Rotating Triangles

Summary
This chapter has only given you some elementary Postscript infor
mation. Two books, Postscript Language: Tutorial and Cookbook and
PostScript Language Reference, both by Adobe Systems, Inc., have a
full description of the language. If the information here has
touched your interest, take a look at these two books.

•

gsave
Triangle
grestore
gsave
20 rotate
Triangle ••

grestore
gsave

196

Likewise, once a shape is defined in a procedure, you can ro
tate and scale that shape.

Program 9-16.
%Rotating Angles
/Triangle { 0 0 moveto
72 72 lineto
72 -72 rlineto
closepath stroke } def
200 396 translate

Figure 9-14. Three Triangles

CHAPTER 9

,, . . . Appendix A

..... rror
Whenever you have an error-handling routine using ONERR and
PEEK (222), you'll be given a code which represents an error. For
example, error 42 means that you are OUT OF DATA when your
program contains a READ statement and a number of DATA
statements.

The first set of error messages are from DOS 3.3 and
Applesoft. The second set consists of ProDOS 8 error messages,
and the third set of messages, while you may not encounter them
with Applesoft programs, are ProDOS 16 error messages.

Applesoft and DOS 3.3 Error Messages
Error Message
0 NEXT WITHOUT FOR
1 LANGUAGE NOT AVAILABLE
2,3 RANGE ERROR
4 WRITE-PROTECTED
5 END OF DATA
6 FILE NOT FOUND
7 VOLUME MISMATCH
8 1/0 ERROR
9 DISK FULL
10 FILE LOCKED
11 DOS SYNTAX ERROR
12 NO BUFFERS AVAILABLE
13 FILE MISMATCH
14 PROGRAM TOO LARGE
15 NOT DIRECT COMMAND
16 PROGRAM SYNTAX ERROR
22 RETURN WITHOUT GOSUB
42 OUT OF DATA
53 ILLEGAL QUANTITY

201

APPENDIX A Error Messages

69 OVERFLOW
77 OUT OF MEMORY
90 UNDEFINED STATEMENT
107 BAD SUBSCRIPT
120 REDIMED AN ARRAY
133 DIVISION BY ZERO
163 TYPE MISMATCH
176 STRING TOO LONG
191 FORMULA TOO COMPLEX
224 UNDEFINED FUNCTION
254 BAD INPUT RESPONSE
255 CONTROL-C INTERRUPT

ProDOS 8 Error Messages
Error Message
2 RANGE ERROR
3 NO DEVICE CONNECTED
4 WRITE-PROTECTED
5 END OF DATA
6 PATH NOT FOUND
7 PATH NOT FOUND
8 1/0 ERROR
9 DISK FULL
10 FILE LOCKED
11 INVALID OPTION
12 NO BUFFERS AVAILABLE
13 FILE TYPE MISMATCH
14 PROGRAM TOO LARGE
15 NOT DIRECT COMMAND
16 SYNTAX ERROR
17 DIRECTORY FULL
18 FILE NOT OPEN
19 DUPLICATE FILENAME
20 FILE BUSY
21 FILE(S) STILL OPEN

202

•

,,

$40
$42
$43
$44
$45
$47
$48
$49
$4A
$48
$4C
$4D
$4E
$50
$51
$52
$53
$54
$55
$57
$58
$59
$SA

Invalid pathname syntax
FCB full
Invalid file reference number
Path not found
Volume not found
Duplicate file name
Volume full
Directory full
Version error
Unsupported storage type
End of file encountered (EOF)
Position out of range
Access not allowed
File is open
Directory structure damaged
Unsupported volume type
Parameter out of range
Out of memory
VCB full
Duplicate volume
Not a block device
Invalid level
Block number out of range

203

ProDOS 16 Error Messages
$1 Invalid call number
$5 Call pointer out of bounds
$6 Invalid caller identification
$10 Device not found
$11 Invalid device ref number
$20 Invalid request code
$25 Interrupt table full
$26 Invalid operation
$27 1/0 Error (Note: Different code number from DOS 3.3 above.)
$28 No device connected
$28 Write-protected
$2E Disk switched
$30-$3F Device-specific errors

e

205

The fundamental procedures for using a Toolbox call are:

• Place the necessary paramters on the stack, usually using PEA
• Using LDX, load the call number in the immediate mode into the

X register
• Using JSL, jump to the Toolbox address at $E10000

All of this is to be done in 16-bit (65816) mode.
The first set of functions in the QuickDraw II Toolbox are for

housekeeping purposes. They set up the various registers and
pointers to allow access to the graphics tools. They include QDBoot
Init to initialize the QuickDraw II tools when the system is booted,
QDStartup to initialize QuickDraw II and set the standard port and
clear the screen, and QDShutDown, which turns QuickDraw II off
and frees the buffers. QDVersion and QDStatus provide infor
mation on the version of QuickDraw II and whether or not it's ac
tive, respectively.

A second set of calls are considered global in that they involve
scanning, which sets general properties of graphics. A scan line has
a Scanline Control Byte (SCB) that controls the line's characteris
tics. The call GetStandardSCB returns information about the SCB.

Appendix B

QuickDraw II Calls
Chapter 7 included a detailed example and explanation of how to
get into the QuickDraw II Toolbox to create graphics. An entire
book would be required to detail every QuickDraw II Toolbox call,
but several are useful as starting points for super high-resolution
graphics on the Apple IIGS. This appendix lists by name all of the
calls, though some have been explained in greater detail.

