COMPUTE s GUIDE 7O

SOUND &
GRAPHICS

— William B. Sanders

The perfect introduction to programming sound and
graphics on the dazzling new Apple liGs. 2

g S g BN s ¥ a‘"1‘*:’-._

00y it Attt

neyAppleTIDiskcolle
Yo oeny T L e
' f’h‘_;ﬁi‘;: s A LY

i et S
& Y

L
oy

http://www.cvxmelody.net/AppleUsersGroupSydneyAppleIIDiskCollection.htm

KIRWAN QLD. 4814 \

COMPUTE!’s
GUIDE 10O

SOUND
AND

GRAPHICS

on the Apple IIGS

William B. Sanders

e [] []
COMPUTE! Publications,inc.&
Part of ABC Consumer Magazines, Inc.

One of the ABC Publishing Companies

Greensboro, North Carolina '

Copyright 1987, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107
and 108 of the United States Copyright Act without the permission of the copyright owner is
unlawful.

Printed in the United States of America
10987654321

ISBN 0-87455-096-3

The author and publisher have made every effort in the preparation of this book to insure the accuracy of
the programs and information. However, the information and programs in this book are sold without war-
ranty, either express or implied. Neither the author nor COMPUTE! Publications, Inc. will be liable for
any damages caused or alleged to be caused directly, indirectly, incidentally, or consequentially by the
programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of COM-
PUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809,
is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Companies, and is not
associated with any manufacturer of personal computers. Apple is a registered trademark
and Apple IIGS is a trademark of Apple Computer, Inc.

Table of Contents

POr R it e e e el e B L y
A oWl e R e e Vi
Chapter 1

Fi LT T o R L N R T it e 1
Chapter 2

Fundamentals af Animation. +-. e e o 19
Chapter 3

Low-Resolution Graphics oo tioey SunuEsE e e | 39
Chapter 4

High-Resolution Graphics« ok PunnSu e 61
Chapter 5

Shapes and Bitmapped Graphics 0 r T e 85
Chapter 6

Making Graphs and Circles s i syl 109
Chapter 7

Super High-Resolution Graphics ... i i & 131
Chapter 8

Sound and Music on the Apple lIGS . .« L ies o 155
Chapter 9

PostScript Graphics v i RE S 177
ADPDPEIBICES . . .« i covon v v o ore i Riel. ST 199

Appendix A
Error Messageso:ohss ol o Sntite e 201

Appendix B

Selected Apple 11GS Toolbox Routinesco0sess. 205
Appendix C

Using the APW Assembleroouiiiiuii... 213
Appendix D

Selected Non-Toolbox Built-in Graphic Routines 229
RRIEREER. o om0 s i 4 231

Foreword

y ears ago, Apple promised “Apple II forever.” The Apple IIGS
is the proof that Apple wasn’t kidding. The newest addition to the
ten-year-old Apple II line, the IIGS is a powerful computer with
new features and capabilities, yet one that is compatible with most
Apple software.

That combination—added power and compatibility—extends
into the programming arena as well. If you've programmed on the
Apple II+, Ile, or Ilc, you won't have trouble with the standard
graphics modes on the Apple IIGS. But the IIGS-specific graphics
and sound features, like super high-resolution graphics and sophis-
ticated sounds, are new to everyone. You may be confused at first.
How can you create super hi-res pictures, for instance? How can
you get to the IIGS’s Toolbox?

COMPUTE!’s Guide to Sound and Graphics on the Apple 11GS

- shows you how. Written by William Sanders, well-known author

of such books as The Elementary Apple and The Elementary Apple
IIGS, it’s full of programming examples, tips, and techniques that il-
lustrate the power of your new computer.

From the first chapter to the last, Sanders takes you on a
guided programming tour of the Apple IIGS. You'll be introduced
to the text screen and shown how that simple mode can generate
useful graphics. You'll discover the fundamentals of animation.
You'll explore the lo-res and hi-res Apple graphics modes, and will
even see how to create shapes and bitmapped graphics. You'll see
practical programming applications, such as drawing charts and
graphs. You'll find out how to access the super hi-res mode and
how to make superb music on the IIGS.

Scores of BASIC and machine language programs and routines
amply demonstrate the programming techniques Sanders offers.
Step-by-step instructions outline what you need to do and when to
do it. The clear writing leaves nothing to puzzle you.

COMPUTE!’s Guide to Sound and Graphics on the Apple IIGS is
your introduction and instructor to the world of sound and graph-
ics programming on the newest, hottest Apple II computer ever.
With it and your imagination, you can turn out your most dazzling
programs ever.

Acknowledgments

Just about every project requires the acknowledged author to ritual-
istically thank others for their help. While several of those who lent
their assistance to this project suggested I send them lots of money
instead of a mere acknowledgment, it was impossible for me to be- 4
stow filthy lucre upon such noble altruism. Therefore, it is with Cl] apte I 1
pure sincerity, and in this case more than ritualistic gratitude, that

- these acknowledgments are made.

@
The first three people who made it possible for this book to be
completed with some semblance of schedule were Roger Wagner, eX rap ICS
Roger Wagner and Roger Wagner. First of all, Roger helped with
enlightening me to the mysteries of the new Apple IIGS Toolbox.
For the super high-resolution graphics and DOC sounds, this was
absolutely required. Secondly, he provided me with prerelease ver-
sions of the Merlin Assembler for the 65816 chip that’s the heart of
the Apple IIGS. Third, Roger was generally encouraging and help-
ful in organizing excuses to our long-suffering editor who regularly,
but patiently, inquired as to the completion date.

Martha Steffen of Apple Computer, Inc. provided a prototype
Apple IIGS along with a ton of documentation and a great deal of
invaluable software. With all of the demands placed upon Martha
by developers and writers, her assistance is doubly appreciated.
Eric Goez, Bill Rupp, and many others in the Apple world in San
Diego provided different types of information right at the moment
it seemed to be most needed. My aforementioned, long-suffering
editor, Stephen Levy, is a case study of what a good editor should
be: helpful, encouraging, and understanding in the complexity of
preparing books for new computers. Likewise I am grateful to Bill
Gladstone of Waterside Productions for arranging things to make
the book possible.

Finally, my family has been wonderful in this occupation—
where one is at home writing but not at home. My sons Bill and
David were considerate in keeping typical teenaged sounds down
to a bearable din and allowing me occasional use of the phone. My
wife Eli provided an intangible warmth, and our brave dog Jingle
kept robbers and ax murderers at bay while the work proceeded.

William Sanders
April, 1987

It might seem strange to begin a book on graphics with a discus-
sion of text-graphics—but there is a good reason. First of all, a
number of concepts introduced in this chapter will later be applied
to various graphics applications, and in order to focus on the con-
cept and not the graphic element, text will serve better. Second,
there are many graphic elements which can be introduced using
text. This is especially true with combinations of inverse and regu-
lar video. Using full graphics screens, you loose certain types of
built-in text capabilities. However, using full text screens, you can
arrange various inverse blocks of text to create graphic elements
along with all of the built-in Apple IIGS screen fonts and charac-
ters. Finally, it will be a relatively easy introduction to screen map-
ping. Screen mapping refers to addresses in your GS’s memory that
correspond to locations on the screen. If you insert a given code in
a given address, some figure will appear in the corresponding loca-
tion on the screen.

Normal, Inverse, and Flash

To get started, initialize a blank disk. While learning new concepts
and techniques, it's a good idea to use a disk which you can acci-
dentally destroy without losing vital data. Keep a second disk
handy to transfer and save those programs that you want to keep.
Then you’ll have both a disk of expendable experimental programs
and another of hold-and-keep programs.

Spaces

An important thing to understand about text graphics is the space.
Not just space, but the space—the empty room between words. In
Applesoft BASIC, there are two ways to make a space. First, you

3

CHAPTER 1

Text Graphics

can define a space by placing two quotation marks with a space be-
tween them, as the next line illustrates.

S$=" " (One or more spaces between quotation marks)

The second method is to use the SPC function, which places a
specified number of spaces sequentially on the screen. It's different
from the defined space. First, you cannot define SPC as part of a
variable; second, SPC places spaces sequentially when there’s no
formatting symbol (semicolor or comma) following it. The follow-
ing shows SPC used in a typical format:

30 PRINT SPC(5)

That produces the same result as
30 PRINT “ “;: REM B spaces between quote marks

INVERSE

It’s a bit difficult to see a space unless it's against a contrasting
background. You can easily reverse the screen on your Apple with
the INVERSE statement. Let’s take a look at a simple program to

get going.

Program 1-1.

10 TEXT : HOME

20 85=" " . REM 5 SPACES
30 INVERSE

40 PRINT S$

50 PRINT

60 PRINT SPC(10)

70 NORMAL

This program puts a couple of bars on your screen. Conceiv-
ably, you could put anything you wanted on your Apple’s screen
simply by adjusting the number of spaces between the quotes or
the value of SPC. That’s exactly what you’ll do, but you’ll let your
Apple do most of the thinking.

Creating graphics programs is much the same as creating any
other kind of program. If you were writing a checkbook program,
for example, you wouldn’t write it so that the user has to do all the
calculations. You want the computer to do the work. Similarly,

with graphics programming you don’t want to do all the calcula-
tions manually when your computer can do them, and do them
much faster. This not only saves you programming time, but helps
you think of mathematically-generated designs.

To see an example of this concept, let’s create a stairway.
You’ll do it two ways—the hard way first, then the easy (and

smart) way.

Program 1-2.
10 TEXT : HOME
20 INVERSE
30 PRINT “ “ : REM 1 SPACE
40 PRINT"” " :REM 2 SPACES
50 PRINT “ “: REM 3 SPACES
60 PRINT “ " : REM 4 SPACES

.. . Continue adding one space to each PRINT statement until you
reach 22.
240 PRINT “ “: REM 22 SPACES

250 NORMAL

That's a lot of work to get a staircase. Try it again, using the
next program.

Program 1-3.

10 TEXT : HOME

20 INVERSE

30 FOR X = 1 TORR
4084 = 8% + “ °
50 PRINT S$

60 NEXT

70 NORMAL

This program builds the size of the bars by concatenating S$
with a space each time through the loop. Notice tl:lat the second
version took only one-third as many lines as the first. In other
words, it was three times as much work to get the same results
using the first method. That's what was meant by the hard way and
the smart way. g

Let’s do the same thing with SPC. You can do it in only seven
lines since the loop variable (X) increases the length of each bar,

CHAPTER 1

avoiding the necessity of concatenating a string variable. You also
don_t have to define S$, though a line to provide the line feed or
carriage return after printing SPC must be added.

Program 1-4.

10 TEXT : HOME

20 INVERSE

30 FOR X = 1 TO 22
40 PRINT SPC(X)
50 PRINT

60 NEXT

70 NORMAL |

These stairs look pretty steep. By changing a single line in the I
program—Iline 30—you can make them easier to negotiate. |

Program 1-5.

10 TEXT : HOME

20 INVERSE

30 FOR X = 1 TO 40 STEP 2
40 PRINT SPC(X)

50 PRINT

60 NEXT

70 NORMAL

| A simple change in the program alters the entire graphic de-
sign. In later chapters, you'll see again and again how to let your
Apple do the thinking and calculating for you.

FLASH

T}ne FLASH statement is used sparingly in programming since it's
distracting and hard to read. However, it has some useful purposes

In text graphics. For example, you could make a flashing poster
with the next program.

Program 1-6.

10 TEXT : HOME

20 FLASH

30 FOR X = 1 TO 40
4084 =88 + “

Text Graphics

50 NEXT
60 FOR X = 1 TO R
70 PRINT S§;

80 NEXT
90 VOTE$ = “"VOTE FOR SENATOR SNORT"

100 VTAB 12: HTAB 20 - LEN (VOTE$) / 2
110 PRINT VOTE$

120 TEXT
130 NORMAL

See if you can change the program to put a border of asterisks

(*) around the campaign poster.
By combining inverse and normal backgrounds, and adding a

little sound, you can make something that will really get people’s
attention. (The following program gets a little complicated, but it

uses the same principles you've just seen.)

Program 1-7.

10 TEXT : HOME :F$ = “=": PRINT "ENTER MESSAGE HERE:":
PRINT “(MUST BE EVEN # OF CHARACTERS.)": INPUT "==>
"YP$:YP$ = “** + YP$ + "**".P = LEN (YP$)

20 HOME :LM = 20 - LEN (YP$) /2

30 IF LEN (F$) < > 40 THEN F$ = F$ + "=": GOTO 30
40 PRINT F$:: FOR I = 1 TO 15: PRINT “I"; SPC(38);"I";: NEXT :
PRINT F$

50 INVERSE : FOR I = 2 TO 16: HTAB 2: VTAB I: PRINT SPC(38):
NEXT : NORMAL : FOR PAUSE = 1 TO 1000: NEXT
60 FORK = 2 TO 16: FOR W = 20 TO 21: VTAB K: HTAB W: PRINT
SPC(1): NEXT : NEXT : FOR I = 2 TO LEN (YP$) /R
YOFORJ = 2 TO 16: VTAB J: HTAB I + 20: PRINT SPC(1): VTAB
J: HTAB 21 - I: PRINT SPC(1): NEXT : NEXT
80 VTAB 22
00 88§ = “**
100 IF LEN (8S$) < 40 THEN S8$ = 8S$ + ™": GOTO 100
110 FLASH : HTAB 1;: VTAB 18: PRINT SS§: NORMAL
120 SPEED= 150
130 L$ = LEFT$ (YP$, LEN (YP$) / Q)
140 R$ = RIGHT$ (YP$, LEN (YP$) / Q)

150 FOR V = 1 TO (LEN (YP$) / 2
160 VTAB 9: HTAB 20 + V: PRINT MID$ (R$,V,1): GOSUB 250

CHAPTER 1 Text Graphics

HQ IR = (TaN) 1 1 THEN 180 for the vertical position, you can define an X,Y coordinate system.
180 VTAB 9: HTAB 21 - V: PRINT MID$ (L$, LEN (L$) - (V- 1),1): The 1,1 position is the upper left, and the 40,24 position is the
GOSUB 250 lower right. Here’s a grid with all of the points on the 40-column
190 NEXT : SPEED= 255 vy
200 INVERSE : VTAB 22:H$ = “ <HIT ANY KEY TO CONTINUE> “:
HTAB 20 - LEN (H$) / 2: PRINT H$: NORMAL Figure 1-1. 40-Column Text Screen

210 WAIT - 16384,128: POKE - 16368,0 ;
220 VTAB 16: HTAB LM: POKE 32,LM: POKE 35,168: POKE 33,P: |
POKE 34,2 |
230 FORI = 1 TO 16: FOR J = 1 TO 50: NEXT J: CALL - 912: NEXT
240 VTAB 22: TEXT : FORI = 1 TO 24: FOR J = 1 TO 50: NEXT J:
CALL - 912: NEXT : END
250 BZ = 49200: FORI = 1TO 18: FORJ = 1 TOI*(J-1): NEXT:B =
PEEK (BZ): NEXT
260 RETURN

A couple of things worth noting in this program are the sound
generation and the WAIT routine. Line 250 generates a buzzing
sound by PEEKing the speaker address, but it doesn’t use the full
sound power of your IIGS. That will come later in this book, and
involves the Toolbox and the Ensoniq chip.

The WAIT routine on line 210 does two things. First, it holds
everything until a key is hit, then it clears the keyboard buffer. Sec-
ondly, it waits for this keypress without a cursor or prompt to spoil

40 Column Text Screen

your graphics disPIa_y. You may be more familiar with the GET Under this same coordinate scheme, the middle of the screen is
statement. Change line 210 to defined as position 20,12. The entire coordinate system is simple to
R10 GET A$ use, since you can plot anywhere you want.

To become familiar with the system, use the following pro-
gram to place inverse spaces on the screen. The program uses
CHR$(32), the ASCII code for a space.

and see the difference.

Program 1-8.

10 TEXT : HOME : COUNT = O

20 INPUT "HOW MANY PLOTS “;N
30 HOME

40 HTAB 1: VTAB 1

50 PRINT “X POSITION =";

60 INPUT X

70 HTAB 1: VIAB 1

80 PRINT “Y POSITION=";

90 INPUT Y

Mapping the Text Screen

The easiest way to begin learning about mapping the IIGS screen is
with the 40-column text screen. The Apple IIGS text screen is a grid
of 24 rows and 40 columns.

The upper left corner is column 1, row 1 and the lower right
corner is column 40, row 24. Thus, if you think of the screen in
terms of x coordinates for the horizontal position and y coordinates

CHAPTER 1

Text Graphics

100 HTAB X: VTAB Y

110 INVERSE

120 PRINT CHR$ (32)

130 NORMAL

140 COUNT = COUNT + 1

150 IF COUNT < > N THEN 40

See if you can draw a box with this program. Plan ahead so
that you can sequentially plot your box. Once you can do that, you
should have a pretty good idea where everything goes on the
screen.

Screen Addresses

Making the conceptual jump from understanding the screen as a
series of x,y coordinates to understanding the screen’s addresses is
both simple and confounding at the same time. It’s simple since the
addresses in a row are sequential, but it’s confounding since the
addresses are not sequential from one row to the next. Let’s start
with the simple part.

While thinking of your screen as a series of column and row
coordinates, also think of it as a series of addresses. If you place a
value into a screen address with a POKE statement, a character will
appear on the screen.

The upper left corner is address 1024 ($400 in hexadecimal).
The first row is made up of addresses 1024-1063. To see how to
POKE a character in the text screen, use an inverse space. POKE
the value 32 into an address in the first row to create an inverse
space.

The 32 you POKEd into memory is a screen code. It is differ-
ent from the CHR$(32) we used before. (CHR$(32) is a normal
space, the screen code 32 is an inverse space.)

Program 1-9.

10 TEXT : HOME

R0 FOR X=1024 TO 1024 + 39
30 POKE X,32

40 NEXT X

That small program put an inverse bar across the top of your
screen. Now let’s try going another row or 40 addresses farther (for

10

40 columns) and see what happens. Change line 20 to read
20 FOR X = 1024 TO 1024 + 79

Now when you run the revised program, you'll see two bars
separated by a considerable space, not stacked one on top of an-
other as you'd expect. This is because the Apple’s screen memory
is not sequential from one row to the next.

Bars Together

On the Apple IIGS, the address of the first character of each screen
line is 128 ($80), higher than that of the previous line. To draw
two adjacent bars, then, the program would look like this:

Program 1-10.

10 TEXT : HOME
R0 FOR X = 1024 TO 1024 + 39
30 POKE X, 38

40 NEXT

50 FOR X = 1152 TO 1152 + 39
60 POKE X,3:

70 NEXT

Now you can begin to discern the pattern of screen addresses
on the IIGS. Refer to the table below for the address of each row’s
beginning.

Row Address
1024
1152
1280
1408
1536
1664
1792
1920

After the eighth fow, the sequence begins again with address
1064. Before continuing, however, type in and run the following
program.

O O U v W N =

11

CHAPTER 1

Program 1-11.

10 TEXT : HOME

20 FOR X = 1024 TO 1920 STEP 128
30 POKE X, 32

40 NEXT

If there’s a vertical bar, you know you're on the right track.
Just for fun and practice, try POKEing any screen address, and then
that address plus 128. You'll get stacked bars all over the screen.

Character Patterns

Generating inverse and normal screen characters can make interest-
ing patterns. By POKEing normal and inverse spaces to the screen,
you can draw low-resolution figures in black and white. The differ-
ence in screen code values between an inverse and a normal space
1s 128, so a normal space’s value is 160 (128 + 32).

This next program draws alternating normal and inverse
spaces.

Program 1-12.

10 TEXT: HOME : V =0

R0 FOR X = 1024 TO 1024 + 39

30 POKE X,32 + V

40 IF V = O THEN V = 128 : NEXT
S0IF V = 128 THEN V = 0 : NEXT

In addition to using the POKE statement to put something on
the screen, you can use the PEEK command to see what’s there.
For example, if you used statements like

PRINT PEEK (1024)
PRINT PEEK (1025)
PRINT PEEK (1026)

and so on, to examine the top line after running Program 1-12,
you'd find alternating values of 32 and 160. Using this information,
you could write a program that would switch light and dark spaces,
giving the sensation of movement. Program 1-13 does just that.

12

Text Graphics

Program 1-13.

10 TEXT : HOME : V = 32
20 FOR X = 1024 TO 1063
30 POKE X,V
40 IF V = 32 THEN V = 160 : NEXT
50V = 32 : NEXT
60 FOR W = 1 TO 20
70 FOR X = 1024 TO 1063
SOPOKEXV: V=V 1+ 128:IFV
> 160 THEN V = 32
SONEXTX: V=V + 128:IFV
> 160 THEN V = 32
100 NEXT W

The program draws a sequence of normal and inversed spaces
across the top of the screen. It then enters a loop which switches
the normal spaces to inversed ones, and the inversed spaces to nor-
mal ones. This is what produces the animated affect. The following
program scans the screen memory sequentially and inverses what-
ever it finds.

Program 1-14.

10 FOR PA = 1024 TO 1104 STEP 40
20 FOR X = PA TO 2039 STEP 128
30 FOR SCREEN = 0 TO 39
40 N = PEEK (X + SCREEN)
SBOIFN > =192 THEN F = N - 192
60IF N <192 THEN F = N - 128
7TOIFN <160 AND N > 31 THEN F = N + 128
80IF N <3 THEN F = N + 192
90 POKE X + SCREEN,F

100 NEXT SCREEN

110 NEXT X: NEXT PA

Machine Language Speed

You can greatly enhance the effect of text graphics by speeding up
the process. This can be done by using the native language of your
Apple 1IGS, machine language. The POKEs and PEEKs you‘ve been

using are actually simple machine language routines included

13

CHAPTER 1

within BASIC. In later chapters, when you get into the Toolbox,
you'll be using more machine language programming.

For now, though, let’s keep it simple. You'll load a space (the
value 160) into a register, and then will move it from that register
to screen memory. You'll do it sequentially from top to bottom,
half from right to left and the other half from left to right.