••

204

Fatal Errors
$1 Unclaimed interrupt
$A VCB unusable
$B FCB unusable
$C Block zero allocated illegally

APPENDIX A

APPENDIX B Selected Apple JIGS Toolbox Routines
•

QuickDraw Calls

Some GrafPort Parameters
In high-, low-, double-high- and double-low-resolution graphics,
there's only a single line size, but in super high-resolution graphics,
in either the 320 or 640 mode, the size of the pen that draws the
line can be controlled by the user.

Using SetPenSize, it's possible to vary the size of the pen in

The first four bits (0-3) are used for Color Table 0, bit 4 is reserved,
bit 5 is Fill (0 = off, 1 = on), bit 6 interrupt (0 = off, 1 = on), and
bit 7 is the Color Mode (0 = 320, 1 = 640). The call SetMasterSCB
is used for setting the low byte of the master SCB, and GetMaster
SCB returns the information in the low byte of the master SCB.
SetSCB, GetSCB, and SetAIISCBs are further scan-line control
byte calls. For setting the color table, either in the 320 or 640
mode, the InitColorTable call is used.

Calls to SetColorTable, GetColorTable, SetColorEntry, and
GetColorEntry all access the routines to set and get information
about the colors.

The other global calls deal with the fonts, clearing the screen,
and turning the super high-resolution graphics mode on and off.
The calls include SetSysFont, GetSysFont, ClearScreen, GrafOn,
and GrafOff. As you can see, the calls are fairly self-explanatory as
to their function, making it much easier to use the graphics than
more obtuse codes.

GrafPort Calls $-04

Pixel Color Code
$0 Black 0 0 0
$1 Dark Gray 7 7 7
$2 Brown 8 4 1
$3 Purple 7 2 c
$4 Blue 0 0 F
$5 Dark Green 0 8 0
$6 Orange F 7 0
$7 Red DO 0
$8 Flesh FA 9
$9 Yellow F F O
$A Green 0 E O
$8 Light Blue 4 DF

both horizontal and vertical pixel widths. Both the vertical and hor
izontal parameters must be at least $0001.
SetPenSize Parameters
Toolbox number = $2C04
Pen Width Number of pixels wide
Pen Height Number of pixels deep
Notes: Lines can be very wide to work almost like a background or block.

Setting Colors
The two key calls for setting the color are the SetSolidPenPat color
routine and ClearScreen. ClearScreen sets the screen memory to
the specified background color and the other sets the color of the
pen which will draw on the background.
ClearScreen Parameters
Toolbox number = $1504
Color code (See below)
Notes: All four hexadecimal values for the color code must be the same. For
example, $1111 would give a solid dark gray background. However, $0001
would give a pattern broken by vertical lines.

SetSolidPenPat Parameters
Toolbox number = $3 704
Color code (See below)
Notes: Only use a single value such as $E, $2, and so on.
320 Mode

GetPort
SetPortSize
ClipRect
GetPenState
SetPenPat
SetBackPat
Move To
GetFontID
GetFontFlags
SetSpaceExtra
GettForeColor
SaveBufDims
GetVisRgn
SetRgnSave
GetGrafProcs

SetPort
GetPortRect
GetClip
SetPenState
GetPenMode
GetPenMask
PenNormal
SetfontID
SetFontFlags
GetTextMode
GetForeColor
ForceBufDims
SetVisRgn
GetPicSave
SetGrafProcs
GetSysField

ClosePort
SetPortRect
SetClip
Get Pen
SetPenMode
SetPenMask
Solid Pattern
GetFont
GetFontGlobals
SetTextMode
GetSpaceExtra
SetBufDims
GetClipHandle
SetPicSave
GetPolySave
SetSysField

InitPort
GetPortLoc
SetOrigin
Show Pen
GetPenSize
SetSolidPenPat
SetSolidBackPat
SetFont
GetFGSize
GetTextFace
SetCharExtra
GetBackColor
SetCli p Handle
GetVisHandle
SetPolySave
GetUserField

Open Port
SetPortLoc
MovePortTo
HidePen
SetPenSize
GetPenPat
GetBackPat
Move
GetFontlnfo
SetTextFace
GetSpaceExtra
SetBackColor
RestoreBufDims
SetVisHandle
GetRgnSave
Set User Field

206 207

APPENDIX B Selected Apple JIGS Toolbox Routines

$C Lilac DAF •

$D Periwinkle Blue 7 8 F
$E Light Gray CCC

640 Mode
Pixel Color Code
$0 Black 0 0 0
$1 Red F 0 0
$2 Green O F O
$3 White F F F
$4 Black 0 0 0
$5 Blue 0 0 F
$6 Yellow F F 0
$7 White F F F
$8 Black 0 0 0
$9 Red F 0 0
$A Green 0 F 0
$B White F F F
$C Black 0 0 0
$D Blue 0 0 F
$E Yellow F F 0
$F White F F F

Drawing Calls
This set of Toolbox calls are what most programmers use most
often when creating graphics directly or when writing a drawing
program.

Lines
LineTo Line

These two routines operate very much alike.
LineTo Parameters
Toolbox number = $3C04
X position ($0-$0280 or $0-$0154)
Y position ($0-$C8)

Rectangles
FrameRect

Regions
FrameRgn

Polygons
FramePoly

Ovals
FrameOval

Arcs
FrameArc

ScrollRect

PaintRect

PaintRgn

PaintPoly

PaintOval

PaintArc

PaintPixels

EraseRect

EraseRgn

ErasePoly

EraseOval

EraseRRect

EraseArc

PPToPort

lnvertRect

lnvertRgn

lnvertPoly

InvertOval

lnvertArc

FillRect

FillRgn

FillPoly

Fill Oval

FillArc

Line Parameters
Toolbox number = $3004
X position ($0-$0280 or $0-$0154)
Y position ($0-$C8)

Rounded-Corner Rectangles
FrameRRect PaintRRect InvertRRect FillRRect

Text Drawing and Measuring
DrawChar DrawText DrawString DrawCString CharWidth
TextWidth StringWidth CStringWidth CharBounds TextBounds
StringBounds CStringBounds

Pixel Transfers

208 209

APPENDIX B Selected Apple JIGS Toolbox Routines

Map Pt MapRect MapRgn Map Poly Scale Pt

current value stored in the 24-bit accumulator.
Address: $00-$ lF (low)

$20-$3F (high)

Mapping and Scaling Utilities

Miscellaneous Utilities
Rectangle Calculations
SetRect OffsetRect InsetRect SectRect UnionRect
PtinRect Pt2Rect EquallRect EmptyRect

Point Calculations
AddPt Sub Pt SetPt EqualPt LocalToGlobal
GlobalToLocal

Region Calculations
NewRgn DisposeRgn CopyRgn SetEmptyRgn SetRectRgn
RectRgn OpenRgn CloseRgn OffsetRgn lnsetRgn
SectRgn UnionRgn DiffRgn XorRgn PtlnRgn
RectlnRgn EqualRgn EmptyRgn

Polygon Calculations
OpenPoly ClosePoly KillPoly OffsetPoly

Other
Random SetRandSeed Get Pixel

The Sound Manager
The program in Chapter 8 that showed how to use the sound tools
was a simple example of what can be accomplished with the Tool
box routines. These routines take advantage of the 5503 Ensoniq
Digital Oscillator Chip (DOC). The DOC has 32 multiplexed digital
oscillators to give you everything from beeps and buzzes to a talk
ing computer and symphonic orchestra. However, like the super
high-resolution graphics, you need to use the DOC Toolbox to
really take advantage of this feature.

To get started, let's take a quick look at the registers used to
control the sounds in DOC.

Frequency Control (Low and High)
Each of the 32 digital oscillators is composed of two eight bit regis
ters-joined together they form a 16-bit value used for the 24-bit
linear accumulator. The value of this register pair is added to the

210

Volume
This register set controls the volume level of the sound created.
Address: $40-$5F

Waveform Data Sample
This reads the last value from the waveform table.
Address: $60-$ 7F (Address Pointer)

These registers are used to determine where in RAM the wave
form tables are located. Each waveform table begins with the first
address of a page and must continue upward through RAM. It can
not exceed 64K.

The next register keeps track of where the table ends.
Address: $80-9F

Control Register
Channel assignment, oscillator mode, and halt bit are all controlled
by this register. Bits 4-7 make up the channel assignment. Those
four bits can assign up to 16 channels for sound. Bit 3 is the inter
r�pt enable used for ordering output when more than a single os
cillator has generated output. It helps keep all of the different
sounds organized. Bits 1 and 2 set the oscillating mode for each os
cillator. Bit O is the halt bit, indicating when an oscillator has been
stopped by the microprocessor or DOC.
Address: $AO-$BF

Bank Select/Resolution/Waveform Registers
Each register uses seven bits for controlling three major functions.
(Bit 7 is not used.)

Bit 6 determines whether the DOC address range is 0-64K

211

APPENDIX B

(Bank 0) or 65K-128K (Bank 1). Bits 3-5 specify the size of the
waveform table, ranging from 256 bytes to 32K bytes. Finally bits
0-2, called the resolution determination bits, actually determine the
final address for the waveform table.
Address: $CO-$DF

Oscillator Interrupt, Oscillator Enable, and A/D Converter
Registers

These three registers (not bits) control the oscillators and analog-to
digital conversion.
Addresses: $EO-$E2

Sound Tools $-08
It's not simple to crank up the kinds of sound seen in musical dem
onstrations on the JIGS. The sound tools are provided to assist the
programmer.

There are 18 sound function calls and and 6 low-level routines
for accessing the power of DOC. It works through a Sound Toolset
with a specified number. The ToolLocator finds this number to use
the sound tools. The following calls are available.
Function Calls
Sound Bootlni t
SoundShutdown
SoundReset
WriteRamBlock
GetTableAddress
SetSoundVolume
FFStopSound
FFGeneratorStatus
SetUserSoundIRQV

To set the volume, for example, you'd use the
SetSoundVolume tool. It has two parameters: one for setting the
volume and one for the generator to be set.

•

Selected Apple JIGS Toolbox Routines

SetSoundVolume Parameters
Toolbox number = $0008
Volume setting $0-FF
Generator number $0E-$FF
Notes: If the generator number is from $00-$0E, the pair of generators is
changed. But if the value is $OF or greater, the volume of the system is
affected.

Low Level Routines
Read Register Write Register
Read Ram Write Ram
Read Next Write Next

213
212

SoundStartup
Sound Version
SoundToolStatus
ReadRamBlock
GetSoundVolume
FFStartSound
FFSoundSta tus
SetSoundMIRQV
FFSoundDoneStatus

Appendix C
•

Slll
er

The Apple JIGS Programmer's Workshop Assembler, better known as
the APW Assembler, can be used to create assembly language pro
grams for graphics and sound.