The process will happen so fast that it will seem like an invisi-
ble hand is wiping the screen clean with two swipes—It’s so fast
that you won’t be able to see the addresses filled with spaces.

The first listing below is in BASIC, and the second is in assem-
bly language source code. (If you don’t have an assembler, use the
mini-assembler built into your Apple IIGS. Just type CALL —151
and press Return; then when you see the asterisk prompt, enter an
exclamation point (!) and press Return again. When the exclamation

point prompt appears, you're in the mini-assembler. See your Ap-

ple IIGS reference manual for an explanation of how to use the
mini-assembler.)

Program 1-15.

10 FOR X = 32768 TO 32945

20 READ D: POKE X,D: NEXT X

30 CALL 32768
9000 DATA 169, 160, 162, 39, 157
9010 DATA O, 4, 157, 128, 4, 157
9020 DATA O, 5, 157, 128, 5, 157
9030 DATA O, 6, 157, 128, 6, 157
0040 DATA O, 7, 157, 128, 7, 157
9050 DATA 40, 4, 157, 168, 4, 157
9060 DATA 40, 5, 157, 168, 5, 157
9070 DATA 40, 6, 157, 168, 6, 157
9080 DATA 40, 7, 157, 168, 7, 157
9090 DATA 80, 4, 157, 208, 4, 157
9100 DATA 80, 5, 157, 208, 5, 157
9110 DATA 80, 6, 157, 208, 6, 157
9120 DATA 80, 7, 157, 208, 7, 169
9130 DATA 127, 32, 168, 252, 169, 160
0140 DATA 202, 224, 19, 208, 172, 162
9150 DATA 0, 157, 0, 4, 157, 128
9160 DATA 4, 157, 0, 5, 157, 128

14

Text Graphics

9170 DATA 3,
9180 DATA 6,
9190 DATA 7,
9200 DATA 4,
0210 DATA 5,
9220 DATA 6,
0230 DATA 7,
9240 DATA 4,
9250 DATA 5,
9260 DATA 6,
9270 DATA 7,

9290 DATA 172, 78, 3, 224, 96

187, 0, 6, 157, 128
157, 0, 7, 187, 128
157, 40, 4, 157, 168

187, 40, 5,
157, 40, 6,
187, 40, 7,
187, 80, 4,
157, 80, 5,

157, 168
157, 168
157, 168
157, 208
157, 208

157, 80, 6, 167, R08
1567, 80, 7, 167, R08
169, 127, 32, 168, R5:
0280 DATA 169, 160, 232, 24, 20, 208

Program 1-16.

8000:
80082:
8004
8007:

800A:
800D:

8010:

8013:
8016:
8019:
801C:
801F:
80RR:
8025:
8028:
802B:
802E:
8031:
8034:
8037:

AS AQ

AR
9D
oD
oD
9D
oD
oD
oD
oD
9D
9D
9D
9D
9D
9D
9D
9D
9D
oD

a7
00
80
00
80
00
80
00
80
_8

04
04
05
05
06
06
o7
o7
04

A8 04

_8

05

A8 05

_8

06

A8 06
_8 07
A8 07
50 04
DO 04

10
1l
12
13
14
15
16
L
18
19
0
Rl
R
RS
24
RS
6
_7
<8
_9
30
31
3&
33

START1

15

ORG
OBdJ

$8000
$8000

LDA #$A0
LDX #§$27

STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA

$400,X
$480,X
$500,X
$580,X
$600,X
$680,X
$700,X
$780,X
$428,X
$4A8,X
$528,X
$5A8,X
$628,X
$6A8,X
$728,X
$7A8,X
$450,X
$4D0,X

Text Graphics

CHAPTER 1
803A: 9D 50 05 34 STA $550,X 80A9: E8 74 e
803D: 9D DO 05 35 STA $5D0,X 80AA: EO 14 75 CPX #$14
8040: 9D 50 08 36 STA $650,X 80AC: DO AC 76 BNE STARTS
8043: 9D DO 06 37 STA $6D0,X 80AE: 4C 03 EO 77 JMP $EO03
8046: 9D 50 07 38 STA $750,X 80B1: 60 78 RTS
8049: 9D DO 07 39 STA $7D0,X To use either of the two programs, put a lot of text on the
RS A s sl screen, run the program, and watch the screen clear.
804E: 20 A8 FC 41 JSR $FCAS8
8061: A9 AOQ 42 LDA #$A0
8053: CA 43 DEX Summary L _
8054: EO 13 e CFX #8313 This chapter represents a conceptual begmm’ng_ to understa.ndmg
8066: DO AC 48 DA STARTL graphics. Since the text screen is the least 41ff1cult to manipulate,
8088: A2 00 16 LDX #30 it serves as a good beginning to understandlpg the concept of plac-
S0SA: 9D 00 04 47 STARTS STA $400,X ing information on the screen. By arranging inverse and normal
80SD: 9D 80 04 48 STA $480,X blocks of light on the screen, it’s possible to produce a form ::)filﬂfrrr.w'w
8060: 9D 00 0B 49 STA $500,X _— graphics while maintaining all the text screen capabﬂl-
8063: 9D 80 05 50 STA $580,X ties. More important, though, is learning the concept of how the
8066: 9D 00 06 51 STA $600,X screen is mapped to memory. | _
8069: 9D 80 06 52 STA $680,X Once the screen memory is understood, it’s possible to better
oost: s D0 07 BB STA $700,X understand the concept of screen addressing. The SCreen serves as a
e i A 514 $780,X place where information can be stored. Since information can _be
8072: 9D 28 04 55 STA $428,X stored there, it can be changed and manipulated (as you saw In
8075: 9D A8 04 56 STA $4A8,X several program examples). . f
8078: 9D 28 05 87 STA $8R8,X The crucial element is the fundamental simplicity of what’s
807B: 9D A8 05 58 STA $5A8,X | happening. By building programs around these fundamental con-
807E: 9D 28 06 59 STA $628,X cepts, you can do a great deal in manipulating text and graphics.
8081: 9D A8 06 60 STA $6A8 X
8084: 9D 28 07 61 STA $728,X
8087: 9D A8 07 62 STA $7A8,X
808A: 9D 80 04 63 STA $450,X
808D: 9D DO 04 64 STA $4D0,X
8090: 9D 50 05 65 STA $5850,X
8093: 9D DO 05 66 STA $5D0,X
8096: 9D B0 06 67 STA $650,X
8099: 9D DO 06 68 STA $6D0,X
809C: 9D 50 07 69 STA $750,X
809F: 9D DO 07 70 STA $7D0,X
80AR: A9 7F 71 LDA #§7F
80A4: 20 A8 FC 72 JSR $FCAS8
80A7: A9 AOQ 73 LDA #$A0

16 17

Chapter 2

Fundamentals of
Animation

T:lis chapter continues to use text characters to explain con-
cepts you'll apply to various graphics. For the moment, let’s keep

things simple.

The Illusion of Movement

Movies are optical illusions, and so is animation on your computer,
Both involve showing a sequence of still photographs so rapidly
that your eyes are tricked into believing you see movement, not a
series of still pictures. With animation, you use this sequence:

* Put figure on the screen

* Erase figure

* Place figure in different location
* Erase figure

eAndsoon...

You've already done some of this—in chapter 1, you created a
moving effect by changing spaces from normal to inverse and back

again.

Horizontal Movement
The first thing we’ll do is move a character horizontally. Let’s
move it across the top of the screen using VTAB and HTAB to con-

trol placement.

Program 2-1.

10 TEXT : HOME
R0 FOR X = 1 TO 40
30 VTAB 1: REM ROW

21

CHAPTER 2

40 HTAB X: REM COLUMN
80 PRINT “*“: REM CHARACTER
60 FOR PAUSE = 1 TO f0: REM SPEED CONTROL
70 NEXT PAUSE
80 VTAB 1: HTAB X
90 PRINT “
100 NEXT X

By changing the value of the loop in lines 60 and 70, you can
increase or decrease the speed of the asterisk. To make a “trail” be-
hind your moving object, put something other than a space after it.
For example, change line 90 so that a period (.) is within the quo-
tation marks instead of a space.

Besides using HTAB and VTAB, you can use the screen ad-
dresses to create the illusion of movement. The addresses in the
top row of your screen range from 1024 to 1063 (1024 + 39). By
alternating the value 170 (an asterisk) with 160 (a space), you can
do the same thing.

Program 2-2.

10 TEXT : HOME

R0 FOR X = 0 TO 39

30 POKE 1024 + X,170
40 FOR PAUSE = 1 TO RO
50 NEXT PAUSE

60 POKE 1024 + X,160
70 NEXT X

The second program took fewer lines than the first. But since
the screen addresses are not consistently sequential from row to
row, the first method of horizontal movement is easier and quicker
to figure out when using vertical movement. With vertical move-
ment, POKEing addresses is more difficult.

Vertical Movement

Vertical movement with HTAB and VTAB is essentially the same as
with horizontal movement except that the maximum VTAB is 24
instead of 40. By changing lines 20-40 and line 80 in the horizon-
tal movement program, you can create vertical movement.

22

Fundamentals of Animation

Program 2-3.

10 TEXT : HOME

20 FOR X = 1 TO 24

30 HTAB 1: REM ROW

40 VTAB X: REM COLUMN

50 PRINT “*": REM CHARACTER

60 FOR PAUSE = 1 TO 20: REM SPEED CONTROL
70 NEXT PAUSE

80 HTAB 1: VTAB X

90 PRINT ” “

100 NEXT X

When you run the program, the asterik will appear to bounce.
That’s a problem with vertical movement caused by scrolling. By
placing a semicolon before the colon in line 50 and at the end of
line 90, it works without the bounce.

It takes a little more planning to move vertically through the
screen memory addresses, but it can be done. The first two lines ir
the short program below set up a sequential arrangement for verti-
cal movement. When you run the program, notice how the cursor
appears to bounce back to the top of the screen. That’s because it
never left the bottom of the screen. If you add a line to print TEXT,
it will be at the bottom of the screen.

Program 2-4.

10 TEXT : HOME

20 FOR A = 1024 TO 1104 STEP 40
30 FOR X = A TO 2039 STEP 1R8
40 POKE X,170

50 FOR PAUSE = 1 TO R0

60 NEXT PAUSE

70 POKE X,160

80 NEXT X

90 NEXT A

You may think that it’s impractical to conduct movement in
any place other than the left column when POKEing the screen.
However, by using an offset from each address, you can place it in
any column you want.

23

CHAPTER 2

Fundamentals of Animation

Program 2-5. 170 VTAB Y

10 TEXT : HOME 180 INVERSE

20 INPUT “OFFSET (0-39) “;OF 190 PRINT CHR$ (3R)

30 FOR A = 1024 TO 1104 STEP 40 200 FOR PAUSE = 1 TO 100

40 FOR X = A TO 2039 STEP 128 210 NEXT PAUSE

50 POKE X + OF,170 220 NORMAL

60 FOR PAUSE = 1 TO 20 220 HTAB X

70 NEXT PAUSE

240 VTAB Y

gg E%I;ET);: + OF,160 250 PRINT CHR$ (3R)

100 NEXT A e

Notice in line 150 how the value for y (vertical position) is cal-
culated. As the value of x increases, the value of y decreases. See it

Diagonal Movement you can write a program that moves the ball in a diagonal path op-
posite from the program above. (Hint—use a FOR-NEXT loop for x

Now that you've seen how to show horizontal and vertical move-
with a STEP ~—1.)

ment, take a look at moving something diagonally.
‘ With HTAB and VTAB it’s easy, since all you need to do is
simultaneously change each value of the x and y position. For in-

B e e & dlagonial path: from the fop Moving with DATA and ARRAY Tables
eft corner to the botto f th i ; :
b A Developing algorithms which trace a diagonal line through screen

memory can get pretty complicated. If the memory were consecu-
tive it would be as easy as using HTAB and VTAB, but, since it's
not, now is a good time to introduce another method of cruising

through memory—a data table.

Program 2-6.

10 TEXT : HOME
ROFOR XY = 1 TO 223

- - e

30 HTAB XY
40 VTAB XY What you'll do is trace a path through memory using the
50 INVERSE screen memory grid from Chapter 1. Make a copy of the grid (or
60 PRINT CHR$ (32) get some graph paper), and draw a series of dots representing the
70 FOR PAUSE = 1 TO 100 path you want to follow. Let’s start with a short diagonal path and
80 NEXT PAUSE then see how to make it go somewhere.
90 NORMAL

100 HTAB XY Program 2-7.

110 VTAB XY 10 TEXT : HOME

120 PRINT CHR$ (32) 2Q0FOR XY =1TO9

40 POKE D,3&
50 FOR PAUSE = 1 TO 100
60 NEXT PAUSE

To bounce the ball to the upper right corner, add the following
lines to the program above:

140 FOR X = 20 TO 40 70 POKE D,160
150Y = (41 - X) 80 NEXT XY
160 HT-A-B X 100 HEM e e ok e ofe o o e ke ok e ke ok

24 20

CHAPTER 2

Fundamentals of Animation

Table 2-1. Address Data Table

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
1152 1163 1154 11565 1166 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1202 1293 1294 1295 1296 1297 1298 1299
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
1636 1537 1638 15639 1540 15641 1642 1543 1544 1545 1546 16547 1548 1549 1550 1561 1552 1663 1654 1565
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 18676 1677 1678 1679 1680 1681 1682 1683
1792 1793 1794 1796 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1808 1807 1808 1809 1810 1811
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 19356 1936 1937 1938 1939
10684 1065 10668 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
1192 1193 1194 1196 1196 1197 1198 1199 1200 1201 1202 1203 1204 1206 12068 1207 1208 1209 1210 1211
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
1448 1449 1450 1461 14528 1453 1454 1456 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
1676 1677 1678 1579 1680 1681 1682 1583 1584 1586 1586 1687 1688 1589 1590 1591 1592 1693 1594 1595
1704 1706 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1978 1976 1977 1978 1979
1104 1106 1106 1107 1108 110911101111 111211131114 111511161117 111811191120 1121 11232 1123
1232 1233 1234 1235 1236 1237 1238 12339 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1376 1376 1377 1378 1379
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 15068 1507
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1831 1632 1633 1634 1635
1744 1745 1746 1747 1748 1749 1750 1751 17562 1763 1764 1766 1756 1757 1758 1769 1760 1761 1762 1763
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

1044 1045 1046 1047 1048 1049 1050 1061 1052 1063 1054 10565 1086 1057 1058 1059 1060 1081 1082 1063
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
1300 1301 1302 1303 1304 1306 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
1556 1667 1658 1569 1560 1661 1562 1563 1664 1565 1566 1667 1568 1569 1870 1571 1572 1573 1574 1575
1664 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1605 1696 1697 1898 16899 1700 1701 1702 1703
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
1940 1941 1942 1943 1944 1946 1946 1047 1948 1940 1950 1951 1962 1953 1954 1955 1956 1957 1958 1959
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1383 1354 1355 1356 1357 1358 1359
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
1696 1597 1698 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
1724 17256 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
1852 1863 1854 1856 1856 1857 1858 1869 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
1124 1126 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
1252 1253 1254 12655 1256 1257 1268 1289 1260 1261 1262 1263 1264 1265 1266 1267 1268 1289 1270 1271
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1302 1393 1394 1395 1396 1397 1398 1399
1508 1509 1510 1511 1512 16513 1514 1616 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1626 1527
1836 1637 1838 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1663 1654 1658
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
1892 1893 1894 1896 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

110 REM DIAGONAL DATA
120 REM 3 o e s e o o o e e o ok ok

130 DATA 1024,1153,1283
140 DATA 1411,1540,1669
150 DATA 1798,1071,1200

Table 2-1 arranges the memory addresses sequentially from

left to right, top to bottom. You can pick any sequence you want
and put it in DATA statements. You can then use the screen mem-
ory without having to calculate the positions.

Putting all of the data you need in DATA statements will give
you a bad case of “hacker’s cramp,” even though it provides a nice
roadmap of what you need. Instead of using DATA statements to
animate characters, make an array—it involves a lot less work.
Once the data are placed sequentially in the array, you can use the
array as your table. Since the addresses are now in sequential or-
der, it makes it easier to program your movement.

The following program first places the screen addresses in a
sequence from left to right and top to bottom (lines 10-130). It’s a
useful subroutine, and you might want to save it separately. The
second part of the program moves the ball along a diagonal trail.

26

The Y loop establishes the vertical position and the X loop incre-
ments the horizontal position. Now that the addresses are sequen-
tial, each row is a jump of 40, and, each column, a jump of 1.
Remember, though, you're going through the values of the array,
not the addresses directly. (By the way, when you run this pro-
gram, there will be a noticeable pause while the addresses are
loaded into the array.)

Program 2-8.

10 REM o 2k 2 e s e o aje sk e e oo afe e ofe o
20 REM PLACE SEQUENTIAL
30 REM TABLE IN ARRAY
40 REM 3fe sfe se sfe s o e e e e sde e e ofe ofe o
50 TEXT : HOME
60 DIM V(960)
70 FOR PA = 1024 TO 1104 STEP 40
80 FOR X = PA TO 2039 STEP 128
90 FOR SCREEN = 0 TO 39
100 COUNT = COUNT + 1
110 V(COUNT) = X + SCREEN

27

CHAPTER 2

120 NEXT SCREEN

130 NEXT X: NEXT PA

140 RENM #oksskskorksok koo ko k

150 REM PLACE ON SCREEN

160 REM USING ARRAY DATA
170 RENM okksksksoksmoikkokkon

180X = 0

190 FOR Y = 1 TO 940 STEP 40
200X = X + 1

210 POKE V(Y + X),32

220 FOR PAUSE = 1 TO 100
230 NEXT PAUSE

240 POKE V(Y + X),160

250 NEXT Y

Now that you have mastered some of the basics, let’s take a

short detour to the 80-column screen before returning to animation.

80 Columns—Two Memory Banks

Your Apple IIGS’s 80-column screen works exactly like the 40-
column screen. For example, the following program runs a charac-
ter across your 80-column screen. (If you're not currently in 80-
column mode, just press the Esc and 8 keys at the same time.)

Program 2-9,

10 TEXT : HOME

R0 FOR X = 1 TO 80

30 HTAB X: VTAB 20

40 PRINT “>"

50 FOR PAUSE = 1 TO 50
60 NEXT PAUSE

70 HTAB X: VTAB 20

80 PRINT CHR$ (32)

90 NEXT X

Earlier, you learned how to rearrange screen memory and
move through it sequentially. Even though 80-column mode has
the same screen addresses as 40-column mode, there’s a catch to

28

Fundamentals of Animation

using 80 columns. Only every other column can be reached from
BASIC. This next program will demonstrate this. Run the program

in both 40- and 80-column mode.

Program 2-10

10 TEXT : HOME

20 FOR X=1 TO 40

30 POKE 1023 +X,65+ 128
40 NEXT X

In 40-column and 80-columns, the letter A was placed across
the top of the screen, but in the 80-column mode only every other
column was used. How do you fill the alternate columns?

Your Apple IIGS has another bank of memory which uses the
same addresses for the alternating rows. When programming in
BASIC, you're automatically in bank 0. The problems are getting to
bank 1 and getting the memory for the alternate addresses. In ma-
chine language programming, this isn’t a problem, but from BASIC,
it's tough. You have to POKE in a short machine language routine
to access the other memory bank.

Bank-Switching in Machine Language

Let’s examine a short machine language program to see what’s go-
ing on and then see how to access the long jump routine from
BASIC. (Long jump refers to jumping from one bank to another.)

00/8000: 20 58 FC JSR FC58
00/8003: AR 28 LDX #28
00/8005: A9 Cl LDA #C1
00/8007: 9D FF 03 STA O3FF,X
00/800A: OF FF 03 Ol STA OlO3FF,X
00/800E: CA DEX

00/800F: DO F6 BNE 8007 {-OA)}
00/8011: 60 RTS

This routine fills the first row of an 80-column screen with the
letter A. It places the value for the letter A ($C1) in each address of
the first row using a loop. The loop first puts $C1 in address $0427
(1063, the address of the upper right corner of the 80-column
screen), then in each address to the left.

29

+ CHAPTER 2

Notice the STA instructions in the fourth and fifth lines. (STA
stands for STore the Accumulator.) The first STA instruction has a
machine language opcode of $9D (the first value after the 00/8007:),
and it works much like a POKE statement, except it stores a value
in an address indexed by x. The first time through the loop, the
value goes into address $03FF + $28, or $0427 (1063). The last
time through the loop, it goes into address $03FF + $01, or $0400
(1024).

However, there’s no BASIC equivalent to the second STA,
which has an opcode of $9F. This version of STA stores the same
value in the same address, except this time the address is in bank 1
instead of bank 0. This is the long jump mentioned earlier. There’s
no long jump POKE equivalent in BASIC. That means you must fig-
ure out how to get a value which can be used from within a BASIC
program. Let’s create a machine language routine to make the jump
from bank 0 to bank 1. This routine will allow us to place charac-
ters in consecutive locations on the screen in 80-column mode.

First, translate the long jump STA machine language opcode
into decimal. The STA which places values in addresses directly,
not in addresses indexed from the X register, has an opcode of $8F

(143). The code for storing a character to the screen will then look
like this:

8F = Long jump STA - Works like POKE to other banks
FF = Low byte of $3FF (address to POKE bank number)
03 = High byte of $3FF (address to POKE bank number)
01 = Bank number

In decimal, then, the values to POKE are

143
255
3
1

There’s some empty memory beginning at address $300 (768);
let’s use it for writing the routine.

Fill the top line of the screen with inverse spaces. To do this in
the machine language routine, you must load into the accumulator
the value for an inverse space. The value for an inverse space is 32,

30

Fundamentals of Animation

and the opcode for loading the accumulator (the instruction is

LDA, for LoaD the Accumulator) is
LDA = 169
In hexadecimal, 169 is $A9.