Specifically, this assembler is used to create the sound pro
grams which call the built-in Toolbox routines in Chapter 8. It's
also useful for accessing the super high-resolution graphics or any
other program requiring assembly language programming.

You don't have to use the APW Assembler, for there are other
Apple IIGS assemblers on the market. The Merlin 816 Assembler by
Roger Wagner Publishing Company is a very popular macro assem
bler, for example. The ORCA/M Assembler is very similar to the
APW Assembler.

System Requirements
To use APW, you'll need an Apple IIGS with at least one BOOK 31/2-
inch disk drive for the program and one other drive. It will work
with the following combinations:

• Two BOOK 31/2-inch drives
• One BOOK 31/2-inch drive and one standard 51/4-inch inch drive
• One BOOK 31/2-inch and one hard disk

The program disk must go on the hard drive or in the BOOK
31/2-inch drive. A standard 51/4-inch drive doesn't have sufficient
room for the files.

It's also necessary to have considerable memory. A minimum
of 512K is required (256K on the motherboard plus 256K on a

215

APPENDIX C

memory expansion board). More is recommended. Programs for
this book, for instance, were developed on a one-megabyte system.
For larger programs, especially those making several Toolbox calls,
it's a good idea to have lots of memory.

Getting Started with APW
No matter what type of system you use, make a backup of your
APW disk. It's very easy to accidentally erase a disk in the APW
and assembly language environment by mistake. If you only ha�e a
single SOOK 31/2-inch disk drive, copying is a tedious chore, but it
can be done. Here's what you need to do to copy your APW disk.

Step 1: Open the write-protect window on yo�r original AP�
disk and insert it in the drive. Boot your system with the APW disk.

Step 2: Get a blank disk. Use the INI.T comman� and n�me
the device and file to prepare the blank disk. (If yo.u re copy�ng to a
hard disk, it's unnecessary to initialize it.) The device name is
accessed by using the commands SHOW UNITS. .

For example, with a single disk drive, the sequence will look
something like

INIT .Dl/APWBU <Return>

Your screen would tell you to insert the disk. Put in the blank
disk. (The disk name APWBU simply refers to APW. Ba�k Up.) .

Step 3: Put the write-protected original APW disk �n one drive
and the blank disk in the second drive. If you have a single BOOK
drive and no hard disk, you'll have to swap disks several times.
The process will take close to 15 minutes. Once the disks are ready
in their drives, type
COPY /APW/= /APWBU /=

Follow the swapping prompts if you have a single BOOK drive
and no hard disk. Otherwise, just wait until the disk is copied.

Step 4: When you're finished, you'll want to rename your disk
from APWBS to APW. To do this, enter
RENAME/APWBU/APW

216

Using the APW Assembler

Using the Editor
Get a blank disk and initialize it for the programs you'll write your
self. There's not enough room to put many on the APW disk. Even
if you have a RAM disk, there probably won't be enough room
there either.

You'll use this blank disk to save and test your assembly lan
guage programs. To make it the key or current disk, use the
command
PREFIX ASSEM

The rest of this discussion assumes the name of the disk to be
ASSEM. Any other legal filename is fine, of course. Now that the
ASSEM disk is the current disk, you can begin writing assembly
language programs with the editor.

Begin
To begin writing an assembly language program, pick a filename
and enter
EDIT filename

Even if no such file exists on the current disk, your editor will
work. So type
EDIT TESTl <Return>

and you'll see a blank screen with a cursor at the top and an in
verse ruler at the bottom showing the current tab stops for
opcodes, operands, and comments. The screen also shows the
name of the file you're editing. Use the arrow keys to move the
cursor around and the other keys to type in what you need. The
following is a selected list of editor commands.
Keys Function
Command-arrow key Jump to top or bottom of page or move up or down

one screen.
Enter insert mode. Key combination toggles mode
on and off.
Jumps tab stops. Useful, but not essential, for sepa
rating label, opcode, operand, and comment fields.

217

Tab

Esc-E

APPENDIX C

Esc-E/C
Delete

Command-Z
Command-Delete

Comrnand-C

Command-X

Cornmand-V

Command-L/K

Control-Q

Scrolls screen up/down one line.
Pressing the key erases the character to the immedi
ate left of the cursor.
Undo single character delete.
Selects line to be deleted. Pressing arrow keys se
lects more for deletion. When Return key is pressed,
all selected material is deleted. Cornmand-Z won't
restore this deletion.
Copies selected materials. After pressing this key
combination, more material can be selected using
arrow keys. Material will be placed in SYSTEMP
file when Return key is pressed. The APW disk
must not be write-protected for this to work
correctly.
Deletes selected materials. After pressing this com
bination, more material can be selected using arrow
keys. Material will be deleted from screen and
placed in SYSTEMP file when Return key is
pressed. The APW disk must not be write-protected
for this to work correctly.
Pastes materials in copy buffer to screen. It does not
clear copy buffer. This can be used to recover ma
terials cut by the Cornmand-X function. The APW
disk must not be write-protected for this to work
correctly.
Search down/up. Prompt in the bottom bar will
query for string to search. **String Not Found** mes
sage appears if unable to locate string. Otherwise,
cursor moves to search string.
Quit. This takes you to a menu with several
options.
<R> Return to editor
<S> Save to the same name
<N> Save to a new name
<L> Load another file
<E> Exit without updating

Using the APW Assembler

Writing Assembly Language Programs
If you're familiar with other assemblers, there are a few important
things to note about APW. After entering the editor, all you need
do is place a space between fields. However, it's clearer and easier
to use the leftmost column for labels, then use a tab stop for the
other three fields.

For example, the following shows a typical line with label,
opcode, operand, and comments.
Label Opcode Operand Comment
Loop sta $0400,X ;Decrement loop

To get started, let's look at some required formatting
procedures.

KEEP
The first line of a program must use the KEEP command to define
the object-code name. This is the name the program will use when
you run it.

For example, the line
KEEP GRAPH

would name the EXE and object (.ROOT) file of the program, as
GRAPH. The source code, the SRC file, can be any name you wish,
and it doesn't have to be saved as the name in the program.

For instance, you could save the program source code as
CHART, and if the KEEP name was GRAPH, when the code is as
sembled, the EXE and object files will still be called GRAPH. Since
it would be confusing to have a lot of different names, it's easiest
to save the SRC file with the .S suffix. Then you won't end up with
different source- and object-code names.

Once a program is assembled, there are three files, the source,
the object, and EXE file. If you mistakenly name the source and ob
ject files with the same name, you'll lose your source code. A cor
rectly developed program on APW would have files that would
look like the following when assembled and linked with the ASML
command:

218

Filename
GRAPH.S

Type
SRC

219

APPENDIX C Using the APW Assembler
..

GRAPH.ROOT OBJ
GRAPH EXE

The OBJ and EXE files are automatically created by the assem
bling process.

;Back to alpha
;End of subroutine, not program

.Begrn routine #2

;Jump to beta
;Back to ProDOS 16 and out of program

start
ldy #$0004
rts
end

sta $0400,x
cpx #0001
bne loop
jsr beta
rtl
end

beta

loop

It's RTL
On the 6502 microprocessor, it's common to end an assembly
listing with RTS (ReTurn from Subroutine.) A JSR-RTS pair
is used to call and return from a machine language subroutine
located in t�e same bank ?f memory as your main program.
However, with a 65816 microprocessor, you sometimes need
to jump to a subroutine in a different memory bank. This is
done with a new set of instructions: JSL (Jump to Subroutine
Long) and RTL (ReTurn from subroutine Long). These instruc
tions work just like the JSR-RTS pair, except they allow
jumping from one bank to another.

. . is given.
For example, the following shows how two subroutines are

combined in a single program with two sets of Start and End
commands.

keep dubs
alpha start .Begtn routine #l

ldx #$0022

In a single program, each subroutine can be segmented by
Start and End. That is, while it's necessary to have at least a single
pair of Start and End commands, it's also possible to have several.
The Link function ties them together into the entire program dur
ing the link process when the assemble and link command (ASML)

;Decrement loop

loop

#$0022
$0400,x
#0001 cpx

bne
rtl
end

START
After the Keep command, the first line of the source code which
will be assembled must be START. Also, it must have a unique la
bel in the same line. For example, the following line could be used
for the Start line:
Label Opcode
alpha start

The Start pseudo-opcode goes in the opcode field. There's no
operand. Any legal label can be used. The label MAIN is a com
mon one used by programmers.

END
At the end of the code to be assembled, there must be an End
pseudo-opcode. Unlike Start, no label is required. End usually goes
after an rtl opcode. The following code shows all of the necessary
requirements for a program:

keep tabs
main start

ldx
loop sta

There's much, much more that can be done with APW, but the
above material should get you started. See the complete APW docu
mentation for instructions on creating macros and other special
programming capabilities using the Apple IIGS.

220 221

APPENDIX C

Saving, Assembling and Linking Programs
Once a program has been written in the editor, press Control-Q to
quit, and, using the S or N key, save the program under the name
listed next to Filename: or give it a new name.

When developing a program and debugging it one routine at a
time, it's a good idea to use the N option to save to a new name.
Then, as each part is tested and debugged, there's a sequential list
of source code files. Once you have it fully developed and tested,
you can delete the unnecessary files and keep a working sequence
of source code files.

After the file is saved, choose E to return to the APW com
mand mode.

To assemble the source code into something that will run on
your Apple IIGS, such as the music program in Chapter 8, use the
ASML command in the APW command mode. For example, if you
saved the program under the name Tabs.s, there should be a file
TABS.S SRC

on your disk when you catalog it with the CAT or CATALOG com
mand. Now type in
ASML TABS.S <Return>

and your code will be assembled and linked. If the Keep name was
Tabs, a successful assemblage and linkage produces a ROOT and
EXE file. The EXE file is executable and can be run by simply typ
ing the program name and pressing Return. For instance
TABS <Return>

runs the program called TABS.
If there is an error in your source code, APW will tell you.

Sometimes, however, it will still assemble and link a program and
give the correct files. For example, if you change the word START
in the Dubs program to NOP (No OPeration, a legal dummy
opcode), the first part of the program will bomb and there will be
error messages. However, since the Beta routine is perfectly correct,
the assembler /linker will go ahead and produce a complete set of
files on your disk.

222

•

Using the APW Assembler

Selected APW Commands
APW is very powerful. When you're not using the editor assem
bler, or linker, there's a very useful set of commands in the
ProDOS 16 operating system under which APW runs. The follow
i�� commands can be accessed when the pound sign(#) prompt is
visible on the screen.

Catalog or Cat
Lists the files in the current directory to the screen. If a subdirec
tory or main directory is not specified, the current directory is
listed. If one or more subdirectories are specified, the Catalog com
mand finds the desired directory, even if it's on a disk other than
the the current one. For example
CAT /COMPUTE/CH9

lists the files in the subdirectory CH9 found on the disk named
COMPUTE.