Since the same range of addresses are used in Bank 00 and
Bank 01, you can use the same array table as for the 40-column

mode. The following program is the result.

Program 2-11.

10 REM ok ke o 3 ok ok ok ok s o o ok o o o ok
20 REM PLACE SEQUENTIAL

30 REM TABLE IN ARRAY
40 REM e o e e e e ol e o o e o e e o

50 TEXT : HOME

60 DIM V(960)

70 FOR PA = 1024 TO 1104 STEP 40

80 FOR X = PA TO 2039 STEP 128

90 FOR SCREEN = 0 TO 39
100 COUNT = COUNT + 1
110 V(COUNT) = X + SCREEN
120 NEXT SCREEN
130 NEXT X: NEXT PA
140 REM s e e e e e o e e e o ofe e e e ok
150 REM PLACE ON SCREEN
160 REM USING ARRAY DATA
170 HEM s e o e sfe s e ofe she sfe e she s she e o
180 FOR XY = 1 TO 40
190 POKE V(XY),32
200 N = V(XY)
210 GOSUB 270
220 NEXT XY
230 END
240 REM e e e o 2k vhe e 2 ok e 2 e ofe o o ok ok ok ok
250 REM CONVERT TO 2 BYTE #
260 REM sk she e ofe e sfe e e e e e o e e o o e ke
270 LB = N - INT (N / 256) * 256
280 HB = INT (N / 256)

31

CHAPTER 2 Fundamentals of Animation

290 RENM o *dokokokokokokdkokdkokok

300 REM MACHINE LANGUAGE

810 HEM e e o e e e s o ofe e e o o ofe o o

30 POKE 768,169: REM LDA

330 POKE 769,32: REM INVERSE SPACE
340 POKE 770,143: REM LONG STA

350 POKE 771,LB: REM LOWBYTE

360 POKE 772,HB: REM HIGHBYTE

370 POKE 773,1: REM BANKO1

380 POKE 774,96: REM RTS

390 CALL 768: REM EXECUTE ROUTINE
400 RETURN

250 FOR Y = 1 TO 940 STEP 40
260X =X +1

270 POKE V(Y + X),32

280 FOR PAUSE = 1 TO 100

200 NEXT PAUSE

300 POKE V(Y + X),160

ZI0N = V(Y + X)

320 GOSUB 430

330 FOR PAUSE = 1 TO 10

340 NEXT PAUSE

350 GOSUB 730

360 NEXT Y

370 END

400 REM afe e s she 3¢ e e ke v 3k 2 ofe ofe e e o ok ke

410 REM CONVERT TO 2 BYTE #
420 REM e sk e 3k o ok ofe dfe e e o sfe e ofe e ofe o ook

4%0 LB = N - INT (N / 256) * 256
440 HB = INT (N / 256)

500 REM s sfe o e e o e ofe s o o o o e ke o

510 REM MACHINE LANGUAGE
520 BEM *****r******#***

530 POKE 768,169: REM LDA

540 POKE 769,32: REM INVERSE SPACE
550 POKE 770,143: REM LONG STA
560 POKE 771,LB: REM LOWBYTE
570 POKE 772,HB: REM HIGHBYTE
580 POKE 773,1: REM BANKO1
590 POKE 774,96: REM RTS

600 CALL 768: REM EXECUTE ROUTINE
610 RETURN

?OO HEM e s sk e e e e e o ke g e

710 REM NORMAL SPACE

720 REM sk e e ok o o e ok o e ol ok

The program actually rewrites and then executes the short ma-
chine language routine every time it goes through the loop.

Now that you can draw across banks, let’s change the program
to animate across banks.

Alter the 40-column routine for diagonal movement through
memory so that it traces the same route in 80 columns.

Program 2-12.

10 REM 7k o vk e ok o ok e ok o o ok ok ok ok

20 REM PLACE SEQUENTIAL

30 REM TABLE IN ARRAY
40 REM koo sokskokok

50 TEXT : HOME
60 DIM V(960)

70 FOR PA = 1024 TO 1104 STEP 40
80 FOR X = PA TO 2039 STEP 128
90 FOR SCREEN = 0 TO 39

100 COUNT = COUNT + 1

110 V(COUNT) = X + SCREEN

120 NEXT SCREEN

130 NEXT X: NEXT PA

| 730 POKE 768,169: REM LDA
200 REM *twtbokskobkdokkok ok k% | 740 POKE 769,160: REM NORMAL SPACE
210 REM PLACE ON SCREEN 750 POKE 770,143: REM LONG STA
220 REM USING ARRAY DATA 760 POKE 771,LB: REM LOWBYTE
230 REM **tkdokkokokdkokokskok ok 70 POKE 7?211_]:}3: REM HIGHBYTE
R40 X = O

39 33

CHAPTER 2 Fundamentals of Animation

780 POKE 773,1: REM BANKO1

790 POKE 774,96: REM RTS

800 CALL 768: REM EXECUTE ROUTINE
810 RETURN

80 REM RADAR
90 REM e o ok e ok
100 FOR X = 0 TO 39
110 P = PEEK (1024 + X): REM SEEK TARGET
120IFP<>160THENF =X + 2
130 NEXT X
140 REM o s o o s e o e o ok e ke e
150 REM EVALUATE DATA
160 REM sk ook sk sk ok e ke sk
170 DH = MH - :DV = MV - VT
180 IF SGN (DH) = 1 THEN MH = MH - 1
190 IF SGN (DH) = -1 THEN MH = MH + 1
200 MV = MV - 1: IF MV < 1 THEN END
210 HTAB T: VTAB 1: PRINT S$
* A target represented by a right arrow (>). 290 NEXT T
e A missile represented by a carat ("). 220 END
240 REM s o o ok e ok
250 REM SET UP
260 REM e o ok ok e ok
270 MH = 40:MV = 24:VT = 1
280 T$ = ">": REM TARGET

Animation Applications

One application of this animation is in games. In some computer
games, you need a way for the machine to animate characters to a
target—usually the player’s character. There are many sophisticated |
algorithms for doing this, but let’s start with the basics. To get
started, make a guided missile on the 40-column screen. This little
program will have two moving characters:

The missile will track the target with a radar that scans the
path of the target. It will always move toward the target based on
the information it gets from scanning the addresses in the first row
(1024-1063) along which the target is moving. Then it compares
the position of the target with the position of the missile. It does

this by subtracting the variable F, which is the position of the mis- R90 8% “__ "“‘.’-RB%E%S;?S%EILE
sile + 2. (It ‘leads’ the target with the +2.) If the difference be- 300 M$ = "
s el . . : - 310 RETURN
tween the missile’s horizontal positon and the target is positive, the "
program knows the target is to the left and subtracts from its hori- That program was fairly simple, and the target was moving in
zontal value (MH). If the difference is positive, the program adds to a single direction. To provide a more inte_resting example of the
the horizontal position of the missile. This is a good example of same principle, let’s provide random horizontal movement for the
how to use the SGN function in Applesoft BASIC. The vertical target. This time, change it just a bit. |
movement 1s constantly decreased for the missile. This next program puts all of the horizontal addres-ses in a'n
integer array and then scans it. It also includes a more interesting-
Program 2-13. looking target and missile. The missile’s radar is far more deadly. It
10 GOSUB 270 never misses, no matter how erratic a path the rapdom nu@ber
20 TEXT : HOME generator devises. (And in the 80-column mode, it never hits.)
30 FORT = 1 TO 40: HTAB T: VTAB 1: PRINT T$;
40 HTAB MH: REM MISSILE HORIZONTATL POS Program 2-14.
50 VTAB MV: REM MISSILE VERTICAL POS 10 DIM C%(40)
60 PRINT M$;: REM PUT ON SCREEN 20 FOR X = 0 TO 39:C%(X) = 1024 + X: NEXT
T0 REM vhess 30 TEXT : HOME

34 | 3

CHAPTER 2

40 AV = 1:AH = 10:VM = 20:HM = 20
50 FH = INT (RND (1) * (2) + 1)
60 IF FH = 1 THEN AH = AH + 3
70 IF FH = 2 THEN AH = AH - 3
80 IF AH < 1 THEN AH = 1
90 IF AH > 38 THEN AH = 38
100 VTAB AV: HTAB AH: PRINT "=0="
110 FOR X = 0 TO 39: IF PEEK (C%(X)) < > 160 THEN F = X
120 NEXT X
130 VTAB VM + 1: HTAB FF: PRINT CHR$ (32)
140 VTAB VM: HTAB F: PRINT “#":FF = F
150 VM = VM - 1: IF VM < 1 THEN END
160 HTAB AH: VTAB AV: PRINT SPC(3)
170 GOTO 50

Now that you can bounce a target around and program the
computer to track it, let’s create an animated shoot-"em-up game
where an “alien” moves around the screen. Let’s spice it up by
adding a time element and giving the target both downward and
random horizontal movement. The object of the game is to score as
many hits as possible either before time runs out or before the
alien lands. This simple game is written for 80 columns. (If you
want to display it in 40 columns, make the indicated changes, and
change the placement of the score box in line 360.)

Other Game Features

Pay close attention to the following features in this program that
haven’t yet been examined in detail:

* The read-keyboard subroutine
* How the variable P is used in moving and firing
* The hit and fire subroutines

Basically, the program reads the keyboard and stores the value
of the last key pressed in the variable P. That value is then used in
the move/fire subroutine. The movement values in P are evaluated
in terms of the ASCII values of the left and right arrow keys on
your keyboard. When using a joystick, paddles, or mouse, use the
same concept.

36

i

Fundamentals of Animation

Each time the player fires, the alien moves down. That’s why
the AV (Alien Vertical) variable is incremented in the FIRE! subrou-
tine. If a hit is scored, a new alien is placed at the top of the
screen. That’s why the vertical movement of the alien is also in the

HIT subroutine.

Program 2-185.

10 TIME = 250:PTS = 0

20 TEXT : HOME :FLAG = 0

30 H = 15:V = 32:AV = 1:AH = 40

40 REM sk s o o ofe o o o o ofe o e

50 REM READ KEYBOARD

60 REM s o ke e e e e e e o ok o o

70O P = O: IF PEEK (- 16384) > 127 THEN P = PEEK (- 16384) - 128:

POKE - 16368,0

80 REM ske e afe sl s 2 sk e ofe o sl o e e e e s o e ofe o o ke ok ok ok K ok

90 REM RANDOM ALIEN HORIZONTAL MOVE

100 REM *¥rsssiomimmiiokkiorkiokkokkkk

110 FH=INT(RND (1D *@R) + 1)

120IF FH = 1 THEN AH = AH + 3

130 IF FH = 2 THEN AH = AH -3

140 IF AH < 2 THEN AH = 2

150 IF AH > 78 THEN AH = 78: REM CHANGE TO 38 FOR 40 COL
160 VTAB AV: HTAB AH: PRINT “=0="

170 REM sk sk ok ok 3k ok afe e dfe e e e ol e e ok ok ke ok

180 REM MOVE OR FIRE PLAYER

190 REM s o e e ol o e o ol e o ofe e o o e e e o

200 IF P = 32 THEN GOSUB 400
RQRICIFP=8THENH =H-1
220IFP=21THENH =H + 1

230 IF H > 79 THEN H = 79: REM 39 FOR 40 COL
R40IFH<1THENH =1

RQ50IF V>23THEN V = 23

R0 IFV<1THENV =1

270 HTAB H: VTAB V: PRINT "

280 FOR HOLD = 1 TO 100: NEXT HOLD

2900 HTAB AH: VTAB AV: PRINT " ”

300 HTAB H: VTAB V: PRINT “ “

37

CHAPTER 2

310 IF FLAG = 1 THEN 20
Z20 REM **rkrsomiokkbohokbkdokkokok

330 REM DISPLAY TIME AND SCORE

240 REM **¥kkikskokiokokiokdokkokkkonk

380 TIME = TIME - 1: IF TIME = O THEN HOME : PRINT “FINAL
SCORE =";PTS: END

360 HTAB 1: VTAB 23: INVERSE : PRINT “ TIME = “;TIME;
SPC(1): HTAB 70: VTAB 23: PRINT “ SCORE = "“;PTS: NORMAL

370 GOTO 70

400 REM ofe e e ofe e

410 REM FIRE!

420 REM *****

430 FORF =22 TO 1 STEP -1

440 HTAB H: VTAB F: PRINT “*”

450 HIT = (H = (AH + 1)) AND (F = AY)

460 IF HIT THEN FLAG = 1: GOTO 600

470 HTAB H: VTAB F: PRINT ” “: NEXT

480 HTAB AH: VTAB AV: PRINT “ ”

490 AV = AV + 1:IF AV = 22 THEN PRINT “THEY GOT YOU!“: END

500 RETURN

600 REM e s o ofe o e o ofe o e o

10 REM ** HIT "

620 REM ok o o o o e ofe e ofe ofe o

630 HTAB AH: VTAB AV: PRINT “BOOM!”

640 PRINT CHR$ (7)

650 FOR PAUSE = 1 TO 500: NEXT PAUSE

660 AV = 1: HOME

67O PTS =PT8S + 1

680 GOTO 500

Summary

Using text characters, you've simulated graphics applications in-
volving movement or animation. There are two ways to move
things on the screen: One is to use BASIC VTAB and HTAB state-
ments; the other is to POKE directly to the screen using sequen-
tially arranged addresses. Since the screen address space in low
resolution is almost identical to the text screen, it's possible to use
many of the same routines used in text. Likewise, while not all of
the BASIC statements are the same in graphics and text, you can
use the same principles of screen placement with both.

38

Chapter 3

[_.ow-Resolution
(Graphics

L ow-resolution graphics are similar to text graphics, though
the results are a bit different. Instead of seeing text characters on
the screen, you'll see small blocks of colors.

The low-resolution graphics screen is divided into a matrix
that’s 40 X 48 blocks (instead of one that’s 40 X 24 blocks, as in
text). Except for its dimensions, the matrix is the same as that used
by text.

In this chapter, you'll first look at the BASIC statements regu-
lating low-resolution graphics, then see some programs which use
such graphics. A lot of attention will be paid to colors, since they
are what make low-resolution graphics special. And you’ll see how
low-resolution graphics work in memory.

Color

There are 16 low-resolution colors numbered from 0 to 15.

0 Black 8 Brown
1 Magenta 9 Orange
2 Dark blue 10 Gray

3 Purple 11 Pink

4 Dark green 12 Green
5 Gray 13 Yellow
6 Blue 14 Aqua

7 Light blue 15 White

An unusual thing happens when you go into low-resolution
graphics. No matter what background color the screen had been
before, it turns to black when it goes into the graphics mode.

First, let’s take a look at the Applesoft statements you can use
with low-resolution graphics.

41

CHAPTER 3

Low-Resolution Graphics

gommand Function
R Turn on low-re '
-resolution graphics

ISI?LOR=x Set color (x = 0-15) ’

OT xy Place block at specified position. Horizontal (0-39)
- Y =Row /Vertical (0-47) !
o IN Horizontal line from X1 to X2 at Y (X=0-39)
SCII{N Vertical line from Y1 to Y2 at X (Y=0-47)

N(x,y) Returns the color code of position X,y in color values 0-15

A number of memory add ,
shdal LRl off,y resses can be POKEd with 0 to turn

Address Switch Function

49232 Turn on graphics

:gigg Fu_ll text or full graphics mode

poe s Mlxed text and graphics mode
Display page 1

49237 Display page 2

49238 Low-resolution graphics

WAIT —16384,128
Stops until key is pressed (no cursor is displayed)

Your first low-resolution BASIC program shows all 16 colors

Using the HLIN statement -
and a v
gram scrolls through the colors. ariable for the colors, the pro-

Program 3-1.
10K =5
20 GR
30 FOR X = 0TO 15
40 COLOR= X
50 HLIN 0,39 AT K
60K =K + 2
70 NEXT

80 GET A$: PRINT A$
90 TEXT : HOME
100 LIST

The first thing to notice is that

the background
ytc?ltll had the default colors (blue backgroundgandnbo:ﬁ:;:d bla’flk‘ '
still see a blue border, but the background’s changed. To} g};iuout of

42

Low-Resolution Graphics in BASIC

just type TEXT. (Program 3-1 does that for you
and LISTs the program as well. Lines 80 and 90 are a good routine

to stick on the end of your graphics programs while they’re being
developed.) On return to the TEXT mode, the background is re-

stored to the default colors.
If the colors in the bars don’t seem right, adjust your television

or monitor so that the colors correspond to those in the list above.
If they're never quite right, it might be a problem with the TV set

or monitor, or even with your I1GS.

the graphics mode,

Now let’s see what you can do with low-resolution graphics from
BASIC. Start off with HLIN and VLIN to see the limits of their

parameters.

Program 3-2.

10 GR
20 COLOR= 15

30 HLIN 0,39 AT 20
40 VLIN 0,47 AT 20

The first thing to notice is that you still have four lines of text
at the bottom of your screen, where the cursor is waiting. You can
also see where the vertical line fell out of the graphics page and
spilled onto the text page. The first two chapters of this book
pointed out that there was a connection between the text page and

the low-resolution graphics page. Now you can see it.
In many instances, you'll want to have the full graphics page

available. To use the entire graphics page, you need to “flip” the
full-page graphics soft switch with a POKE statement. From the
short list above, you can see that the soft switch for a full graphics
page is address 49234. POKEing 0 into that location flips the
switch, so to speak.

Add a POKE 49234,0 statement to the program,
WAIT statement that freezes the graphics without the cursor or a
prompt disturbing the display. Hit any key and the screen clears;
you're back in text for more programming.

as well as a

43

CHAPTER 3 Low-Resolution Graphics
Program 3.3, More on screen memory locations is discussed later in this
Bilieir chapter, but for now just remember that the low-resolution graph-
- ME ics screen is like the text screen, except that it generates stacked
O GR color blocks instead of text.

B0 REM Hksoksonnkok sk ok
40 REM FULL GRAPHICS
50 RENM ***kksskkkkok
60 POKE 49234,0
70 COLOR= 15
80 HLIN 0,39 AT RO
90 VLIN 0,47 AT 20
100 WAIT - 16384,128

110 TEXT : HOME

PLOT It

Let’s look at the PLOT statement. This next programs starts by
drawing an X on the screen with PLOT statements. (The program
uses yellow, but you may change it to another color if you want.)

Program 3-5.

10 HOME

20 GR

30 FOR X = 1616 TO 2000 STEP 128
40 FORL=XTO X + 39

You'll notice there are now some gray lines where the text
was. These are text spaces—ASCII value 160. In low-resolution
graphics, 160 is the value for black over gray. We want black over

black, which is ASCII value of 0. Put zeros in the addresses of the 50 POKE L,0
bottom four lines. 60 NEXT L
The addresses run from 1616 to 2000. A loop (lines 50-90 in 70 NEXT X

the program below) can quickly POKE each address with black 80 POKE 49234,0

over black. 90 COLOR= 13
100 REM e 2 e ok o ok ok o o o ke
Program 3-4. 110 REM PLOT POINTS
10 GR 120 REM *** %k koo
20 REM *®wskskokksokk 130 FOR X = 0 TO 39
30 REM CLEAR LINES 140 PLOT X . X
40 RENM ks 150 PLOT 39 - X, X
50 FOR X = 1616 TO 2000 STEP 128 | 160 NEXT
60FORL=XTOX + 39 | 170 WAIT - 16384,128
70 POKE L,0 180 TEXT : HOME : LIST
80 NEXT L So far, so good. In a short time, we’ve managed to use every
90 NEXT X - low-resolution graphics BASIC statement, and most of the POKEs.

100 POKE 492340
110 COLOR= 15

120 HLIN 0,39 AT 20
130 VLIN 0,47 AT 20
140 WAIT - 16384,128
150 TEXT : HOME

44 45

CHAPTER 3 Low-Resolution Graphics

Even though there are twice as many vertical positions (48
rows instead of 24) as on the text screen, there are the same num-
ber of address spaces (1024 to 2039). What's going on?

Each block in the above grid is actually one half of a vertical
pair. On the low-resolution screen, the upper left corner is address
1024, as is the block directly below it.

The Low-Resolution Graphics Screen

Think of the low-resolution graphics screen as two text screens
stacked on top of one another. (See Figure 3-1.)

Figure 3-1. Lo-Res Screen

1624 Top Screen 1063 Figure 3-2. Top Color/Bottom Color
Top Color
Bottom Color
Pink Green
171 = 188=
Gray Blue
Purple Black
X = 48=
Black Purple

Every block is assigned a color based on the COLOR= state-
ment from BASIC. When you plot a color block, you actually plot
half of it black and the other half the assigned color.

Let’s take a look at some examples to demonstrate the point.
You'll first use pink and gray to plot a block in the upper left cor-
ner. Pink will be on top while gray will be on the bottom.
Program 3-6.

10 GR

R0 COLOR= 11

30 PLOT 0,0

40 COLOR= 10
26068 Bottom Screen 2039 50 PLOT 0,1

60 P = PEEK (1024)

70 PRINT P

46 47

CHAPTER 3

The way to check that each byte controls two blocks of color is
to take the value the program returned, and POKE it into address
1024 with no PLOT statement at all.

10 GR
R0 POKE 1024,171

Try the same thing with green and blue. First plot the two col-
ors with the PLOT statement, then POKE them in with a single
POKE statement.

Since each address has a combination of colors, use that fea-
ture to have a little fun. The program below animates the upper
left corner by alternating black over purple with purple over black.

Program 3-7.

10 GR

20 FOR X = 1 TO 100

30 POKE 1024,3

40 FOR PAUSE = 1 TO 10
50 NEXT PAUSE

60 POKE 1024,48

7?0 FOR PAUSE = 1 TO 10
80 NEXT PAUSE

90 NEXT X

The following chart shows all of the color combinations in
low-resolution graphics. Pick the combination you want, then
POKE it into a memory address between 1024 and 2039.

Value Top Bottom Value Top Bottom
0 Black Black 11 Pink Black
1 Magenta Black 12 Green Black
2 D Blue Black 13 Yellow Black
3 Purple Black 14 Aqua Black
4 D Green Black 15 White Black
5 Gray Black 16 Black Magenta
6 Blue Black 17 Magenta Magenta
7 L Blue Black 18 D Blue Magenta
8 Brown Black 19 Purple = Magenta
9 Orange Black 20 D Green Magenta
10 Gray Black 21 Gray Magenta
48

Low-Resolution Graphics

Value

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
a7
38
39
40
41
42
43
dd
45
46
47
48
49
50
) |
52
93
54
55
56
5 ¥ §
58
Y
60

Top
Blue

L Blue
Brown
Orange
Gray
Pink
Green
Yellow
Aqua
White
Black
Magenta
D Blue
Purple
D Green
Gray
Blue

L Blue
Brown
Orange
Gray
Pink
Green
Yellow
Aqua
White
Black
Magenta
D Blue
Purple
D Green
Gray
Blue

L Blue
Brown
Orange
Gray
Pink
Green

Bottom

Magenta
Magenta
Magenta
Magenta
Magenta
Magenta
Magenta
Magenta
Magenta
Magenta
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
D Blue
Purple
Purple
Purple
Purple
Purple
Purple
Purple
Purple
Purple
Purple
Purple
Purple
Purple

49

Value
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Vi
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Top
Yellow
Aqua
White
Black
Magenta
D Blue
Purple
D Green
Gray
Blue

L Blue
Brown
Orange
Gray
Pink
Green
Yellow
Aqua
White
Black
Magenta
D Blue
Purple
D Green
Gray
Blue

L Blue
Brown
Orange
Gray
Pink
Green
Yellow
Aqua
White
Black
Magenta
D Blue
Purple

Bottom
Purple
Purple
Purple
D Green
D Green
D Green
D Green
D Green
D Green
D Green
D Green
D Green
D Green
D Green
D Green
D Green
D Green
D Green
D Green
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Gray
Blue
Blue
Blue
Blue

CHAPTER 3

Low-Resolution Graphics

Value Top Bottom Value Top Bottom
100 D Green Blue 139 Pink Brown Value Top Bottom Value Top Bottom
101 Gray Blue 140 Green Brown 178 D Blue Pink 217 Orange Yellow
102 Blue Blue 141 Yellow Brown 179 Purple Pink 218 Gray Yellow
103 L Blue Blue 142 Aqua Brown 180 D Green Pink 219 Pink Yellow
104 Brown Blue 143 White Brown 181 Gray Pink 220 Green Yellow
105 Orange Blue 144 Black Orange 182 Blue Pink 221 Yellow Yellow
106 Gray Blue 145 Magenta Orange 183 L Blue Pink 222 Aqua Yellow
107 Pink Blue 146 D Blue Orange 184 Brown Pink 223 White Yellow
108 Green Blue 147 Purple Orange 185 Orange Pink 224 Black Aqua
109 Yellow Blue 148 D Green Orange 186 Gray Pink 225 Magenta Aqua
110 Aqua Blue 149 Gray Orange 187 Pink Pink 226 D Blue Aqua
111 White Blue 150 Blue Orange 188 Green Pink 227 Purple Aqua
112 Black L Blue 151 L Blue Orange 189 Yellow Pink 228 D Green Aqua
113 Magenta L Blue 152 Brown Orange 190 Aqua Pink 229 Gray Aqua
114 D Blue L Blue 153 Orange Orange 191 White Pink 230 Blue Aqua
115 Purple L Blue 154 Gray Orange 192 Black Green 231 L Blue Aqua
116 D Green L Blue 155 Pink Orange 193 Magenta Green 232 Brown Aqua
117 Gray L Blue 156 Green Orange 194 D Blue Green 233 Orange Aqua
118 Blue L Blue 157 Yellow Orange 195 Purple Green 234 Gray Aqua
119 L Blue L Blue 158 Aqua Orange 196 D Green Green 235 Pink Aqua
120 Brown L Blue 159 White Orange 197 Gray Green 236 Green Aqua
121 Orange L Blue 160 Black Gray 198 Blue Green 237 Yellow Aqua
122 Gray L Blue 161 Magenta Gray 199 L Blue Green 238 Aqua Aqua
123 Pink L Blue 162 D Blue Gray 200 Brown Green 239 White Aqua
124 Green L Blue 163 Purple Gray 201 Orange Green 240 Black White
125 Yellow L Blue 164 D Green Gray 202 Gray Green 241 Magenta White
126 Aqua L Blue 165 Gray Gray 203 Pink Green 242 D Blue White
327 White L Blue 166 Blue Gray 204 Green Green 243 Purple White
128 Black Brown 167 L Blue Gray 205 Yellow Green 244 D Green White
129 Magenta Brown 168 Brown Gray 206 Aqua Green 245 Gray White
130 D Blue Brown 169 Orange Gray 207 White Green 246 Blue White
131 Purple Brown 170 Gray Gray 208 Black Yellow 247 L Blue White
132 D Green Brown 171 Pink Gray 209 Magenta Yellow 248 Brown White
133 Gray Brown 172 Green Gray 210 D Blue Yellow 249 Orange White
134 Blue Brown 173 Yellow Gray 211 Purple Yellow 250 Gray White
135 L Blue Brown 174 Aqua Gray 212 D Green Yellow 201 Pink White
136 Brown Brown 175 White Gray 213 Gray Yellow 252 Green White
137 Orange Brown 176 Black Pink 214 Blue Yellow 253 Yellow White
138 Gray Brown 177 Magenta Pink 215 L Blue Yellow 254 Aqua White
216 Brown Yellow 255 White White
50

51

CHAPTER 3

Low-Resolution Graphics

These color combinations work just as well with double-low-
resolution graphics.

Experiment with some short programs of your own to see
what you can draw on the screen. Later, you'll see several low-

resolution graphics programs which will give you ideas for some
interesting projects.

Double-Low-Resolution Graphics

If you've tried any of the graphics programs up to now in the 80-
column mode, you may have found that when you go into the
low-resolution graphics mode, you're still in 40 columns. It's possi-
ble to double the resolution of the graphics with a simple POKE to
the double-resolution soft switch located at address 49246, By writ-
ing programs from the 80-column mode, you can double the hori-
zontal (but not the vertical) resolution of low-resolution graphics.

Enter the 80-column mode now by pressing ESC and the 8 key
at the same time.

The following program sets the soft switch and draws a line on

the screen—don't forget to type this in and run it while in 80-column
mode.

Program 3-8.

5 HOME

10 GR

20 COLOR= 15

30 POKE 49246,0
40 HLIN 0,79 AT 24
50 POKE 49247,0

Within BASIC, each of these 3 commands—PLOT, HLIN, and
VLIN—expects 2 numbers. The first falls within the range 0-79
and and the second falls in the range 0-47. You can also use all the
colors from BASIC in this increased resolution. To turn off double-
low-resolution graphics, use the soft switch at location 49247

Let’s look at what’s going on behind the scenes by POKEing in
a line of low-resolution points.

Since screen addresses are the same for the low-resolution

graphics page and text, you can POKE a line across the top of the

52

screen from 1024 to 1024 + 79. (Remember to switch to 80-column
mode, if you're not in it already.)

Program 3-9.

10 HOME
20 GR

40 POKE 49246,0

50 FOR X = 1024 TO 1024 + 79
60 POKE X,15

70 NEXT

You should see a checkerboard on the screen, with some white
dots across the top and just above the middle. The gray squares are
a mystery. Let’s turn off low-resolution graphics and try it again.

Program 3-10.

10 HOME

20 GR
40 POKE 49247,0: REM TURN OFF DOUBLE-RESOLUTION

50 FOR X = 1024 TO 1024 + 79
60 POKE X,15
70 NEXT

This time you should see two solid lines. Here’s what hap-
pened: Both programs plotted 80 points, but the sec.ond could _only
fit 40 points in a line; that's why you saw two fuill lines. The first
program, however, used double-resolution graphics, and, like the
80-column text, used the parallel screen in ban‘k l_of your I_IGS. The
color gray came from the value 160 ($A0), whlch is stored in those
locations. (Remember that 160 is a blank space in text and a gray
block in low-resolution graphics.) Figure 3-3 shows the. relationship
between the two banks in double-low-resolution graphics.

Earlier, you needed a short machine .lgng}lage routine to access
text graphics in bank 1—with some modification, you can use ’tha;c1
same program to POKE values into memory to create color instea

of inverse spaces.

53

CHAPTER 3

Figure 3-3. Bank 0-Bank 1

Bank 61

Low-Resolution Graphics

5433

Bank 00

Program 3-11.

10 REM e o e e e ofe ok o o o o ofe ok e ok o
20 REM PLACE SEQUENTIAL
30 REM TABLE IN ARRAY
40 REM o e s 2k 3 o ok e sk o o v ok e e ok
50 GR
60 DIM V(960)
70 FOR PA = 1024 TO 1104 STEP 40
80 FOR X = PA TO 2039 STEP 128
90 FOR SCREEN = 0 TO 39
100 COUNT = COUNT + 1
110 V(COUNT) = X + SCREEN
120 NEXT SCREEN
130 NEXT X: NEXT PA
140 REM e e e e e e ok o e ok ok skl ok
150 REM PLACE ON SCREEN
160 REM USING ARRAY DATA
170 REM o e e e o ofe e e ofe e e e e s e e
180 FOR XY = 1 TO 40

54

190 POKE V(XY),15

200 N = V(XY)

210 GOSUB 240

220 NEXT XY

230 END

240 REM e 3je ol e e e e ofe ol o sk o ofe ok e ol o ok ok

250 REM CONVERT TO 2 BYTE #
260 REM she s s e s sie e sfe ol sl o e o o e ofe e e ok

270 LB = N - INT (N / 256) * 256
280 HB = INT (N / 256)

290 REM o sl 2k o o e o ofe e e o ke ok ofe e e

300 REM MACHINE LANGUAGE
510 REM she e vk s e she se e o ofe e s o ofe ok ok

320 POKE 768,169: REM LDA

330 POKE 769,15: REM COLOR FOR WHITE
340 POKE 770,143: REM LONG STA
350 POKE 771,1B: REM LOWBYTE
360 POKE 772,HB: REM HIGHBYTE
370 POKE 773,1: REM BANK 1

380 POKE 774,96: REM RTS

390 CALL 768: REM EXECUTE ROUTINE

400 RETURN

If you change the value in line 190 to 151, you'll have a light-
blue-over-orange line across the top of your screen.

Programs in Double-Low-Resolution
Since double-low-resolution graphics can more easily and just as
effectively be accessed from BASIC, there are only special occasions
where it’s necessary to use machine language to get to them.
Take a look at the program below for an example of what you
can do with double-low-resolution graphics in BASIC.

Program 3-12.

10 HOME

20 GR

30 COLOR= CR
40 POKE 49246,0

55

CHAPTER 3

Low-Resolution Graphics

50 REM #tksokskodoksokoksk

60 REM READ KEYBOARD
I?O REM e e o e o e e ok o ok ok e ok
80 WAIT - 16384,128
90 K = PEEK (- 16384)
100 POKE - 16368,0

l110IF K = 136 THEN K = 1: REM LEFT
120 IF K = 149 THEN K = 2: REM RIGHT
130 IF K = 138 THEN K = 3: REM DOWN
140 IF K = 139 THEN K = 4: REM UP
I150IF K = 1950R K = 227 THEN K = 5

igo IF K = 241 OR K=209 THEN VTAB 22 : END
0 ON K GOSUB 300,400,500,600.700 |
180 PLOT H,V ’

190 FOR PAUSE = :
o frrmmnps SE 1 TO 50: NEXT PAUSE
300 REM **#x*
310 REM LEFT
320 REM H##*x
S380H =H-1
340 IF H< O THEN H = 0
350 RETURN
400 REM *****
410 REM RIGHT
420 REM *****
4950 H =H + 1
440 IF H > 79 THEN H = 79
450 RETURN
500 REM ****
510 REM DOWN
580 REM ****
650 V=V +1
540 IF V > 47 THEN V = 4%
980 RETURN
600 REM **
610 REM UP
620 REM **
630 V=V-1

56

MOIFV{OTHENV = 0
650 RETURN

700 REM e s e ok sk she ofe she e ok ook
710 REM CHANGE COLOR

720 REM sfe s s s o ok ik oe ke ok ok ke

730 HOME
740 VTAB 2R: HTAB 1
»50 INPUT “Color Code 0-15 “-CL

760 COLOR= CL
770 RETURN

The program will give you the option to change colors when
you press C. To quit the program, press Q.

Animating Low-Resolution Graphics

Animating low- or double-low-resolution graphics involves the
same steps. Let’s use double-low-resolution since it offers a larger
screen area to work with.

Animation in low-resolution graphics works much the same as
it does in text, except that instead of erasing with a blank space,
you erase with a black dot.

A feature of animation not covered in chapter 2 is using drawn
objects. In that chapter, you used single text characters instead of
several different characters to make a new character. In low-resolu-
tion graphics, you probably want to move something other than a
single block of color.

The best way to deal with more complicated objects is with
subroutines that move a single unit at a time. First, draw your ob-
ject in a subroutine using variables for the x and y positions of the
object. Next, run a loop that repeatedly jumps to the subroutine to

animate the object.
To make it clear how this works, start with simple horizontal

movement. A boat will serve as the animated object. The boat will
be gray with a yellow smokestack. To make it more interesting,
puffs of white smoke will come out of the stack. The following pro-
gram shows all of the elements you need. The boat’s superstructure
is drawn with HLIN, and the rest with PLOT. The puffs of smoke
are alternated to leave a smoke trail behind the boat.

57

Low-Resolution Graphics

CHAPTER 3
Crogram. 3-13, 500 IF FLAG — O THEN COLOR= 15:FLAG = 1: GOTO 410
R0 GR 410 PLOT HP + 3,X - 4

420 RETURN
430 WAIT - 16384,128
440 TEXT : HOME : LIST

With a little planning,

30 POKE 49246,0
40 REM e o e o
50 REM WATER
60 REM de koo
70 COLOR= 2: REM DARK BLUE
80 FOR X = 36 TO 39
90 HLIN 0,79 AT X
100 NEXT X 110 X = 35
120 FOR HP = 1 TO 73
130 GOSUB 160
140 NEXT HP
150 GOTO 430
160 REM *+##»
170 REM ERASE
180 REM ****+
190 COLOR= 0: REM BLACK
200 PLOT HP - 1,X
210 PLOT HP,X - 1
220 PLOT HP + 2,X - 2
230 PLOT HP + 2,X - 3
240 REM He o ook o
250 REM BOAT
260 REM ****
270 COLOR= 10
280 HLIN HP,HP + 6 AT X
290 HLIN HP + 1,HP + 4 AT X - 1
500 REM o e ok ke ok e o ofe o ok
310 REM SMOKESTACK
320 REM e e e o ofe e o o e o
330 COLOR= 13: REM YELLOW
340 PLOT HP + 3,X - 2
350 PLOT HP + 3,X - 3
360 REM He e e ofe o ofe o o o e 3k
370 REM SMOKE PUFFS
580 REM o 2 e e e o e o ok ok ok

it's not too difficult to move block fig-

ures as easily as it is to move text. The only difference is that your
program jumps to an entire subroutine to make the move rather

than to a couple of PRINT statements.

mina |
2 £ ffer ease of use with lots of color. This

Low-resolution graphics o | '
de is useful for making colorful drawings, action and

ics MmO
- r chapter, charts and

educational games, and, as you'll see in a late

hs.
e dvantage lies in the powerful BASIC statements that

Its major a .
low-resolution or double-low-resolution

can be used for either | . |
graphics. It's possible to enhance the horizontal resolution without

losing any of the color and still enable full use of all Applesoft
statments for standard low-resolution.

58 -

Chapter 4

High-Resolution
Graphics

Ihe major distinguishing characteristic of high-resolution
graphics, besides its higher-resolution, is its location. Both color
and text reside in screen memory beginning at 1024 ($400) and
ending at 2039 ($7F7). Now, however, let’s explore two different
areas of memory.

Page Start End
Primary 8192 (52000) 16383 ($3FFF)
Secondary 16384 ($4000) 24575 ($5FFF)

Though not mentioned in previous chapters, text and low-
resoluton graphics also have a secondary page. But since the sec-
ondary page conflicts with BASIC, and since you used BASIC
extensively in Chapters 1-3, that page wasn't investigated. In this
chapter, however, you'll discover how the primary and secondary
page of graphics can be used together.

To get started, let's summarize the BASIC statements and some
POKEs and CALLs used in this chapter. Note that some of the
statements are identical to those you used in the last chapter.

Command Function

HGR Clears primary high-resolution screen and goes to high-
resolution mode.
HGR2 Clears secondary high-resolution screen and goes to high-

resolution mode.
HCOLOR= Set high-resolution color (0-7)

O=black 4=black

1=green *5=check

2=Dblue *6=check

3=white 7=white
*These colors vary depending on type of TV or color monitor. Use the
“Color Check” program to test.

HPLOT X,Y Places a dot of light (pixel) at specified X,Y
position.
X = 0-279, Y = 0-191

63

CHAPTER 4

High-Resolution Graphics

Command
HPLOT XX

HPLOT X,Y TO X1,Y1 TO X2,Y2...

CALL 62454

Function

Places a dot of light (pixel) at specified X,Y
position.

X = 0-279, Y = 0-191

To draw lines in high-resolution graphics
HPLOT from X,Y to X1,Y1 (and so on) using
single or multiple HPLOT statements.
HPLOT 10,10 TO 20,20 TO 0,55

HPLOT TO 99,111

From 40-column mode, clears the screen to
last plotted color. (Does not work in 80-

column mode even though resolution is the
same.)

The following memory addresses act as soft switches. POKE
with 0 to turn on or off each special feature.

Address Switch Function

49232 Graphics mode

49233 Text mode

49234 All text or all graphics

two different whites were used. The white
withltééhgig;}%raalié of 7 and that with a value of 3 are different—
ress a key and change the HCOLOR from 3 to 7 to see hm:v the
Ix::reer'cir::al lines change. Later, when you see hc?w high-resolution
color is placed in memory, you'll see how this works. For now,

] it.
though, just be aware of i |
Eet’f]s check out all of the colors on your TV set or monitor.

Program 4-2.

10 ROW = 10

20 HOME

30 HGR

40 FORX =1TO7

50 HCOLOR= X

60 FORK =1TO0 4

70 ROW = ROW + 1

80 HPLOT O,ROW TO R79,ROW
90 NEXT K
100 NEXT X

49235 Mix text and graphics (4 lines of text only)

49236
49237
49238
49239

Display page 1
Display page 2
Lo-res graphics
Hi-res graphics

Simple Things in Hi-Res

To start, let’s do something really simple—draw a box on the

screen.

Program 4-1.

10 HGR

20 FOR X = 3 TO 7 STEP 4
30 HCOLOR= X
40 HPLOT 0,0 TO 79,0 TO 279,159
50 HPLOT TO 0,159 TO 0,0
60 HOME : VTAB 21
70 PRINT "“HIT ANY KEY “:
80 WAIT - 16384,128
90 NEXT X
100 VTAB 22

64

110 VTAB 21
120 PRINT “HIT A KEY

130 WAIT - 16384,128
140 TEXT

150 HOME

160 LIST

Horizontal lines will give you a good idea of how .yolu;" TV 1,0;111
monitor shows color in high-resolution. queve::r, vertica 1 me;
show you how different vertical columns give different colore

lines.

screen instead.

Program 4-3.

10 COL = 10

20 HOME

30 HGR

40 FORX =1TO 7
50 HCOLOR= X

65

A slight change to the program above puts vertical lines on the

CHAPTER 4

High-Resolution Graphics

60 FORK = 1 TO 4
70 COL = COL + 1
80 HPLOT COL,0 TO COL,159

90 V1 = INT (RND (1) * (189) + 1)
100 H1 = INT (RND (1) * (R79) + 1)

90 NEX&: K 110 HCOLOR= C
100 COL = COL + 5 120 HPLOT H,V TO H1,V1
110 NEXT X 130 NEXT
120 VTAB 21

Notice how the RND statement was used to generate random

130 PRINT "HIT A KEY” _— ;
lines that would stay within the screen boundaries.

140 WAIT - 16384,128
1580 TEXT

160 HOME

170 LIST

Saving Graphic Drawings
There’ll be times when you’ll want to save something you’ve cre-
ated on either page of your high-resolution graphics screen. The
random drawing program listed above may have created a terrific
design you want to look at later. Since it was created randomly, it
would be difficult to recreate.

In Applesoft BASIC, the BSAVE command saves binary files to
your disk as binary (BIN or B) files. You already know that the pri-
mary page of high-resolution resides at addresses $2000-$3FFF,
and the secondary page is at $4000-$5FFF. That means each screen
is $2000 (8192) bytes long. All you have to do to save a screen is

type:
BSAVE filename, A$2000,L$2000 (primary page)
BSAVE filename, A$4000,L$2000 (secondary page)

Make any ajustments with the color on your TV or monitor
using these two programs.

Before moving on to more complicated high-resolution graph-
ics, let’s have a little fun with some loops and the random number
generator.

These next programs create different colored triangles and
draw lines on the screen in different colors.

Program 4-4,

10 HGR
ROFORC=1TO%
30 FOR X = 1 TO 279
40 HCOLOR= C

50 HPLOT 139,0 TO X,100 Let’s start with a simple example that will create a pattern for

60 NEXT X you to save.
70 NEXT C
Program 4-6.
Progl' am 4-5. 10 HGR
10 HGR SOPOR X = 1 T0 100
R0 FOR X = 1 TO 30 UL =6 1
o0 REM *rerekinsnrss 4O IF C = 8 THEN L =]
40 REM RANDOM VALUES 50 HCOLOR= C
50 REM **##kkshbnsex 60 8 = ABS(INT(SIN (X) * 100))
60C =INT(RND (1) *(?) + 1) 70 HPLOT 139,0 TO 5,139
OV =INT{RND (1)*(160) + 1) 80 NEXT
80 H = INT (RND (1) * (R79) + 1) That’s on the primary page, so you should use $2000 as the

starting address. Call it COLORSIN.