Compress
Compress can do two things. First, it compresses the files on your
disk. This function collects the gaps left in the directory when a file
is deleted. Second, it can sort the directory in alphabetical order. If
you use the Compress command with no parameters, it prompts
you to choose either C (Compress) or A (Alphabetize) or both. If
both are used, leave a space between them.

Copy
Copy a file from one disk and/or subdirectory to another. It's actu
ally a lot easier to do this from the desktop. To copy a file to the
same disk and to the same directory, specify the file to be copied
and the filename to assign to the copy. For example
COPY TUNE TUNE.BKU

makes a copy, named TUNE.BKU, of the file TUNE and places it in
the same directory.

223

APPENDIX C
Using the APW Assembler

More than a single combination can be used, but each must be
separated by a space.

It's possible to delete a subdirectory, but only if that directory
is empty. The files in the subdirectory must be deleted before the
subdirectory itself is erased.

Option
Hexadecimal dump
65816 disassembly format
With + X option, list headers as hex also
Just show the headers
File type suppress
With + D option, assume the accumulator is in eight-bit mode
With + D option, assume the X and Y registers are in eight-bit
mode
Just provide operation codes and operands for OMF and
65816 disassembly listings
Only segment name and type in segment headers

-A

+D
-H
-0
-F
-M
-I

-S

Dumpobj
This command works something like a memory dump from the
monitor, except instead of dumping memory, it dumps the contents
of an OBJ file. There are several different options, depending on
how you wish to see the object code.

The default dump is called Object Module Format (OMF), but
if so desired, it can dump the code in hexadecimal code or 65816
disassembly. For example
DUMPOBJ DUBS.ROOT

uses the default OMF format. Alternatively,
DUMPOBJ + X DUBS.ROOT

dumps hexadecimal code with text in the margins.
The following options are available with DUMPOBJ.

Option
Identifier
+x

To copy from one disk to another, specify the pathnames sepa
rated by slashes. There's no need to create a new filename. For in
stance, to copy the file TONE, which is in the current directory
CH9 (part of the path named /COMPUTE/CH9), to the root direc
tory of the disk/ APWPROGS, you'd use
COPY TONE / APWPROGS

Only the TONE file is copied, not the whole disk. The file is
saved on the second disk under the name TONE.

If you wanted to use a different filename, you could append it
to the end of the / APWPROGS pathname, as in
COPY TONE /APWPROGS/TONE2

Now the file TONE has been copied to / APWPROGS under
the filename TONE2.

Delete
Deletes the specified file from the current directory. Although this
erases the file from disk, the disk has not yet been compressed. In
other words, the file is still recoverable. If several developing pro
grams have been written, it's possible to use a wildcard to erase an
entire group of files with the wildcard characters. The wildcard in
dicator is the equal sign (=), and if placed at the beginning or end
of a filename, all files with the indicated attributes will be deleted
in the current directory.
DELETE = .BKU

deletes all the files with the extender .BKU.
DELETE TON=

deletes all the files with the first three letters, TON. Filenames
TONE, TONY, TONAKA, TONIGHT would be deleted from the
current directory.

Create
Creates a new subdirectory in the current directory. For example, to
create a directory called SAMPLES, the command sequence
CREATE SAMPLES

would do.

224 225

APPENDIX C

File type
This command changes a specified file to a specified type. There
are three different ways a file can be specified-by decimal code,
by hexadecimal code, or by text code. Since the text code is used in
the directory, let's use those. They include:
File Type Definition
TXT Text
BIN ProDOS 8 binary load
DIR Directory
SRC Source code
OBJ Object code
LIB Library
516 ProDOS 16 System load
RTL Run-time library
EXE Shell load
STR Startup load
SYS ProDOS 8 system load

To change a program to a startup file, for example, you would
enter
FILETYPE HELLO STR

and the file named HELLO becomes a startup file.

Help
By itself, the Help command lists all available commands to the
screen. If a command name follows Help, then information about
that command is brought to the screen. To find out more about the
Help command, enter
HELP HELP

Init
This command is used to format a disk. It's easier and somewhat
safer from the desktop, but again, you can use it from APW if you
want.

All the command requires is the device number (use SHOW
UNITS to see connected devices) and a filename. For instance

226

Using the APW Assembler

INIT .02 OLDSPOT <Return>

initializes the disk in device .D2 as OLDSPOT. This command com
pletely erases the contents of a disk.

Move
Move lets you organize your disk by moving files from one direc
tory to another. To use the command, specify the file in a current
directory and the name of the directory it's to be moved to. For
example
MOVE GRAPH PORTFOLIO

moves the file GRAPH to the directory called PORTFOLIO. More
complicated moves can be made through several layers of subdirec
tories as well.

Prefix
This standard ProDOS command sets the current directory.
PREFIX SAMPLES

makes the directory SAMPLES the current directory.

Quit
Exits APW and gives the option of rebooting, executing the Start
program, or providing the pathname of an alternative start
program.

Rename
A standard ProDOS command which lets you change the name of
a file. A space between the old name and the new name is
required.
RENAME ONE TWO

changes the name of the file called ONE to a file now called TWO.

227

APPENDIX C

Show
The show command can display the following: Appendix D

•
-In

on-
Function
Current language
All languages in language table and their numbers
Shows the date and time
Devices connected to system

Option
Language
Languages
Time
Units

Switch
The Switch command swaps the positions of two files in the direc-
tory. For example
SWITCH APPLES ZEBRAS

switches the directory position of the files APPLES and ZEBRAS.