66
67

CHAPTER 4

High-Resolution Graphics

BSAVE COLORSIN,A$2000,L$2000

130 REM sk o ok ke ok o o ok o e e o e
140 HGR

150 HCOLOR= 7

160 HPLOT 0,50 TO 279,50

170 VTAB R1
180 PRINT “HIGH-RESOLUTION LINE"

190 WAIT - 16384,128: POKE 49168,0
200 REM she ol she s o she e o e o e e ofe ok e ok

210 REM SWITCH TO LO RES

220 REM s e e o o s e ol o o e o o e ke ok

230 POKE 49238,0

240 HOME

250 VTAB 21

260 PRINT “LOW-RESOLUTION LINE"
270 WAIT - 16384,128: POKE 49168,0
280 REM e o o e ofe ok e o e o ofe o ofe e ofe o

290 REM SWITCH TO HI RES

500 REM e e e e e e o ol afe o afe e e o o 3k

310 POKE 49239,0

320 VTAB 21

330 PRINT “HIGH-RESOLUTION LINE"
340 WAIT - 16384,128

350 TEXT : HOME : LIST

Since it’s a large file, it will take a bit to save to disk. To reload
the file, do this:

HGR (press Return)
VTAB R1 (press Return)
BLOAD COLORSIN (press Return)

One problem with loading graphics saved in binary files is that
they’re erased with an HGR or HGR2 command. For the time be-
ing, use the above method to help you get by. Later on you'll see
some other tricks you can use with loading and saving graphics.

Switching Screens

Two of the important elements of high-resolution graphics are the
primary and secondary pages. You can switch pages without erasing
the contents of one screen to show the other. Not only can you
switch between primary and secondary graphics pages, but you can
switch between low- and high-resolution graphics without losing
anything.

The following program shows how to do this with POKEs to
the screen soft switches. Notice also that the lines are only drawn
once, and after switching to the opposite resolution, they are re-
claimed without being redrawn.

Animation with Page Switching
In case you're wondering what kind of applications use screen
switching, take a look at animation. Animation which uses screen
switching works much like other forms of animation.

One common use of screen switching in animation is to dis-
play movement from side to side or up and down. In the next pro-
gram, for instance, a can of paint is held by a rod between two
parts of a machine and is shaken back and forth. The results may
be crude, but they illustrate how good graphics animation is made
possible by drawing similar pictures on different screens.

Actually switching the screen is accomplished with a single
POKE. Returning to the original screen takes another POKE. If
HGR and HGR2 are used instead, the animation isn’t as smooth—
remember that HGR and HGR2 clear the screen each time they’re
used.

Program 4-7.

10 HOME .r
20 REM Mook '
30 REM LO-RES LINE
40 RENM **rkorkiksoonk
50 GR
60 COLOR= 15
70 HLIN 0,39 AT 10
80 VTAB 21
90 PRINT “LOW-RESOLUTION LINE”
100 WAIT - 16384,128: POKE 49168,0
110 REM Hokkkkskokdkdokk
120 REM HI-RES LINE

68
69

CHAPTER 4 High-Resolution Graphics

‘ Try changing the value in the PAUSE loop to see the effect of
different speeds in screen switching.

410 REM PAGE 2
420 REM o o e oo ok ok
430 HPLOT 10,50 TO 100,50

Program 4-8.
mixogs ’ 440 HPLOT TO 100,100 TO 10,100
20 HGR 450 HPLOT TO 10,50
30 GOSUB 200 460 HPLOT 100,75 TO 110,75
40 HGR2 470 HPLOT TO 110,60 TO 130,60
480 HPLOT TO 130,80 TO 110,80

50 GOSUB 400

60 FOR X = 1 TO 20

70 POKE 492386,0

80 FOR PAUSE = 1 TO 100
90 NEXT PAUSE

490 HPLOT TO 110,75

500 HPLOT 130,75 TO 180,75

510 HPLOT 150,50 TO 190,80

520 HPLOT TO 190,100 TO 150,100
530 HPLOT TO 150,50

100 POKE 49237,0 540 RETURN

110 FOR PAUSE = 1 TO 100

120 NEXT PAUSE |
130 NEXT X Slide Show |

Two graphics screens can also present a “slide show” effect. Sup-
pose, for example, that you have a number of pieces of computer
art to show an audience. While you're showing one, you can load
the other on the other screen. When you switch to the next picture,
it's there waiting—no delay.

Let’s take a look at an example. First, however, you'll need a
simple high-resolution drawing program to create your “’slides.”

This program incorporates many of the features of the double-
low-resolution drawing program from chapter 3 and also includes a
BSAVE option to save the creations to disk.

140 WAIT - 16384,128

150 TEXT : HOME

160 LIST

170 END

200 REM A e o o ofe e

210 REM PAGE 1

220 REM e s o e ok

*30 HCOLOR= 3

&40 HPLOT 10,50 TO 100,50
<50 HPLOT TO 100,100 TO 10,100
260 HPLOT TO 10,50

70 HPLOT 100,75 TO 120,75
<80 HPLOT TO 120,60 TO 140,60
290 HPLOT TO 140,80 TO 120,80
300 HPLOT TO 120,75

310 HPLOT 140,75 TO 150,75
320 HPLOT 150,50 TO 190,50
430 HPLOT TO 190,100 TO 150,100
340 HPLOT TO 150,50

350 RETURN

400 REM o e s o e o

Program 4-9.

10 HOME

20 HGR
20 HCOLOR= 7: REM START WITH WHITE

40 REM s she e e o e e ok e e e ke ke

50 REM READ KEYBOARD
60 REM e se e e e e o ofe e feoleooie ke

70 WAIT - 16384,128

80 K = PEEK (- 16384)
90 POKE - 16368,0

70 71

High-Resolution Graphics

CHAPTER 4
100IF K = 136 THEN K = 1- REM LEFT
110 IF K = 149 THEN K = 2 REM RIGHT
120 IF K = 138 THEN K = 3: REM DOWN
130 IF K = 139 THEN K = 4: REM UP
140 IF K = 195 0R K = RR7T THEN K = 5

150 IF K = 241 OR K = 209 THEN VTAB 24 PRINT C
BSAVE GRAPHICI,A$3000,L$2000";: END

160 ON K GOSUB 200,260,320,380.500
170 HPLOT H,V |
180 FOR PAUSE = 1 TO 50:
I 50: NEXT PAUSE
200 REM *+#*x

210 REM LEFT

220 REM ***+*

2B0H=H-1
R40IFH < O THEN H = 0

250 RETURN

260 REM **+*x

270 REM RIGHT

280 REM *****

290 H = H + 1

300 IF H > 279 THEN H = 279
310 RETURN

320 REM *#**

330 REM DOWN

340 REM ***»

350V =V + 1

360 IF V > 151 THEN V = 151
370 RETURN

380 REM **

390 REM UP

400 REM **

410V =V-1

420 IF V<O THEN V = 0

430 RETURN

500 REM e e e she e e ok e o o ok ok

510 REM CHANGE COLOR

520 REM e e she e e o ke e o e ok ok

530 HOME

72

HR$(4);

540 VTAB 22: HTAB 1
550 INPUT “Color Code 0-7 “;CL

560 HCOLOR= CL

570 RETURN

Next, draw a graphics screen. Save it to disk by pressing the 5
key. In line 150, change GRAPHIC1 to GRAPHIC2, then create
and save a second graphics screen. Change line 150 once more so
that it uses GRAPHIC3, then draw and save.

It really doesn’t matter what you draw—just make sure the
three are different so you can tell when one is switched with
another.

Use this next program to retrieve and show your graphics.

Look at lines 60 and 70, which BLOAD a program to the primary
and secondary graphics pages, respectively. You BLOAD a graphic
to the primary page by specifying A$2000; using A$4000 sends the

graphic to the secondary page.

Program 4-10.

10 TEXT : HOME

00 REM ****ttikkonkkx

30 REM LOAD GRAPHICS
40 REM **#rwsrsrkink

50 D$§ = CHR$ (4)
60 PRINT D$“BLOAD GRAPHIC1,A$2000"

70 PRINT D$“BLOAD GRAPHICR,A$4000"

100 REM sk o e ke ke s o e sl o e ke o o o ok
110 REM TURN ON GRAPHICS
120 REM sk sk s sk s s e ke e s o e ook KOk

130 POKE 49232,0

140 POKE 49234,0

150 POKE 49236,0

160 POKE 49239,0

170 WAIT - 16384,128

180 POKE - 16368,0

200 REM s e sk s ok o ke o ok o ok o e o oo

210 REM SWITCH TO PAGE 2
220 REM ke e sk o o e ok ok o o e ke ke ok ok ok

230 POKE 49237,0

73

CHAPTER 4 High-Resolution Graphics

and 1s. Depending on the bit or bits that are turned on (have a

value of 1), a pixel will be lit or not lit. - |
High-resolution color values 1-8 and their binary equivalents

are shown in Figure 4-1. The lit pixel is shown as a black dot. (The
shaded box indicates the control bit.)

240 REM tkskokskokokokkokkkokodok

250 REM LOAD NEXT GRAPHIC
260 RENM *¥ksskomkrokdohdkokokdok

R70 PRINT D$"BLOAD GRAPHIC3,A$2000"
280 WAIT - 16384,128

200 POKE - 16368,0

A00 RENM *totrkkskskok kokk ok ok

310 REM SWITCH TO PAGE 1
320 RENM *skkskokdoksiok ook sk ok

330 POKE 49236,0

340 WAIT - 16384128

350 POKE - 16368,0

360 TEXT : HOME

370 LIST

Figure 4-1. Values 1-8

Color in Memory

Color memory is a lot more complex in high-resolution than in
low-resolution graphics.

Each pixel is part of an eight-bit pattern. Seven of those bits
correspond to pixels visible on the screen, while the eighth bit is
used as a control bit.

The following program gives you a quick look at the 255 dif-
ferent color value combinations—each is seven pixels long.

e|je|1|/1|6

Program 4-11. Notice that the pixels are in complementary positions relative to

20 =] the bit or bits turned on. In other words, when thez rightmo;t bit 11(831-
o on (has a value of 1), then the pixel at the far le.ft is lit. tll-? tbii f; .
<0 FOR X = 8192 TO 18382 STEP 40 value 8, the center pixel is atop the turned-on bit since the
S S 2 the middle of the byte. |
MU =G Tl Depending on which address you use to store a value, g:ie fl};sg
s bit of a screen color byte will be considered either even or oda.

i idered even. The second
first screen address, $2000 (8192) is consi ond
slrfeen address, $2001 (8193) is odd. The addresses alternate in this

ttern of even-odd. | :
” eLet’s say you store a color byte at location $2032 (8242). That's

: : i
an even address, so the first bit of the color by.te is considered ;i:; c
as well. Think of the addresses arranged as pairs, one even an

60 WAIT - 16384,128
70 TEXT : HOME
80 LIST

To see what's going on in this program, it’s necessary to take a
closer look at how the pixels get to the screen. The bytes used to
display pixels and color contain a binary number made up of 0s

74 75

CHAPTER 4 High-Resolution Graphics

other odd, and things may be clearer. Here’s two color bytes, one Figure 4-3. Black, Magenta, Green, and White

stored at $2000 and the other at $2001. (Both bytes show only
seven bits in Figure 4-2; consider the eighth bit, the control bit, as
off. More on the control bit and its effect shortly.)

Figure 4-2. Even and Odd Bytes and Bits

52000 52001

Even Byte Odd Byte
E OE DE D E O E OE OE O

Black

Magenta

Color=Magenta Color=Green

E=Even bit
O0=0dd bit

Oreen

Notice that both bytes have the same value—the difference is
that the byte on the left produces a magenta pixel and the one on
the right, a green pixel. If a lit pixel is in an even bit column, it’s
magenta. Look at Figure 4-2 again and check that the bit which
creates magenta is in an even column (it is). If a pixel is set in an
odd bit column, it’s green.

Thus, if you wanted to put two magenta-colored pixels in adja-
cent addresses, you'll need to set an even bit in the even byte and

11 Hhite

3 fple|a|je|6|06|1l

Figure 4-4. Blue and Orange

an even bit in the odd byte. The odd byte’s value could be 2 (10 in Blue
binary). 6jejeje|1l
You've already seen how to create magenta and green—what
if two adjacent bits are set, one in an even bit column, the other in
an odd bit column? White is the result.
Any other combination yields black. Orange
The first four color values show all these combinations (Fig- ol il Bl

ure 4-3). Keep in mind, however, that these colors apply only when
the control bit is off.

When the eighth bit is turned on, 128 is added to the value. Whit
Blue (cyan) replaces magenta, and orange replaces green. Figure 4- e(e|1|1 e
4 shows what the color bytes would look like.

i

76

CHAPTER 4

Storing Colors in Memory

To get an idea of how colors stored in memory look, type one of
the following from the immediate mode.

In BASIC, type

HGR (press Return)
POKE 8198,1 : POKE 8193,2 (press Return)

In machine language, type

HGR (press Return)
CALL-181 (press Return)

When you see the * prompt, type
R000: 01 OR (press Return)

Either gives you two magenta dots near the top of your screen.

Notice that the dots are not adjacent. What you've done is to place
the value 1 in the first even byte ($2000/8192) and the value 2 in
the first odd byte ($2001/8193).

To create a line of adjacent dots, you'll need combinations of

pixels which line up on the even or odd columns. This chart pro-
vides the proper values.

Even Odd
Magenta 85/$55 42/%$2A
Green 42 /$2A 85/$55
Blue 213/$D5 170/$AA
Orange 170/$AA 213/$D5
White 127 /$7F 127 /$7F

255/$FF 255 /$FF
Black 0/$0 0/$0

128/$80 128/$80

Try POKEing in some of these values in consecutive high-
resolution addresses to see what happens. For instance, enter this
program to draw an orange line across the top of the screen.

Program 4-12.

10 HGR

20 FOR EVEN = 8192 TO 8230 STEP 2
30 POKE EVEN,170
40 POKE EVEN+1,213

78

High-Resolution Graphics

50 NEXT EVEN
60 WAIT -16284,1:8
70 TEXT: HOME

Replace the 8230 in line 20 with 16382 to fill the entire screen
with orange with lines. It’s easy to see the three divisions of screen
memory when you do.

Double-High-Resolution Graphics

On your Apple IIGS, double-high-resolution graphics is a little like
double-low-resolution graphics. You flip the same soft switch at
address 49246 ($CO5E) to turn it on. After that, however, it’s far
more difficult to control.

First, BASIC statements are not recognized on the bank 1 screen.
That means all values have to be sent there by machine language
routines. As you've seen, that means a rather trying bout with
pixels. Another problem is putting graphics where you want them
on both parts of the double high-resolution screen without running
out of memory. (Assume you're doing this without using more
than 48K of memory, and employing BASIC as much as you can.)

To get a sense of what'’s going on here, put your IIGS into 80-
column mode, and enter the following:

HGR (press Return)
CALL-151 (press Return)

At the * prompt of the monitor, type

*C054: 00 (press Return) Double-resolution graphics primary page
*00<01/2000.01/3FFFZ (press Return) Clear bank 1 screen

*01/2000: O1 OR (press Return) Bank 1 addresses

*00/R000: 01 OR (press Return) Bank 0 addresses

*Q (press Return) Return to BASIC

You should be back in BASIC.
That short routine gave you the magenta dots, but this time
they're closer together than before. With double the resolution, you

can get 560 dots across the screen.
Let’s draw a white line across the screen. Addresses from

$2000 to $2027 must be filled with a value on both screens. A
technique to quickly do this in the monitor (the place you go after

79

CHAPTER 4

typing CALL-151) is to use the same method you just used to clear
the double-resolution graphics screen. The Z (for Zap) command in
the monitor fills the range of given addresses with the specified
value. The less than symbol (<) is used. You want to create a line
in white, and from the chart listed earlier, you know that either
$7F or $FF will do the trick (if you're not in 80-column mode, enter
it now—don't forget to set the soft switch at location 49246 also).

HGR (press Return)
CALL-151 (press Return)

Again, at the * monitor prompt, type

*C0B4: 00 (press Return)
*?F<01/2000.01/20R7Z (press Return)
*7?TF<00/2000.00/R0R7Z (press Return)
*Q (press Return)

That white line at the top of your screen is 560 dots across, not
280 as in single-resolution graphics.

Using an Array

The next program loads up all of the addresses into a sequential ar-
ray. Notice that other than the HGR statement, there are no graph-
ics statements in the program. The screen begins to fill with
graphics, however.

Program 4-13.

10 POKE 492486,0

20 REM sje e oje s e e e e afe sje e s e o e o

30 REM PLACE SEQUENTIAL

40 REM TABLE IN ARRAY

50 REM e s e o ofe o o e o e e e e e e ok

60 HGR

70 INVERSE

80 VTAB 21

90 PRINT “ BE PATIENT AND WATCH THE SCREEN “
100 DIM X%(8192)
110 FOR A = 8192 TO 8272 STEP 40
120 FOR B = O TO 896 STEP 128
130 FOR C = O TO 7168 STEP 1024

80

High-Resolution Graphics

140 FOR D = O TO 38 STEP 2
1IBON=A+B+C+D
160 X%(X) = N

170X =X+1
18ON=A+B+C+D+1
190 X%(X) = N

200X = X + 1

210 NEXT D

220 NEXT C

230 NEXT B

240 NEXT A

250 NORMAL : HOME

260 PRINT CHR$ (7)

270 VTAB 21

280 PRINT “ALL DONE"

200 END

What's happened is that the array is so large that it starts fill-
ing up the part of memory used by high-resolution graphics. You
may also notice the black columns between the graphics. These are
the bank 1 addresses not affected by the array.

You'll need a rearranged array to do graphics correctly, so let’s
use the LOMEM statment. LOMEM sets the lower limits for storing
variable and array data. Such data is prevented from entering
memory addresses below this limit.

To make sure you've got enough room, set LOMEM to 16384
($4000), just above the primary page of high-resolution graphics.
This will give you enough room for the large array and still pre-
serve the space needed for graphics.

The following program does this, drawing a sequential line
with the large array. It only uses 600 bytes in both banks (300 in
each), but it illustrates how to produce drawings in double-high-
resolution graphics.

Program 4-14.

10 LOMEM: 16384

20 POKE 49246,0

30 REM sk ok ok e ke ok 3 o o e o ok ok o o ke

40 REM PLACE SEQUENTIAL
50 REM TABLE IN ARRAY

81

CHAPTER 4 High-Resolution Graphics

60 REM e e sk v ol e e ok e she s oke e ol ok ok

70 HGR

80 INVERSE

90 VTAB 21
100 PRINT ” LOADING ARRAY “
110 DIM X%(8192)
120 FOR A = 8192 TO 8272 STEP 40
130 FOR B = 0 TO 896 STEP 128
140 FOR C O TO 7168 STEP 1024
150 FOR D = 0 TO 38 STEP 2
l1l6ON =A+ B G+ D
170 X%(X) = N
180 VTAB 21: HTAB 19: PRINT “ *”
190X =X +1
ROON=A+B+C+D+1
210 X%(X) = N
[ROX=X+1
230 NEXT D
240 VTAB R1: HTAB 19: PRINT “* “
250 NEXT C |
260 NEXT B
270 NEXT A
280 NORMAL
290 HOME : VTAB 22

200 REM trskiokiomboomioksokkokkoksdkokkokok

310 REM POKE SEQUENTIAL ADDRESSES
320 REM e e e 3k sfe 3k e e e o s e s e e o e o ook e e o ok
330 FOR X = 0 TO 300 STEP 2
340 N = X%(X)

350 V = 170: REM EVEN ORANGE
360 POKE N,V

370 GOSUB 500

380N =N + 1

390 V = 213: REM ODD ORANGE
400 POKE N,V

410 GOSUB 500

420 NEXT X

430 VTAB 22

440 END

l

82

500 REM o e e o ol o o o o sk o o s e o o e e

510 REM CONVERT TO 2 BYTE #

520 REM s o o e sk o o e o e e e sl e e e e sl o

530 LB = N - INT (N / 256) * 256

540 HB = INT (N / 256)

600 REM 3 e ok e e e o s o o e ofe e ok e ke

610 REM MACHINE LANGUAGE

620 REM e ofe o e ofe o ofe e ok e e A ok sk Ak R

630 POKE 768,169: REM LDA

640 POKE 769,V: REM VARIABLE COLOR
650 POKE 770,143: REM LONG STA

660 POKE 771,1LB: REM LOWBYTE

670 POKE 772,HB: REM HIGHBYTE

680 POKE 773,1: REM BANK 1

690 POKE 774,96: REM RTS

700 CALL 768: REM EXECUTE ROUTINE

710 RETURN
720 VTAB 21: HTAB 19: PRINT

H'* "

83

Chapter 5

Shapes and
Bitmapped
Graphics

Dealing with graphics shapes on the Apple IIGS takes some
careful organization and planning. Though the details may be a bit
intimidating at first, once you create a few shapes, it’s really quite
easy.

It’s easier to buy a commercial shape editor, or to get a public
domain editor from an Apple user group or one of the information
services—but then you may not fully understand how to use the
shapes. Creating shapes yourself will give you much more in-depth
experience in how they work. If you do decide to use a shape edi-
tor, skip the first section of this chapter and go directly to the part
which concerns manipulating shapes.

Getting into Shapes

As with most programming, you'll deal with 8-bit bytes when gen-
erating shapes and shape tables.

It’s easier, however, to think of the eight bits in three pack-
ets—one of two bits, and two of three bits each: 2, 3, 3. The first
packet of two bits is generally unused, so you'll work with two
three-bit sets for the most part.

The shape table you’ll build is based on values entered into a
series of bytes using binary and hexadecimal codes. All of these, of
course, must be further translated into decimal numbers which can
be used from a BASIC program. With planning and clear explana-
tion, you'll quickly grasp shape creation, and see what they can do
for your own programs.

Drawing a shape in memory is much like drawing with paper
and pencil. In fact, you can draw the shape on graph paper first,
then plot it in your computer’s memory.

87

CHAPTER 5

Shapes and Bitmapped Graphics

Imagine a shape as something you draw in memory by speci-
fying directions and draw/not draw instructions with three-bit
packets; occasionally you can use a two-bit packet (see the chart
listed in Figure 5-1).

Draw in Memory

As you plot the shape in memory, you can move the drawing tool
(without actually drawing) up, down, left, or right. That’s four
choices. You can also move and plot in those same four directions.
That’s four more choices, for a total of eight.

It's easiest to understand drawing shapes if you use a com-
bination of binary and hexadecimal numbers to start. Once you
have the hexadecimal values, you can translate them into decimal
numbers for a BASIC program.

Here are the available moves and the values they carry:

Figure 5-1. Moves and Values

Move Plot Binary Hex
Up No 000 0
Right* No 001 or 01 1
Down* No 010 or 10 2
Left* No 011 or 11 3
Up Yes 100 4
Right Yes 101 5
Down Yes 110 6
Left Yes 111 7

Each move or move/plot is recorded in a three-bit segment of
a byte, or a two-bit segment if appropriate. Notice the moves with
an asterisk and their binary value. If, in the sequence of plotting
and moving, one of those moves is to be recorded and the next
available segment is two bits long, then it can be recorded as a
two-bit value. Let’s look at an example.

Shape A = Move/plot to the left, move/plot up, and move to the
left.

1. Move/plot left = 111

2. Move/plot up = 100

3. Move left = 011 or 11

88

The three segments of the byte will be numbered from 1, 2,
and 3, respectively, so that you can keep the sequence in order.

1. Segment 1 = 111
2. Segment 2 = 100
3. Segment 3 = 11

The byte which holds the values for these moves and plots
looks like Figure 5-2.

Figure 5-2. Three Moves, One Byte

Segment 3 Segment 2 Segment 1
Bitit 7 6 | S 4 3 | 2 i e
1 i 1 e 8 1 i | 1

That was pretty simple. |
Consider what would be required if you had the following

move, however. Note that it’s just a slightly different sequence of
moves and plots.

Shape B = Move/plot to the left, move/plot up, move/plot up,
and move to the left.

1. Move/plot left = 111

2. Move/plot up = 100

3. Move/plot up = 100

4. Move left = 011 or 11

Since the third action involves a three-bit operation, you can't

use Segment 3. You have to go to the next byte.
Figure 5-3 shows what Shape B will look like when mapped.

Figure 5-3. Four Moves, Two Bytes

Segment 3 Segmnent 2 Segment 1
Bitn 7 6 E 4 3 |2 1 8 Byte u1
B a 1 a8 a8 1 1 1
C3) £2) : 1)
Bitn 7 6 |3 4 3 |2 1 8 Byte n2
B 1 1 1 8 B
(4) £3)
89

CHAPTER 5

The numbers in parentheses show the sequence of placing the
values. You can draw any shape in memory with the same proce-
dure, although most shapes take many more steps than the short
examples you’ve seen so far.

You're ready to draw something you can see on your com-
puter. Figure 5-4 shows a jet airplane drawn on graph paper.

Figure 5-4. Jet on Graph Paper

Beginning with a point above the nose of the jet, you can draw
a continuous line which ends at the tip of the nose. All entries will
be move and plot, so you'll be using these values:

111
100
101
110

«— | = 1

And Figure 5-5 shows shows how to plot each point.

Figure 5-5. Plotting the Jet

90

Shapes and Bitmapped Graphics

Following the plotting arrows around the jet, you'd get the this
binary pattern:

9 B | 12 113 28. 101
2. 100 16. 100 29. 110
3. 111 145 A1) 30. 101
4. 111 18. 110 31. 101
5: 110 19. 110 32. 101
6. 111 20. 110 33. 101
7. 111 21.110 34. 101
8. 111 22. 101 35. 101
9. 111 23. 101 36. 100
10,111 24. 110 37. 141
11. 111 25. 101 38. 100
12. 100 26. 101 39. 101
13. 111 27. 101 40. 101
14. 100

The final step is to translate the binary into decimal and/or
hexadecimal. Consider two different methods for accomplishing
that task.

Translate by Hand

The first method is more time consuming, but it will give you a
better understanding of the translation process.

First, rearrange the byte breakdown. Instead of treating each
byte as three sets of bits (one two-bit packet and two three-bit
packets), think of a byte now as composed of two four-bit seg-
ments. Let’s look at what will be the first byte of the shape table.

Instead of Segments, you now have a high and a low nibble.
The binary values in the bits are the same, but to translate the byte
into a hexadecimal value, it’s simply easier to break it into nibbles.

91

CHAPTER 5 Shapes and Bitmapped Graphics

Figure 5-6. High Nibble/Low Nibble get everything organized, though, it’s relatively simple—and, as

you’ll see, well worth the effort.

High Nibble Low Nibble Here’s a complete shape table depicting the jet from Figure 5-4.

7 6 5 4 113 2 1 8 Byte nl Byte Segment3 Segment2 Segmentl Hex Decimal
8 0 1 8 8 1 L ~ 0 00 100 111 27 39

Once you've broken it into nibbles, translating the byte into ; gg i:: H; gg gi
hexadecimal is easy—just substitute the four-bit nibble for a single- 3 00 111 111 3F 63
digit hex value. Notice that in the following chart the full range of 1 00 111 111 3F 63
four binary digits (0000-1111) exhausts the single-digit range of : 00 100 111 27 39
hexadecimal numbers (0-F). That’s another clue as to why hexa- 6 00 100 111 27 39
decimal values are used with computers. - 00 100 111 97 39
Binary Hexadecimal 8 00 110 111 37 55
0000 0 9 00 110 110 39 54
0001 1 10 00 101 110 2D 45
0010 2 11 00 110 101 35 93
0011 3 12 00 101 101 2D 45
0100 4 13 00 101 101 2D 45
0101 5 14 00 101 110 2E 46
0110 6 15 00 101 101 2D 45
0111 7 16 00 101 101 2D 45
1000 8 17 00 100 101 25 37
1001 9 18 00 100 101 25 37
1010 A 19 00 101 101 2D 45
1011 B
1100 C
11?{1) ED Software Translation
it " A second method to get that same table would be to write a pro-

gram which translates binary values into decimal and hexadecimal.
This is a lot easier when dealing with a large table of values.
The next program does this for you.

To translate the byte shown in Figure 5-6, for instance, you'd
first break it into its two nibbles:

High nibble: 0010 = $2
Low nibble; 0111 = $7

Thus the byte’s value in hex is $27.
Turn to appendix C, which offers a hexadecimal-to-decimal
translation table, and you can see that $27 in hex is 39 in decimal.
You're done—with one byte. That’s a lot of work. Once you

Program 5-1.

10 TEXT : HOME : GOSUB 440
20 INPUT “How many bytes in your shape “;BN
30 FOR B = 1 TO BN

100 REM *#kskobkkkkdohdokokk

110 REM BINARY CONVERSION

120 REM e e e e e o e ok sk ok o ol ol ok ok ke ok

92 93

CHAPTER 5

130 INPUT “Binary number “;B$

140 IF LEN (B$) < > 8 THEN 130

150 FORX =0TO 7

160 V$ = MID$ (B$,X + 1,1)

170V = VAL (V$): IF V> 1 THEN X = 7: PRINT “All digits must be
‘0" or ‘1" CHR$ (7): NEXT : GOTO 130

180P=7-X

1990 IFV=1THENBV=2"P

200 TD = TD + BV

_R10 BV =0

20 NEXT X

230 PRINT “Your decimal value is “;TD

300 REM e e o e o e ol e e e o ol e ok

310 REM CONVERT TO HEX

520 REM e o ok e e e 3 ok ke ke e ofe ok ke

330 POKE 780,TD

340 PRINT “Your hex value is ”;

350 CALL 768

360 PRINT

370 TD =0

380 NEXT B

390 END

400 REM o ok o o o e A o 3 3k ol ofe o A ok ok

410 REM MACHINE LANGUAGE

420 REM HEX CONVERSION

480 REM s e sfe e e o s s s s o o ok e ook

440 FOR A = 1TO 12

450 READ MB

460 POKE 767 + A ,LMB

470 NEXT

480 RETURN

4900 DATA 169,164,3:2,237,2563,173,1.,3,32,218,253,96

Once you've translated the shape into decimal and hexadeci-
mal values, let’s see how to use them in shapes.

94

Shapes and Bitmapped Graphics

Entering the Shape Table

You can either POKE in the decimal numbers from BASIC or, using
the monitor, enter the hexadecimal values directly into a memory
location. In either case the procedure involves two things:

e Placing the shape somewhere in memory where it won't clash
with other information.
e Telling your Apple where to find the shape information.

First of all, store the starting address of your shape in a special
register (which draws shapes) at locations $E8 and $E9 (232 and
233). This register holds a pointer to shape definitions. For this
demonstration, store the shape in memory starting with address
$300 (decimal 768)—that’s a location with some free memory. The
microprocessor of the Apple needs this information in a low byte,
high byte pattern. This is backwards to us humans, but it suits the

machine just fine.
Thus, the starting address will be stored in locations $E8 and

$E9 as

$ES8: 00
$E9: 03

It from BASIC

To store this information from BASIC, you must break up the $300
into two parts and POKE the decimal equivalents into those loca-
tions. Fortunately, you can make a direct translation from hex to
decimal.

Hex Decimal
00 00
03 03

Since the low byte is stored in the first address and the high
byte in the second, enter

POKE 232,0
POKE 233,3

95

CHAPTER 5

Finally, you must provide more information at the beginning
and end of the shape data.

First byte: Total number of shape definitions
Second byte: Unused

Third and fourth bytes: Relative offset for beginning of shape

The relative offset indicates where the shape data actually be-
gins. It's not an address, but the number of bytes after the starting
address. The relative offset makes the shape table relocatable—it
can be placed in any area of free memory.

In this example, there’s only one shape, and the shape data
begins immediately after the relative offset information. That will

be in the fifth byte, but since the first byte is considered zero, the
value will be four (4).

Byte 0 = 01 (Number of shapes)

Byte 1 = 00 (Unused)

Byte 2 = 04 (Low byte of offset)

Byte 3 = 00 (High byte of offset)

Byte 4 = 39 (First value of shape)

Bytes 5-N (N=last value of shape table)

Byte N+1 = 00 (Indicates end of shape table)

After you've managed all this, you're ready to write a program
which will place the shape information in memory and use the
shape.

The table for the jet shape includes 20 bytes. There are 25
bytes total, however, since you have to use 4 bytes at the begin-
ning of the table and 1 byte at the end. That means you’ll have to

POKE 25 shape values into memory, beginning at $300 (768).
Let’s use the following loop.

FOR X = 768 TO (768 + 24)

To make it easy, put all the information in DATA statements,
then have the loop read the data and sequentially place it in the as-
signed addresses. Before that, though, remember to indicate where

the shape information is stored. Thus, $E8 and $E9 (232 and 233)
will be POKEd with

POKE R3R,0 : POKE 233,3

This program does everything for you.

96

Shapes and Bitmapped Graphics

Do

Program 5-2.

10 REM ook % ok
20 REM SETUP
30 REM o ok ke ok
40 POKE 232,0: POKE 233,3
50 TEXT : HOME
100 REM e e ofe sk o ofe e o e e ke 3k
110 REM READ IN DATA

120 REM *rikkkskkodokkk
130 FOR X = 768 TO 768 + 24

140 READ S
150 POKE X,
160 NEXT
170 DATA 1,0,4,0
180 DATA 39,63,62,63,63,39,39,39,55,54
190 DATA 45,53,45,45,46,45,45,37,37,45,0
Run this program. Nothing happens. The shape is in memory,
but you haven’t drawn it yet. You need more statements and com-

mands to see the shape. You'll learn how that’s done in a moment.
For now, though, let’s see how to enter the shape table data in

memory with the monitor.

It from the Monitor

First of all, you need to store the starting address information in

memory locations $E8 and $E9.
Here’s how.

CALL -151 (press Return)
When you see the monitor’s asterisk (*) prompt, type

*E8: 00 03 (press Return)
*Q (press Return)

You're now back in BASIC. _
Now you're ready to enter the same data as you p}aced in
memory with BASIC—this time with the monitor. You'll enter

hexadecimal values.
CALL-151 (press Return)

97

CHAPTER
5 Shapes and Bitmapped Graphics

Wait for the * prompt to appear; then type in the starting address
($300), a colon (:), and the 25 byte values.

*300: 01 00 04 00 27 3F 3E 3F 3F 27 _7 27 37 39 2D 35 2D 2D RE
”D 2D 25 25 2D 00 (press Return)
*Q (press Return)

e ROT. The ROT value ROTates your shape in one of eight angles.
ROT recognizes values 0, 8, 16, 24, 32, 40, 48, and 56. Other ROT
values are dropped to the next lower value (for example, 12 will
be treated as 8). At angles other than 0, 90, 180, or 360, the
shapes are distorted.

« DRAW. Using the high-resolution pixel matrix, you plot the X and
Y coordinates using the following format: DRAW N% AT X,Y
where N% is the shape number and X and Y are the horizontal
and vertical coordinates on your high-resolution screen.

« XDRAW. XDRAW has the same format as DRAW except it draws
the complement of the color existing on the screen. When using
animation, XDRAW is preferable to DRAW.

Add these lines to Program 5-2.

You may have one question—why bother with the monitor when
a program automatically does everything for you from BASIC?

Two reasons. First, if you want to quickly edit the shape, you
can enter the monitor and make changes quickly and easily byte-
by-byte. Secondly, you can save your shape as a binary (BIN) file,
which can be loaded into memory from disk at any time.

To save the above shape as a binary file, for instance, type this
after you've exited the monitor and returned to BASIC:

BSAVE JET,A$300,L$19 (press Return)
or
BSAVE JET,A768,L_R5 (press Return)

Place shape on screen.

900 REM ***rskkmiokdkhohtdok

210 REM PUT SHAPE ON SCREEN

290 REM **ikwiosiinkkidbohkkk

230 HGR

250 SCALE= 1

260 ROT= 1

270 DRAW 1 AT 100,100

(You can use either XDRAW or DRAW to place a figure on the screen.)

This command saves the 25 (L$19) values stored in memory
starting with 768 ($300) as the binary file JET (BSAVE JET).

You could have done the same thing from BASIC. By entering
it in the monitor, however, you can get a better idea how shapes
are stored in memory.

To use the shape table in another program, use this line:

100 PRINT CHR$(4);"BLOAD JET,A$300" Mowve shape.

900 RENM *isksmkiokx

210 REM MOVE SHAPE
920 REM ***iksrkkx

230 HGR

240 HCOLOR= 3

250 SCALE= 1

260 ROT= 1

270 FOR X = 0 TO R79
280 DRAW 1 AT X,70
290 FOR PAUSE = 1 TO R
300 NEXT PAUSE

310 XDRAW 1 AT X,70
320 NEXT X

That single line can replace lines 100-190 in the last BASIC
program.

Shape Manipulation

You've done a lot of work in creating a shape; now it’s time to use
it. Let’s first take a look at the special shape statements you can use.

e SCALE. The SCALE statement sets the size of your shape. A
SCALE value of 1 uses the single-pixel plot resolution you created

your shape with. Higher value scales create larger shapes with
lower resolution.

98 99

CHAPTER 5

Shapes and Bitmapped Graphics

| For movement, it's best to alternate DRAW and XDRAW. It
;1:1131}7 hbeilps to think of it as a draw and erase sequence. It u;ould
possible to use XD it a bi

pou o e XDRAW for both, but that makes it a bit more

. Notice the short pause loop in lines 290-300. That prevents

: e screen from clouding over the shape as it moves. Remove the
tlnes to see what happens without that short delay. On some moni-
{;lrs, it may not mqke a difference, but if your screen seems to dro
shadows over moving shapes, put in a short delay loop. d

Change the program to see if you can .
make t
upper left corner to the lower righg e the jet fly from the

Rotate shape.

200 REM **wikkikiohiok

210 REM ROTATE SHAPE
290 RENM ***srkskoiokkk

230 HGR

240 HCOLOR= 3

50 SCALE= 1

<60 FOR R = O TO 56 STEP 8
70 ROT= R

280 XDRAW 1 AT 30 + R,30 + R
290 FOR PAUSE = 1 TO 400
300 NEXT PAUSE

310 NEXT R

Rotation can give spectacular anim
, : SRvEaE ated effects. In the exampl
i écc)loks like the jet is spinning out of control or performing a ;T;E .
and change the following lines for another view of the flip i

290 FOR PAUSE = 1 TO 100

305 XDRAW 1 AT 30 + R,30 + R
320 R=0

330 XDRAW 1 AT 30 + R,30 + R

That second view really 1 :
; ets you see the : ST
of using shape tables. - SNEHON poskIalines

Change scale.

200 REM **rkokkskkokskkk
210 REM CHANGE SCALE
290 REM *H#sokskorsokskk

100

Bitmapped Graphics

Color and High Bits

230 HGR

240 HCOLOR= 3

280 ROT— O

260 FORS = 1TO 4

270 SCALE= S

280 DRAW 1 AT B0 + 8,20 * 5

290 NEXT S

Changing the scale lowers the resolution of your shape, but
ou can see the vectors better. In the jet you created, for instance,
it's possible to see a gap between the nose and the cockpit area.

Some shapes may actually look better if they're scaled upwards.
For the most part, though, larger scaling is most often used for editing
shapes. See if you can figure out what would have to be added to
the jet shape to fill in the gap near the nose. (Hint—move back-
ward without plotting from the tip of the nose, then plot the gap.)

Try experimenting with the color and your shapes. Change the
white value from 3 to 7 in HCOLOR. Even that will give you a dif-
ferent appearing shape. Other colors may break up the shape, and
by filling in a more or less blank area of a shape, you can get inter-
esting color results. The key is to experiment, then judge the results

yourself.

eneration is bitmapped graphics.

Another type of graphics character g
hics figure with a bit configu-

This process involves drawing a grap

ration instead of plotting vectors.
Graphics blocks are built using seven bits of each byte in a

character. The bytes are then stored in the high-resolution memory.
By changing the addresses of the bytes, it's possible to program

animation. You can use as many bytes as you have room for, in
memory and on the screen. And since color is determined by the

bit pattern, it's possible to create multicolored characters.

cs use seven bits in creating a fig-
he color. Figure 5-7 shows which
olor not only depends on
the eighth bit (also called

The reason that bitmapped graphi
ure is that the eighth bit controls t
on bits create which colors. Note that ¢
which bits are set on, but also whether

the high bit) is on or off.

101

CHAPTER 5

Shapes and Bitmapped Graphics

Figure 5-7. Bitmapped Graphics Colors

Even Odd
High Bit=0 |y L1 U U L U U
High Bit=06 G G i G (T G G
High Bit=1|g B B B B B 5
High Bit=1 0 0 0 0 1] 0 0
Hhite 1j1|1(1j1j1|1j1|1(1|1({1]|1]|1
B Ak ole|o|o|o|o|e|e|o|o|a|e|e]|e
V = bit is on, color is violet
G = bit is on, color is green
B = bit is on, color is blue
O = bit is on, color is orange

Within a single byte, it’s possible to have up to four colors
(black, white, and green/violet or blue/orange).

To see how bitmapped graphics and color work, let’s look at
some examples using the monitor. You'll start with the color violet,
According to Figure 5-7, you need the following configuration.

Violet in binary
Low bit -->10101 01 0 <-- High bit

Important note: Remember that what shows above is the reverse of
what you'd normally find in examining a binary number. It’s re-
versed, meaning that the high bit is on the right and the low bit is
on the left. Using the binary-to-decimal /hexadecimal conversion
program which you used to convert binary values in making shape
tables, start with the rightmost bit and enter the binary number
from right to left. Running that through the conversion program
should give you the hexadecimal value of $55.

Now type the following.

TEXT:HGR (press Return)
CALL-181 (press Return)

You're now in the monitor, and should see the asterisk prompt.
Type
*QC00: 55 (press Return)

102

There’s a violet line in the top left corner, isn’t there? Now,
while you're still in the monitor, enter

*2C01: 55 (press Return)

This time the line is green. The zero byte ($2C00) is even, and
the first byte ($2001) is odd. That’s why, although both bytes con-

tain the value $55, one is violet, the other green. | o
You have to use $2A every other btye to get two violet lines in

a row. That's because on odd bytes, the color for green is $55; for
violet, it's $2A.

A Space Shuttle

To start with, let’s try something simple. The next shape uses only
white, so it doesn’t matter whether bytes are even or odd.

Figure 5-8. The Shuttle

Remember that the rightmost bit controls the color in b'%t- |
mapped shapes—since the shape includes white only, the high bit
(rightmost in this case) is always zero. It's set off from the rest of

the data by a vertical line.

Left Data Right Data

1.100000010 000000010
2.110000010 000000010
E11PrrTaip 111000010
4.011111110 111110010
5. 1113331310 21111191114

103

CHAPTER 5

These values are translated to

1. $1/1 $0/0
2.%$3/3 $0/0
3.$7F/127 $7/7

4. $7E/126 $1F/31
5. $7F/127 $7F /127

Plug the graphic into memory from the monitor to see it on
the screen. To enter it in the correct order, it's necessary to place
each pair of bytes in consecutive rows. Remember that your Ap-
ple’s high-resolution memory is not consecutive or linear—each
row begins $400 above the previous row.

TEXT : HGR (press Return)
CALL-151 (press Return)

*2C00:01 00 (press Return)
*3000:03 00 (press Return)
“3400:7F 07 (press Return)
*8800:7E 1F (press Return)
*3CO0:7F 7F (press Return)

That should create your space shuttle. Crud
... y p rude, but you get

Moving and Sequential Memory

I}‘ you want to move the graphic, it will be a complex task trying to
figure out the path unless you devise a way to sequentially line up
t'h{:l‘ memory. Using assembly language, this could be done very ef-
ficiently. However, it is possible from BASIC. Here’s how.
~ The trick is to store the addresses of high-resolution memory
In an array, just like you did for screen memory. That is, the ad-
dresses—beginning in the upper left corner and proceeding from
left to right to the lower right corner—will be put into an integer
array. Then, using the array data, you can POKE the data for the
graphics character into sequential locations on the screen.