Graphic/Text Soft Switches
Type

Lists SRC and TXT files to the screen. Type is a useful command
for checking the contents of a source file. Enter the command and a
filename. To see the source code file GRAPH.S, for instance, enter
TYPE GRAPH.S

and its contents are listed to the screen.

Switch Address
$COSO 49232
$C051 49233
$C052 49234
$C053 49235
$C054 49236
$COSS 49237
$C056 49238
$C057 49239

Function
Graphics mode
Text mode
All text or graphics
Mixed text and graphics
Page 1
Page 2
Low-resolution graphics
High-resolution graphics

Selected Low-Resolution Routines

A =vertical position 0-$2F
Y = horizontal position 0-$27
A= vertical position 0-$2F
Y=left horizontal position 0-$27
Address $2C=right horizontal position 0-$27
A= top vertical position 0-$2F
Y=horizontal position 0-$27
Address $2D=right horizontal position 0-$27

$F828

$F819

$F800

HLINE

VLINE

Subroutine Address
Notes
PLOT

228 229

APPENDIX D

CLRTOP
SETCOL

Subroutine
HGR
HGR2
BKGRND

$55
$2A
$05
$AA
$FF
$00
HCOLOR
HP LOT

HR LINE

$F836
$F864

Address
$F3E2
$F3D2
$F3F4

$F6FO
$F457

$FS3A

Clears to 40 lines of lo-res screen
Sets lo-res color
A register holds color code

$0=Black
$1=Deep red
$2 = Dark blue
$3=Purple
$4 = Dark green
$5 = Dark gray
$6=Medium blue
$7=Light blue
$8=Brown
$9=0range
$A=Light gray
$B=Pink
$C=Light green
$D=Yellow
$E = Aquamarine
$F=White

Notes
Starts up HGRl
Starts up HGR2
Background color from A register (mask)

Solid color values for background:
Violet
Green
Blue
Orange
White
Black

Color 0-7 in X register
Vertical position A register
Horizontal low byte X register
Horizontal high byte Y register
Horizontal low byte A register
Horizontal high byte X register
Vertical position Y register

230

Index
{ } See braces
< See less than symbol
0/o See percent sign
I See slash
accumulator 30
A/0 converter registers 212
algorithm 128
animating low-resolution graphics 57-59
animation 21-38
animation with page switching 69-71
Applesoft error messages 201-2
Apple lies Programmer's Workshop Assem

bler 215
APW assembler 215-28

assembling 222
commands 223-28
editor, using 217
END 220
getting started 216
KEEP 219
linking programs 222
saving 222
START 220
system requirements 215-16
writing assembly language programs
219-21

arc 186, 209
arcn 186
ARRAY tables 25-28
array, using 80-81
assembler 14
assembler, using 134-35
bank select 211
bank-switching 29-34
BASIC statements summary 63-64
bitmapped graphics 101-8
bitmapped graphics colors (figure) 102
BLOAD 73
braces 195
BSAVE 67
CALL 64
calls, drawing 208-10
character path 193-94
character patterns 12-13
charpath 193-94
carriage return 6
chart

labeling 116-19
multiple 126-28
proportional 114-16

circles 128-30
ClearScreen 207
closepath 185
color 41-43
color combinations 48-51

231

color memory 74-79
color, setting 207
COLOR statement 47
color, storing 78-79
complementary positions 75
control bit 74
control register 211
current point 182
curves 186-88
data table 25-28
def 181, 195
delay loop 160
development assembler 157
diagonal movement 24-25
digital oscillator chip (DOC) 169, 210
DOS 3.3 error messages 201-2
double-high-resolution graphics 79-83
double-low-resolution graphics 52-57
DRAW 99
drawing calls 108-10
drawn objects 57
duration loop 162
BO-column screen 28-34
error messages 201-4
even address 75-77
fill 188-90
FLASH 6-8
font 181, 190-91
FORTH 179
frequency control 210
global 205
graphic drawings, saving 67-68
graphic routines, built-in 229-31
graphics

mixing with sound 166-69
on the screen 106-7
screen 45

graphic/text soft switches 229
grestore 193
gsave 193
handle 135
HCOLOR 63, 123
HGR 63, 69
HGR2 63, 69
high bit 101
high nibble 91-92
high-resolution color values 1-8 (figure) 75
high-resolution graphics 63-83, 119-30
high-resolution routines 230-31
HLIN 43
horizontal grid lines 125-26
horizontal movement 21-22
horizontal spacing 119-21
HPLOT 64
HPLOT TO 121, 129

Selected High-Resolution Routines

HTAB 116
indexed 30
INVERSE 4-6
keyboard notes 164
keyboard, using 164-65
LDA 31
less than symbol 80
line 183-86, 208-9
line feed 6
line graphs 121-26
lineto 183
line width 188-90
LOMEM 81
long jump 29-34
loops 162
low nibble 91-92
low-resolution graphics 41-59, 111-19

animating 57-59
color combinations 48-51
in BASIC 43-52

low-resolution graphics screen 46-48
low-resolution routines 229-30
machine language speed 13-14
mapping 210
memory banks 28-34
memory manager 135
Merlin 816 Assembler 215
mini-assembler 14, 141
monitor 79-80, 141
movement 21
moveto 182
moving memory 104-5
music 162-65
newpath 182
odd address 75-77
offset 161
opcode 141
ORCA/M Assembler 215
oscillator enable 212
oscillator interrupt 212
ovals 209
page description language 179
page switching, animation 69-71
path 182
percent sign 181
pitch loop 162
pixel 74
pixel transfers 209
PLOT 45
ploygons 209
point 180
pointer 95
postfix 180
Postscript 179
Postscript graphics 179-97

comments 181
lowercase 181
point positions (figure) 180
word definitions 181

232

Postscript Language Reference 197
Postscript Language: Tutorial and Cookbook

197
primary page 63, 67, 68, 73
procedure 195
ProDOS 8 error messages 202
ProDOS 16 error messages 203-4
proportional chart, drawing 114-16
proportional data 112-14
"QuickDraw Lines" program listings

137-41
"QuickDraw Mouse" program listings

144-53
QuickDraw II 135-44
QuickDraw II calls 205-10
QuickDraw, using mouse 144-53
quotation marks 4
rectangles 209
rectangles, rounded-corner 209
regions 209
relative offset 96
relocatable 96
resolution 211
reversed 102
reverse Polish 180
rlineto 183
rmoveto 192
RND statement 67
ROT 99
rotate 191
RTS 221
SCALE 98
scale 191, 192
scalefont 191
scaling 210
scatter graph 120
screen 17
screen address 10-12, 75-77
screen mapping 3
secondary page 63, 67, 68, 73
sequential memory 104-5
setfont 191
setgray 188
setlinewidth 189
SetPenSize 206
SetSolidPenPat 207
SGN function 34
shape manipulation 98-101
shapes 87-101

drawing in memory 88-91
moves and values table 88
moving memory 104-5
sequential memory 104-5
translating by hand 91-93

shape table 95-98
entering from BASIC 95-97
entering from the monitor 97-98

show 191
showpage 181, 184

•
slash 181, 195
slide show effect 71- 73
soft switch 43, 64
software translation 93-94
sound 157-62
sound control 159-61
sound generation 8
sound manager 210-13
sound, mixing with graphics 166-69
Sound Toolbox 169-70
sound tools 212-13
spaces 3-4
SPC function 4
speaker tweaking 157-9
speed control 159-61
STA instructions 30
step loop 107
stroke 184
super high-resolution graphics 133-53
switching screens 68-74
text 190-91
text, angled 191-93
text drawing and measuring 209
text editor program listing 181-82
text graphics 3-17

233

TEXT mode 43
text, modifying 193-94
text screen 8
text screen, mapping 8-13
text spaces 44
Toolbox, Apple lIGS 133
Toolbox routines 205-13
top color /bottom color (figure) 4 7
translate 182
translating by hand 91-93
translation, software 93-94
utilities 210
vertical grid 122-25
vertical movement 22-24
visible screen 135
VLIN 43
volume 211
VTAB 116
WAIT routine 8
waveform 211
wildcard 224
words, defining 195-97
XDRAW 99
Zap command (Z) 80

- I •

KIRWAN OLD. 4814

Great Sound, Great Graphics
The GS in Apple IIGS stands for Graphics and Sound, the two most
advanced features of the newest Apple II personal computer. With
exceptional high-resolution graphics and synthesizer-quality sound,
the Apple IIGS can paint the screen with more than 4000 colors and
make music like a symphony.

But because the graphics and sounds are so sophisticated,
using them in your own programs on the IIGS is more complicated
than on other Apple II computers. COMPUTEl's Guide to Sound and
Graphics on the Apple I/Gs shows you how to access and control
this machine's impressive power. With a patient approach and clear
writing and programming examples, this book takes you on a tour
of the IIGs's capabilities, from the Apple II-like low-resolution graphics
to the new super high-resolution screens.

William Sanders, author of the Elementary Apple I/Gs as well as
a number of other programming books, shows you step by step how
to create your own programs. Here's just some of what's inside:
• Drawing simple graphics on the text screen.
• How to animate shapes to create moving pictures.
• Using the low- and high-resolution graphics modes.
• Making shapes, shape tables, and creating bitmapped graphics.
• Generating terrific-looking graphs and charts on the IIGS.
• Accessing the new super high-resolution mode of the computer.
• Tweaking the speaker for simple sounds.
• Getting to the Apple IIGS Toolbox to create dazzling sounds.

Scores of program examples-in both BASIC and machine lan
guage-illustrate each concept. You can alter the programs at will
to make new designs and to explore new areas.

COMPUTE l's Guide to Sound and Graphics on the Apple I/Gs is
an instant education in programming on this new and powerful
Apple personal computer.

9 780874 550962

51695

	COMPUTE!'s Guide to Sound & Graphics on the Apple IIGS (1987)
	Table of Contents
	Foreword
	Acknowledgments
	Chapter 1 - Text Graphics
	Chapter 2 - Fundamentals of Animation
	Chapter 3 - Low-Resolution Graphics
	Chapter 4 - High-Resolution Graphics
	Chapter 5 - Shapes and Bitmapped Graphics
	Chapter 6 - Making Graphs and Circles
	Chapter 7 - Super High-Resolution Graphics
	Chapter 8 - Sound and Music on the Apple IIGS
	Chapter 9 - PostScript Graphics
	Appendices
	Appendix A - Error Messages
	Appendix B - Selected Apple IIGS Toolbox Routines
	Appendix C - Using the APW Assembler
	Appendix D - Selected Non ToolBox Built-in Graphic Routines

	Index