~ The following program does just that, and also provides a run-
ning record of the array space filling as it configures the array into

a linear set. Finally, it fills the screen sequentially with a white, vio-
let, and green pattern.

104

Shapes and Bitmapped Graphics

Program 5-3.
10 HOME

20 REM st s o ke ok sk e ol o ke sk s ol ol e e ok o ke ok

20 REM REARRANGE HGR MEMORY
40 REM st e e ke ol e e e ol ok e ke ok o ofe ok e sk ke e
50 LOMEM: 16383

60 DIM HR%(819%)
~»0 FOR A = 8192 TO 8272 STEP 40: REM $2000-$:2050

80 FOR B = A TO 9168 STEP 128: REM $23D0 STEP $80
90 FOR X = B TO 168383 STEP 1024: REM $3FFF STEP $400

100 FOR Y = X TO X + 39: REM $:7

110 HR% (V%) = Y

120 V% = V% + 1

130 NEXT Y

140 K = V% / 8192

150 P = K * 100

180 P% = INT (P) + 7

170 HTAB 1: VTAB 22: PRINT STR$ (P%);"%

180 NEXT X

190 NEXT B

300 NEXT A

310 HEM *#**#***#****##*#

290 REM FILL SEQUENTIALLY

330 REM e sk o o 3 o ok o o o ofe e o e ofe ook

340 HGR
350 POKE 49234,0: REM ALL GRAPHICS

260 FOR F = 0 TO 8192
270 POKE HR%(F),1R3
280 NEXT

There are a couple of things to note here. First, LOMEM was set
t0 16383. That means the lowest memory for storing the array was
right at the beginning of HGR2. If the program had pot done tl:lat,
the array would have stored data on Page 1 of the high-resolution

screen.
Just for fun, change line 50 to read

50 HGR

and you can see the high-resolution screen fill with color bits
representing the data that’s loaded into that part of memory.

105

CHAPTER 5

Shapes and Bitmapped Graphics

Graphics on the Screen

The following program, which uses rearranged memory, shows
how a bitmapped graphic can be placed on the screen. (Remember
that each row is 40 bytes wide—to jump a row, add 40 since you
can treat the high-resolution screen sequentially.)

Program 5-4.
10 HOME

20 REM *xskskkodnkokiodokkodok ok

30 REM REARRANGE HGR MEMORY
40 REM o e e e o e e e o afe o o e afe e e e o o o
50 LOMEM: 16383
60 DIM HR%(8192)
70 FOR A = 8192 TO 8272 STEP 40: REM $2000-$2050
80 FOR B = A TO 9168 STEP 128: REM $23D0 STEP $80
90 FOR X = B TO 16383 STEP 1024: REM $3FFF STEP $400
100 FORY = X TO X + 39: REM $27
110 HR%(V%) = Y
120 V% = V% + 1

410 REM DATA FOR GRAPHIC

420 REM s e s sk s ok e ofe e ofe o e o o o o
430 DATA 1,0,3,0,127,7,126,31,127,1%7

Finally, you'll want the graphic to “ride the array.” If you
hadn’t rearranged the screen, it would have been difficult to move
the graphic diagonally while keeping it in one piece. However, since
you can track it on the array instead of on the screen directly, it's
simply a matter of using a step loop. This next program shows how.

Program 5-5.
10 HOME

20 REM e 3 e ok o ok o o o afe e e s o e ok o ofe ok

30 REM REARRANGE HGR MEMORY
40 REM *orrrstrrikikiomkkikk
50 LOMEM: 16383

60 DIM HR%(8192)

70 FOR A = 8192 TO 8272 STEP 40: REM $2000-$2050

80 FOR B = A TO 9168 STEP 128: REM $23D0 STEP $80

90 FOR X = B TO 16383 STEP 1024: REM $3FFF STEP $400

130 NEXT Y
140 K = V% / 8192

150 P = K * 100

160 P% = INT (P) + 7

170 HTAB 1: VTAB 22: PRINT STR$ (P%):"% "

100 FORY = X TO X + 39: REM $27
110 HR%(V%) = Y

120 V% = V% + 1

130 NEXT Y

140 K = V% / 8192

180 NEXT X 150 P = K * 100
190 NEXT B 160 P% = INT (P) + 7
200 NEXT A 170 HTAB 1: VTAB 22: PRINT STR$ (P%);" % "

300 REM koo orok sk odokok ok 180 NEXT X
310 REM MAKE BITMAPPED GRAPHIC 190 NEXT B
320 REM *rkskkomiortoiorokdonkoRokk 200 NEXT A

330 HOME : TEXT

340 HGR

380 FORJ = 1TO S5

360 READ A,B

370 POKE HR%(G%),A: POKE HR%(G% + 1),B
380 G% = G% + 40

390 NEXT J

400 REM ok ioksobokkkodokkok

200 REM ke s sk ke ok s o e e o s sk ke e o ok 3 ke e ok ke o ke

310 REM MOVE BITMAPPED GRAPHIC
220 REM *¥*trsrbohhionkiohkkkkkkkok

330 HOME : TEXT

340 HGR

350 FOR F = 1 TO 1640 STEP 41

360 G% = F: RESTORE

106 107

CHAPTER 5
i R e S S — .

S7T0FORJ =1TOS5

380 READ A,B

390 POKE HR%(G%),A: POKE HR%(G% + 1),B
400 G% = G% + 40

410 NEXT J
420 FOR PAUSE = 1 TO 30: NEXT PAUSE Chapter 6

430 G% = F
440 FORE =1TO 5

B
450 POKE HR%(G%),0: POKE HR%(G% + 1),0 : REM Erase graphic
460 G% = G% + 40 a ll lg rap S

470 NEXT E
480 NEXT F :
500 REM *kkssmkkidorsodk

510 REM DATA FOR GRAPHIC a 1 r S
520 REM stk sk I |

530 DATA 1,0,3,0,127,7,126,31,127,127 C e

That was a bit jerky, and you might want to experiment with
the delay loop in line 420 to see if you can smooth it out. If you
want to see a straight downward vertical move (not diagonal) use
STEP 40 in the movement loop.

Summary

If you want to create arcade and graphics games, you’ll want to fur-
ther explore vector and bitmapped graphics. The power of your Ap-
ple IIGS is considerable. And as you've seen, even though BASIC
has its limitations, there’s a great deal of flexibility and control at
your fingertips. Using shape tables and shape statements in BASIC,
and creating and manipulating shapes is not as difficult as it may
first seem. The trick is to get organized and take things a step at a
time. The planning is well worth the results, and with more ex-
plorations into how your Apple IIGS works, you'll be able to create
more and more spectacular effects.

Bitmapped graphics offer a real challenge to the programmer,
but they also offer a lot of opportunities. What’s here can only
whet your appetite for this part of high-resolution graphics.

Now that you know something about both low- and high-

resolution graphics, how about putting that knowledge to use? This
chapter shows you how to create graphs, charts, and circles in both
resolutions and how to combine them. You’ll see how to construct
bar graphs, scatter graphs, and line graphs.

Low-Resolution

When drawing on the low-resolution screen, you're limited by a
40 X 48 matrix. With text at the bottom of the screen, the matrix is
further restricted to 40 X 40. Since you may want to label charts
and graphs, we’ll need those four lines of text at the bottom. Plan
on using the smaller 40 X 40 matrix most of the time.

Since a chart or graph is a graphic representation of data, you
need a way to translate that data into a visual graphic. To start,
let’s draw a couple of bars which have the same base, but are of
different colors and heights.

Program 6-1.
10 GR
20 COLOR= &

30 FOR A= 1TO 3

40 VLIN 5,39 AT 5 + A
50 NEXT A

60 COLOR= 4

TOFOR B = 4 10 &

80 VLIN 20,39 AT 10 + B
90 NEXT B

If that graph represented data of, say sales of two different
types of software packages, you could see at a glance that the first
bar (magenta) illustrates considerably higher sales than the second

111

CHAPTER 6

e

bar (green). A range from 0 to 39, however, doesn’t allow for sales
above 40 units.

What you do is make the graphic data proportionately repre-
sentative of the data. For example, each vertical step could repre-
sent 10, 20, 100, 1000 or even a million units instead of just one.
In fact, it doesn’t matter what unit a vertical bar represents as long
as all the data are proportional. The problem is how to make that
data proportional.

Proportional Data

To understand how to make the data equally proportional and still
fit on the screen, let’s start with a simple example. Suppose you
want to chart two sets of data. One set has a maximum value of 10
and the other has a maximum value of 1000. Instead of using 40
(0-39) as the maximum, use 39.9—that provides the limit up to,
but not including, 40. (You could be even more precise and use
39.9999, but that’s unnecessary.)

With the first set of data with a maximum of 10, you'll want to
use more than just 10 vertical positions. You want all 40. So you'll
need to change the basic unit from 1 to something else. By dividing
39.9 by 10, the basic unit becomes 3.99. For each full data point,
the bar should be incremented by 3.99. To represent 7 units, for in-
stance, you'd calculate the following:

D=7
D=7 %399
D= 27.93

Let’s take another number—five—and do that same thing.

D=5
D= 5* 3.99
D= 19.95

In other words, 7 has the same relationship to 27.93 as 5 has
to 19.95.

Now let’s see if a simple bar chart will provide the correct pro-
portions. This next program compares the raw figures and the pro-
portional figures (the first set uses the raw figures, and the second
set uses the proportional ones).

112

Making Graphs and Circles

Program 6-2.

10 GR

20 COLOR= ¥

30 VLIN 39—7,39 AT 10
40 VLIN 39—5,39 AT 1%

50 COLOR= 9
60 VLIN 39-27.93,39 AT 15
70 VLIN 39-19.95,39 AT 17

Notice in lines 30 and 40, and in lines 60 and 70, how the
value to plot was subtracted from 39. That’s because lower v_alues
are higher on the screen. To reverse that, all you have to do is sub-

tract the converted value from 39. ‘
Now let’s look at the data where 1000 is the maximum value.

Again you divide 39.9 by the maximum value (1000), but instead
of getting a whole number, the result is a fraction, .0399. There-
fore, each unit will be less than 1. Using the values 500 and 700,

let’s see what happens:

500 * .0399 = 19.95
700 * .0399 = 27.93

You get the same values as you did when the ma.ximum value
was 10 and you used 5 and 7. As long as the proportions are con-
sistent, you can chart any values you want. Thus, you can use this
formula:

Ratio = 39.9/Maximum Value
N = N * Ratio

Now, any value, assuming it's equal to or less than. the max.i-
mum value, will fit proportionately into the low-resolution matrix.
The following simple program does that.

Program 6-3.

10 TEXT : HOME
50 INPUT “Maximum value “;MV

30 R = 39.9 / MV
40 FOR X = 1 TO 2
50 INPUT “Value “;N(X)
80 N(X) = NX)*R

113

CHAPTER 6

Making Graphs and Circles

70 NEXT

80 GR

90 FORX = 1 TO 2
100 COLOR= X * 3 + 1

110 VLIN 39 - N(X),39 AT 3 * X
120 NEXT X

Draw a Proportional Chart

You're all set to create a program that will draw a proportional bar
chart. To make it more interesting, it will toggle between showing
the graphic and the raw numeric data, as well as automatically cal-
culate the maximum value.

The program needs a variable to represent the maximum value
entered. It uses the variable K, which is placed in the data entry
loop to determine the maximum value. Each time through the loop,
K'is compared with the last data entered. If the new data is larger
than K, then K is changed to the larger number. In that way, no
matter when the maximum value is entered, it’s always stored in
the variable. To establish a ratio, using R, 39.9 is divided by K. (See
lines 100-200.)

To toggle between the raw data and the graphic requires that
the program have two arrays. The first array (D) stores the raw
data, and the second array (G%) stores the graphic data. An integer
array is used for the graphic data since fractions are ignored in
plotting graphics. Finally, the program limits the number of entries
to 15 so that it doesn’t have to repeat the colors of the bars. If you
want, you can change the program to accept up to 40 entries.

Program 6-4.

10 TEXT : HOME

20 INVERSE

30K =0

40 VTAB 10

50 PRINT " HOW MANY ENTRIES:<15=MAX> *:
60 NORMAL

70 INPUT MAX

75 IF MAX > 15 THEN PRINT CHR$ (7): GOTO 10
80 HOME

114

90 DIM D(MAX): DIM G%(MAX)
100 RENM *¥¥¥kkkkk
110 REM DATA ENTRY
120 REM *rskskotokk
130 FOR X = 1 TO MAX
140 INVERSE
150 PRINT “ ENTER VALUE=> ";
160 NORMAL
170 INPUT “ “;D(X)
180 IF D(X) > K THEN K = D(X)
190 NEXT X
200 R = 39.9 /K
Z00 REM **kkikkikkbkidk
310 REM CONVERT TO SCALE
ZO() REM ****kssksimkiikik
330 FOR X = 1 TO MAX
340 G%(X) = INT (D(X) * R)
350 NEXT
400 REM *rrsrrkkkkx
410 REM MAKE GRAPH
420 REM **+#xssnin
430 GR
440 FOR X = 1 TO MAX
450 COLOR= X
460 P% = 40 - G%(X)
470 VLIN P%,39 AT X * 2
480 NEXT
490 INVERSE

500 PRINT ” PRESS ANY KEY FOR NUMERIC DATA “;

510 NORMAL

520 WAIT - 16384,128: POKE - 16368,0

600 REM sk o s ok ke ke e ok o ok e e ook o o e
610 REM VIEW NUMERIC DATA
620 REM **+skswikbkikihkx

630 TEXT : HOME

640 VTAB 4

650 FOR X = 1 TO MAX

660 X$ = STR$ (X)

870 PRINT X$ + “.=> ";D(X)

115

CHAPTER 6

Making Graphs and Circles

680 NEXT

690 PRINT

700 INVERSE

710 PRINT “ PRESS ANY KEY FOR CHART DATA "

720 PRINT “ PRESS ‘Q" TO QUIT “

730 WAIT - 16384,128

740 IF PEEK (49168) = 209 OR PEEK (49168) = 241 THEN
NORMAL : END

750 POKE 49168,0

760 GOTO 400

You could have simply toggled the graphics on and off with a
POKE instead of redrawing each time. That creates the graphic
representation of the text from the numeric data. To see this at
work, change line 760 as shown below and add four new lines.

760 POKE 49232.0
770 POKE 49235,0
780 POKE 49236,0
790 POKE 492380
800 NORMAL

In the next section you’ll see how to toggle between high-
resolution and low-resolution graphics.

Labeling Charts

The difficulty level in labeling a chart depends on whether you're
using 40 or 80 columns. In 40-column mode, numbers will line up
directly under the vertical bars. In 80-column mode, though, you'll
have to adjust text position a good deal; the advantage to 80 col-
umns, of course, is that you can get more information under the
chart.

VTAB position 21 places the text directly under the chart in
either 40 or 80 columns. Starting with a simple 40-column text ex-
ample, you can see that the horizontal alignment of text is the

HTAB position, plus one, of the horizontal position of the low-
resolution plot.

116

Program 6-5.

10 TEXT : HOME
20 A = 30

40 B = 20

50 GR

60 COLOR= 4

70 VLIN 39 - A,39 AT 10
7?5 COLOR= 5

80 VLIN 39 - B,39 AT R0
00 VTAB 21
100 HTAB 10 + 1
110 PRINT “A";
120 PRINT SPC(9);"B”

With only two plots, labeling the bars 1s simple. With a gr.eater
number of plots, though, it’s easier to set up a loop that resectie:,f |
VTAB 21 and uses a variable for HTAB. For (::-xample, by I'I'lOll 3{11:g
one of the above programs, you can cha.nge it from a genera 5 0
and graph program to a monthly one with both data elﬁryfa:; -
graph labels. By using READ and DATA, you can_I::ut all o
data entry and chart labels together. In thaF way, it's easy to ’
change the nature of the chart just by altering the data entry an

graph labels.

Program 6-6.

10 TEXT : HOME
20 INVERSE
30K =0
40 MAX = 12
50 DIM D(MAX): DIM G%(MAX)
100 REM ¢ e e e e o e e sk
110 REM DATA ENTRY
120 REM se ok e o ol e e ol e ok
130 FOR X = 1 TO MAX
140 READ D$
150 INVERSE
160 PRINT “ ENTER VALUE FOR “;D$

170 NORMAL

117

CHAPTER 6

180 INPUT “ “:D(X)
190 IF D(X) > K THEN K = D(X)

200 NEXT X

RI0R =399/K

220 HOME

500 REM e o e e o o e o ok e ok e s e ok o

310 REM CONVERT TO SCALE

520 HEM e s e e ofe o o o e o o o oo oo ok

330 FOR X = 1 TO MAX

340 G%(X) = INT (D(X) * R)

350 NEXT

400 REM e 3 e 3 e o e ofe e 3

410 REM MAKE GRAPH

430 REM e ok e e 3 e ofe ke ok

430 GR

440 FOR X = 1 TO MAX

450 COLOR= X

460 P% = 40 - G%(X)

470 VLIN P%,39 AT X * 2

480 NEXT

500 REM se ok s ok o o e o e ok ok

510 REM MONTH LABEL

520 REM s o e e sk o e o e ofe ok

B30 FOR X = 1 TO 12

540 READ M$

550 VTAB 21

560 HTAB2 *X + 1

570 PRINT M$

580 NEXT

600 REM e e e e oo e e sl e ke e e e

610 REM CALENDER DATA

620 REM e 2 e e o e e e e e sfe e e

630 DATA JANUARY,FEBRUARY,MARCH,APRIL
640 DATA MAY,JUNE,JULY,AUGUST,SEPTEMBER
650 DATA OCTOBER,NOVEMBER,DECEMBER
660 DATA J,F,M,A,M,J,J,A,S,0,N,D

In 80-column mode, you can place two digits directly under a
horizontal bar. However, since an 80-column text character takes u
half the width of a low-resolution plot, it's possible to get two charP—)
acters directly under a vertical line. Program 6-7 shows how.

118

Making Graphs and Circles

Program 6-7.

10 TEXT : HOME

20 GR

BOFORG = 1 T0 15

40 COLOR= G

50 VLIN 39 - G,39 AT G * &
60 VTAB Q1

70 REM s o e o o e o o e ok sk s she o e ok ok ke sk e ke sk ok sk ok sk ke ok ok ok

80 REM CALCULATE FOR 80-COLUMN CHARACTER

90 REM s s e s o e s s e o ke ke o e s e ok sk e sk s ke ok sk ook ok sk ok ok ok

100 HTAB (G *4) + (G < 10) + 1

110 PRINT G
120 NEXT

Notice line 100—an additional space was added by summing

the truth value of G < 10. As long as G is less than ten, the truth
value is one, which is added to the HTAB value until two digits are

present. The first digit of the two-digit number replaces the space
which preceded numbers less than ten. (Remember, if the truth

value is false, the value is zero.)

High-Resolution Graphic Charts

Although high-resolution graphics provide greater resolution, you
still need to respect proportions. The work area is roughly 279 X

159 on the combined high-resolution graphic/four-line text page.
This gives you a finer (higher resolution) plotting map than the
low-resolution 40 X 40 screen.

Horizontal Spacing

With low-resolution graphs, bars are relatively fat. In high-resolution
graphics, however, there are 280 horizontal plots on the screen. It
you're not careful, you'll find yourself using only a small portion of
the screen, crowding the plots. For instance, this next program

plots ten different pieces of random data.

119

CHAPTER 6 Making Graphs and Circles

50 PRINT “ HOW MANY PLOTS? “;
60 NORMAL
70 INPUT ” ";P%
80 DIM P(P%),G%(P%)
90 FOR X = 1 TO P%
100 INPUT “PLOT VALUE";P(X)
110 IF P(X) > K THEN K = P(X)
120 NEXT X
130 R = 1568.9 /K
140 FOR X = 1 TO P%
180 G%(X) = INT (159 - P(X) * R))
160 NEXT
170 S% = INT (279 / P%)
200 REM 2 o e s ofe e s ofe e ofe ofe e ok
210 REM SCATTER GRAPH
220 REM e o ok o e ofe e dhe o e ofe o e
230 HGR
240 HCOLOR= 3
250 HPLOT 8% - (8% - 1),G%(1)
260 FOR X = 2 TO P%
270 Y% = G%(X)
280 HPLOT ((X * 8%) - (8% - 1)),Y%
290 NEXT X

Program 6-8.

10 TEXT : HOME

R0 HGR

30 HCOLOR= 3

40 FOR X = 1 TO 10

50 REM 3 2 sk e e e o e s o ofe o o ofe o o ke ofe ok ok ok

60 REM Y POSITION FROM 1-158

70 REM ¥k ok ook kork

80 Y% = INT (RND (1) * (189))

OO0 RENM ***krksorksokdodkkodkkokodkodok

100 REM X POSITION FROM 1-10
110 REM ***kksksimdokkkokkokokkok

120 HPLOT X,Y%

130 NEXT

In this program, the y-axis was randomly generated to be be-
tween 1 and 158, but the x-axis was set between 1 and 10. Even if
every other horizontal position were used, it would take up less
than ten percent of the horizontal screen. As with determining the
ratio with a maximum value, you need to find the ideal spacing be-
tween plots on the horizontal screen.

Divide 279 by the number of plots to find this ideal spacing. It
can be represented as

S% = INT(279/NP)

where 5% is the spacing variable and NP is the number of plots.

To see how this works, let’s make a scatter graph. Each plot in
the scatter graph is a relative plot point on the high-resolution
screen. As with low-resolution graphic charts, you need to come to
a ratio based on the maximum value entered and multiply each
vertical point by that ratio. The formula

Ratio=158.9/Max Value

Line Graphs |
Depending on what values you entered, the scatter graph either
looked like a random set of dots scattered across the screen or
something more meaningful. By drawing lines betm:'een the plot
points, you can more readily see a trend or something that looks
more sensible. To do that, use the HPLOT TO statement.

After plotting the initial point, all the other points are plotted
with HPLOT TO so that a line is drawn from the last point to the
next point. For example, the following program generates a random

line graph.

is used to establish the ratio (see line 130 below).

Program 6-9.

10 TEXT Program 6-10.
<0 HOME 10 TEXT : HOME
A = 20 HGR

40 INVERSE

30 HCOLOR= 3

120 121

CHAPTER 6

Making Graphs and Circles

40 5% = 2879/ 10

50 HPLOT 5%, INT (RND (1) * (159))
60 FOR X = 2 TO 10

70 REN *Hokskssksdooiorkkokdokdkokokok

80 REM Y POSITION FROM 1-158

00 RENM *Hsktsdoktoh koo dokok koo

100 Y% = INT (RND (1) * (159))

110 REN okrskksiokmdobmsodomdok kool ko

120 REM DRAW LINE TO NEXT PLOT

130 RENM *tkksrmskombokbokodkooksdoriokokk

140 HPLOT TO X * S%,Y%
150 NEXT

Keep typing RUN to watch it generate all kinds of plots,

Vertical Grid
Look at the following two line graphs.

Figure 6-1. Jagged Plot Line

Figure 6-2. Smooth Plot Line

122

In Figure 6-1, it’s clear where the plot points are since they go
up and down from plot to plot. However, in Figure 6-2, you can't
tell where the break points are, since there’s a steady increase in
the plot values. To make it easier to see the plot points, it would be
useful to superimpose a vertical grid on the chart so that it looks
like Figure 6-3.

Now it’s clear where the plot points are located.

You can use the same spacing variable to place the vertical
lines as you used to space the horizontal screen. At each horizontal
plot point, a vertical line 1s drawn from the top of the screen to the
bottom. Also notice that the HCOLOR for the vertical lines is a dif-
ferent white than the HCOLOR for the graph lines. The vertical
lines will either be all orange or orange and blue, depending on the
number of plots. (They're not actually white since two horizontally
adjacent pixels must be lit to generate white, and only single hori-
zontal pixels are used in the lines. To make white, use two adjacent

vertical lines to make the grid lines.)

123

CHAPTER 6

Figure 6-3. Plot with Vertical Grid

Making Graphs and Circles

Program 6-11.

10 TEXT
20 HOME
30K =0
40 INVERSE
50 PRINT “ HOW MANY PLOTS? “;
60 NORMAL
70 INPUT “ “;P%
80 DIM P(P%),G%(P%)
90 FOR X = 1 TO P%
100 INPUT “PLOT VALUE";P(X)
110 IF P(X) > K THEN K = P(X)
120 NEXT X
130 R = 158.9 /K
140 FOR X = 1 TO P%
150 G%(X) = INT (159 - (P(X) * R))
160 NEXT
170 8% = INT (279 / P%)
200 REM e o o e o e e o ok

124

210 REM LINE GRAPH
220 BEM sk 3 sfe o ofe o o ofe 3

230 HGR

240 HCOLOR= 7

250 FOR X = 1 TO P%

260 HPLOT ((X * S%) - (8% - 1)),0 TO ((X * 8%) - (% - 1)),159
270 NEXT

280 HCOLOR= 3

200 HPLOT 5% - (S% - 1),G%(1)

300 FOR X = 2 TO P%

310 Y% = G%(X)

320 HPLOT TO ((X * 8%) - (8% - 1)),Y%

330 NEXT X

Horizontal Grid Lines

Now that the graph has vertical grid lines, you can insert horizon-
tal ones as well. Since the horizontal values are relative to the max-
imum plot value, just use a standard measure between the horizontal
lines. If you put 16 spaces between each line, that would roughly
divide the vertical axis into ten groups. The following program gen-
erates ten random plots and places the horizontal bars across the
screen in the same loop which generates the vertical grid bars.

Program 6-12.

10 TEXT : HOME
ROK =0
B3O FORX =1TO 10
40 P(X) = INT (RND (1) * (189))
50 IF P(X) > K THEN K = P(X)
60 NEXT X
70 R = 158.9 /K
80 FOR X = 1 TO 10
90 G%(X) = INT (189 - PX) * R))
100 NEXT
110 8% = INT (79 / 10)
200 REM ***¥*srkokskokk
210 REM X AND Y GRID
290 REM ***iwskskkkokk

125

Making Graphs and Circles

CHAPTER 6

160 NEXT
170 8% = INT (279 / P%)

200 REM e e e afe sl o ok ol o o o o o o

210 REM HI-RES GRAPHICS

220 REM e e e e o afe ofe o e ofe e e o ok

230 HGR

240 HCOLOR= 3

250 FOR X = 1 TO P%

260 HPLOT ((X * 8%) - (8% - 1)),0 TO ((X * %) - (8% - 1)),159
270 NEXT

280 HCOLOR= 3

200 HPLOT S% - (8% - 1),159 - G%(1)
300 FOR X = 2 TO P%

310 Y% = 159 - G%(X)

320 HPLOT TO ((X * S%) - (8% - 1)),Y%
330 NEXT

340 WAIT - 16384,128 ;: POKE 49168,0
400 REM sfe e o e ofe ofe o o ok e ofe o o e o

410 REM LO-RES GRAPHICS

420 REM s s o o o ok o e e o o e o ok

430 R = 39.9 /K

440 FOR X = 1 TO P%

450 G%(X) = INT (P(X) * R)

230 HGR

240 HCOLOR= 7

250 FOR X = 1 TO 10

260 HPLOT ((X * 8%) - (8% - 1)),0 TO ((X * S%) - (8% - 1)),159
270 HPLOT 1,X * 16 TO 279,X * 16 : REM HORIZONTAL LINES
280 NEXT X

290 HCOLOR= 3

300 HPLOT S% - (8% - 1),G%(1)

310 FOR X = 2 TO 10

320 Y% = G%(X)

330 HPLOT TO ((X * 8%) - (S% - 1)),Y%

340 NEXT

Multiple Charts

There may be instances where you’ll want to create several charts
using the same set of data. For example, you may need a low-
resolution bar chart with a high-resolution line chart. The next pro-
gram shows how to use two types of charts and how to mix low-
resolution and high-resolution graphics in the same program with
the same set of data. Once all of the data are entered, and the

charts are drawn, all you have to do is switch viewing screens to
toggle the charts,

460 GR
Program 6-13. 470 NEXT
10 TEXT 480 FOR X = 1 TO P%
20 HOME 490 COLOR= X
T 500 P% = 40 - G%(X)
. 510 VLIN P%,39 AT X * 2
40 INVERSE NP
50 PRINT " HOW MANY PLOTS? <MAX=15> “: 530 WAIT - 16384,128
60 NORMAL ,

B00 RENM *#kksksdorskodddokk

610 REM TOGGLE GRAPHICS

620 REM ¢ o o o e e o o o o o o e ok ok

630 INVERSE

640 PRINT “ PRESS ANY KEY TO TOGGLE SCREEN “
650 PRINT “ PRESS ‘Q’ TO QUIT “;

70 INPUT “ “:P%

80 DIM P(P%),G%(P%)

90 FOR X = 1 TO P%
100 INPUT “PLOT VALUE “;P(X)
110 IF P(X) > K THEN K = P(X)
120 NEXT X

130 R = 660 NORMAL
140 0_ 1529 o | 670 WAIT - 16384,128: IF PEEK (- 16368) = 209 OR PEEK (-
FOR X = 1 TO P% 16368) = 241 THEN END

150 G%(X) = INT (P(X) * R)

127
126

CHAPTER 6

Making Graphs and Circles

680 POKE 49239,0 : REM HI-RES

690 WAIT - 16384,128: POKE - 16368,0
700 POKE 49238,0 : REM LO-RES

710 GOTO 670

Circles

Drawing circles involves using an algorithm, or specified set of
c::)mmands and techniques. Once you know the algorithm, it's a
simple matter to place the circle anywhere you want on your high-
resolution screen.

Let’s get started—this following program draws a circle near
the middle of your screen.

Program 6-14.

10 TEXT : HOME
20 HGR
30 HCOLOR= 3
100 REM e e ofe 2 o 3 e ke 3 e de e e e e ok ok
110 REM DEFINE PARAMETERS
120 REM e se e e e e ofe e ol e e e e e e e 3
130 RADIUS = 40
140 XSPOT = 100
150 YSPOT = 75
200 REM e dfe e e sfe e o e ofe e ofe
210 REM DRAW CIRCLE
220 REM e e e ofe e ke o e sl ol ke
230 FOR CIRCLE = O TO 6.3 STEP .007
240 X = RADIUS * COS (CIRCLE) + XSPOT
250 Y = (RADIUS / 4) * SIN (CIRCLE) /.3 + YSPOT
260 HPLOT X,Y
270 HPLOT TO X,Y
280 NEXT CIRCLE
200 WAIT - 16384,128
300 TEXT

The core of the algorithm is in lines 230-250, where the x and
y values are calculated. To change the precision of the circle, and
the speed at which it’s drawn, change the step value in line 230.

128

Try changing it to .1 for a rapidly-drawn circle.

By making a few changes, you can control the size and place-

ment of your circle.

Program 6-15.

10 TEXT : HOME

20 REM e e e s oje o o ok ok o

30 REM ENTER DATA

40 REM sk s e e oo o e o o ok

50 INPUT “Radius “;RADIUS

60 INPUT “Horizontal position “;XSPOT
70 INPUT "“Vertical position “;¥YSPOT
100 REM e e e e e e e o o ke
110 REM DRAW CIRCLE
120 REM she o o dje e ofe e e e ok
130 HGR

140 HCOLOR= 3

150 FOR CIRCLE = O TO 6.3 STEP .007

160 X = RADIUS * COS (CIRCLE) + XSPOT
170 Y = (RADIUS / 4) * SIN (CIRCLE) / .3 + YSPOT
180 HPLOT X,Y

190 HPLOT TO X, Y

200 NEXT CIRCLE

210 WAIT - 16384,128

220 TEXT

To fill a circle with color, all that's required is a line from the
center of the circle (XSPOT,YSPOT) to the side of the circle. All
you need to change is the HPLOT TO after the HPLOT XY. In-
stead of using HPLOT TO X,Y from the last plot, change it to plot

from the center of the circle to X, Y.
In addition, let's do something with color. Change the step on

the loop to .0088 so that there will be about 720 elements in the
loop (2 * 360) and then after 120 times through the loop, change
the color. That will place all the colors, including black, in a circle
segment. In turn, that should give you a hint as to how to make a
pie chart. (Determine which proportion of the pie any single set of
data requires, then make the pie portion to that size.)

129

CHAPTER 6
e S

Program 6-16.

100K =1

20 TEXT : HOME

30 HGR

40 RENM ¥kskskoksdokokkodokk kok k | h t 7
50 REM DEFINE PARAMETERS | ‘ ‘ ap er

B0 REM *Hrkskirskodkodokkkok

70 RADIUS = 40 | >
80 XSPOT = 100 r 1 o
90 YSPOT = 75

100 REN **kkdorokskokkokokok ok ok

®
110 REM DRAW COLORED ARC
120 REM **ssikdormdokdkiokkok | eSO l I 10 I I
130 FOR CIRCLE = 0 TO 6.3 STEP .0088 |

140C=C+ 1:IFC=120THENC=0K =K + 1

#
150 HCOLOR= K
160 X = RADIUS * COS (CIRCLE) + XSPOT rap ICS

170 Y = (RADIUS / 4) * SIN (CIRCLE) /.3 + YSPOT
180 HPLOT X,Y

190 HPLOT XSPOT,YSPOT TO X,Y

200 NEXT CIRCLE

210 WAIT - 16384,128

220 TEXT

Line 190 draws from the center of the circle to the edge. Line
140 calculates when it’s time to change colors.

Summary
One of the best possible programming exercises is one which in-
cludes both data and graphic representations of that data. Such
exercies do two things.
First, they provide experience in working with graphics. Sec-
ond, and more important, graphs and charts teach about translating
data into new formats.

Super high-resolution graphics on your Apple IIGS is much like
a good news/bad news joke.

The good news is that super high-resolution graphics are con-
trolled by a set of routines built into your computer. Once you un-
derstand how to use these routines, collectively called the Apple
IIGs Toolbox, it’s relatively easy to do all sorts of things.

The bad news is that machine language—or a language such
as C that gives more direct access to the system routines—is re-
quired to really work with the Toolbox. Quite simply, there is no
easy way to use super high-resolution graphics from BASIC.

Let’s Look

However, to get started and to give you something to look at in su-
per high-resolution graphics, you'll see a BASIC program which
creates a machine language program that uses the Apple IIGS’s
QuickDraw routines. What’s more, you'll examine programs written
in assembly language to see how to do it yourself.

You'll look at two programs. The first will be as simple as pos-
sible and will use the super high-resolution tools. The second will
be a drawing program which uses the mouse. The first program
shows you the fundamentals of programming at this level; the sec-
ond shows you what’s possible.

Simple Super High-Resolution

This first program draws two lines of different brush widths using

separate colors for the lines and background color.
Type in the following BASIC program to see what super high-

resolution graphics look like on your screen.

133

CHAPTER 7

Program 7-1.

10 TEXT : HOME

20 FOR X = 0 TO 277

30 READ D

40 POKE X + 32768,D

50 NEXT

60 CALL 32768
100 DATA 32,88,252,24,251,194,48,244,0,0,244,0,0,244 225.0,244
110 DATA 0,32,162,2,26,34,0,0,225,104,133,6,133,157,104,133.8
120 DATA 133,159,160,0,0,169,0,0,151,157,200,200,151,157,162,1,2
130 DATA 34,0,0,225,162,3,2,34,0,0,225,244,0,0,244,0,16
140 DATA 162,3,32,34,0,0,225,104,141,128,2,244,0,0,162,2,2
180 DATA 34,0,0,225,104,244,0,134,244,0,0,244,0,0,244 64,1
160 DATA 244,0,0,244,200,0,173,128,2,72,162,6,2,34,0,0,225
170 DATA 244,0,135,244,0,0,244,0,0,173,128,2,72,162,4,2 34
180 DATA 0,0,225,244,5,0,162,4,55,34,0,0,225,244,5.0,244
190 DATA 5,0,162,4,44,34,0,0,225,244,119,119,162,4,21,34.0
200 DATA 0,225,244,100,0,244,0,0,162,4,60,34,0,0,225,244 11
R10 DATA 0,162,4,55,34,0,0,225,244,10,0,244,10,0,162,4,44
R0 DATA 34,0,0,225,244,100,0,244,128,0,162,4,60,34,0,0,225
230 DATA 56,251,32,12,253,24,251,194,48,162,4,3,34,0,0,225 244
240 DATA 0,0,162,3,33,34,0,0,225,162,6,3,34,0,0,225,162
R50 DATA 3,3,34,0,0,225,162,2,3,34,0,0,225,162,1,3,34
260 DATA 0,0,225,56,251,96

Unless you know machine language programming using deci-
mal values (instead of the more normal hexadecimal numbers), this
program probably didn’t make much sense. All it did was to POKE
in a series of values and execute the program with CALL 32768,
the beginning address of the values stored in memory.

You should see a horizontal green line across the top of the
screen, a light blue vertical line, and an orange background.

To better see how this program works, here’s a simple ex-
planation of how to use the tools on your Apple IIGS, as well as a
commented listing of the machine language source code for this
simple graphics routine.

Use an Assembler

First, get a good assembler for the Apple IIGS. Merlin/816 (Roger
Wagner Publishing, Inc.) was used for this example. Many Apple

134

Super High-Resolution Graphics

programmers are familiar with Merlin or the Big Mac assembler
family, and the listing should look familiar. The program is orga-
nized in blocks to make it easier to read.

The first step is to trick your Apple IIGS into giving up the
handle that “owns’’ the super high-resolution screen. This lets you
get an ID which can be used for your own programs. Once that’s
completed, you can begin your path to the QuickDraw II Toolbox.

The path requires you to:

1. Start the Tool Locator.

2. Start miscellaneous Tools.

3. Get your ID and store it somewhere.
4. Start the Memory Manager.

5. Start the Event Manager.

Normally, the Memory Manager would be used to determine
what area of memory to use. For this and the next example, $8600
was used, since it was simpler and more illustrative than a Memory
Manager call for the same thing. In larger programs, use the Mem-
ory Manager—it takes care of it automatically.

In QuickDraw II

Once the path to QuickDraw II has been laid down, you're ready
to start up QuickDraw. The following sequence does that.

1. Establish the beginning of direct page memory.
2. Set screen size (0 = visible screen).
3. Push your ID onto the stack and start QuickDraw.

Most of the work using the Toolbox requires that you push
values onto the stack, then jump to the Toolbox ($E10000) with a
long jump, JSL. The PEA is used to push parameters for various

tools onto the stack.
The value of the specific tool is loaded into the X register; then

you JSL to $E10000. If there’s to be information returned on the
stack with the particular tool being used, you have to push space
onto the stack. This is done with PEA $0000.

Overall, the sequence is quite simple.

1. Push space onto the stack (if required).
2. Push parameters onto the stack (if required).
3. Load the X register in the immediate mode with the tool

value.
135

CHAPTER 7

4. Jump to $E10000 (sometimes using a tool requires only the
last two steps).

Let’s take a look at using the QuickDraw Toolbox by closely
examining how the first line was drawn.

Set the pen color
1. Push the color value ($05) onto the stack.

2. Load the X register with pen color setting routine number.
3. Jump to $E10000.

Set the pen size
1. Push the pen width on the stack.
2. Push the pen height on the stack.

3. Load the X register with the pen size tool number.
4. Jump to $E10000.

Clear screen to background color
1. Push background color onto stack (all values must be the
same for a solid color background).

2. Load the X register with the background color tool number.
3. Jump to $E10000.

Draw a line
1. Push the ending X (horizontal) position of the line onto the
stack.
2. Push the ending Y (vertical) position of the line onto the
stack.

3. Load the X register with the line-to tool number.
4. Jump to $E10000.

The same thing was done with the second line—by changing
the values, the line’s color, width, and direction were changed. All
you have to do is insert some more drawing routines, and add
more lines.

136

Super High-Resolution Graphics

Program 7-2.

1 Rkkskokakokookok ok okskok kR ok sk ko ok ok ok ko ook ok ok

2 * #*
3 * Simple QuickDraw Lines ¥
4 * E
5 3k 34 ok 3k 3k 2k 3k e ok ke ok ke e ok o ok sk ok ke ok sk o ol e o 3k o e ol A o A ok e ok ok ok ok
6
7 ID EQU $R80
8 TOOLS EQU $E10000
9
10 JSR $FC58
i XC
12 XC
13
14 CLC
156 XCE
16 REP $30
17 sk s 2k o 2k 2k e 2 3 2 2 o o 2 o e e ke e 2 e ok o o ok ok ok ok ok ok ok o sk o o ke ok ok ok ok
18
19 PEA $0000 SR 1D
20 PEA $0000
2l PEA $00E1l
22 PEA $2000
23 LDX #$1A02
24 JSL TOOLS
25 sk e ok 3 ofe ok ok sk e ke e e 2 b o ol 2B ok e 2k e 2k ok ok 2 ok e afe afe o 3k o sl ok ok e ok ok ok
26 PLA Set pointers
7 STA $06
28 STA $9D
29 PLA
30 STA $08
31 STA $9OF
52 ok ok ok s ok ke e s o sk ok 2k o ok ok ok o ok s o o e ofe e e e sk ke sk sk e e ok ke ok ok ok o koK
B33 LDY #$00 :Reset handle
34 LDA #$00
35 STA [$9D],Y
36 INY
37 TRY
38 STA [$9D],Y
39
137

CHAPTER 7

40
41
42
43
44
45
46
47
48
49
80
51
82
93
o4
85
56
87
58
59
60
61
6:
63
64
65
66
67
68
69
70
vl
7R
75
74
70
76
{4
78
79

o e e s ofe o e e ofe s e e e ke o o s e she ofe s e e e e o e e e e e o ofe e ol sje ofe e ok ok
r QuickDraw II Path *
* *
e e s s sfe xje e e she she sfe e she ke o dhe s s she s she she e e e e s e e e sfe o e s she she sfe e e e
LDX #$0201 ‘Tool locator
JSL TOOLS
o ke o ok ke sk ok ok ok e o e e 2 3 e sk ok ke o o sk e ok ok o ok o ok o o o ol ol ko A sk ke
LDX #$0203 :Start misc tools
JSL TOOLS
e o e e e e e e e e e e e e o e e e ke e o e s e o e e ofe e e o e o ofe e oo e e e e
PEA $0000 -Get ID from misc tools
PEA $1000
LDX #$2003
JSL TOOLS
PLA :Pull ID off stack and put it
STA ID -in ID
ol o o e 3 3 3k ok e o ol e e b ok o ke e o sk sk sl e o e ok ok ok e o o o o ke e ke ko ok
PEA $0000
LDX #$0202 :Start memory manager
JSL TOOLS
PLA
o 2 e 2 e ok ok e e o e o o s e ok de ok ol e ofe ol e e e e e e s e e e e e e e ofe e e ok
PEA $8600 .Start address for one page work area
PEA $0000 :Number of event records (0=20)
PEA $0000 ‘Minimum X clamp for mouse
PEA 3R0 '‘Max X clamp for mouse
PEA $00 ‘Minimum Y clamp for mouse
PEA 200 :Max Y clamp for mouse
LDA 1ID :Get ID
PHA :Push it to the stack
LDX #$0206 -Event manager start up
JSL TOOLS
sk 3k e 3 e e e e e e ol afe ofe e e s e s s s o e e e o s e e e o sfe e o ke sk She e o e ok
E E
" Tools for Drawing b
% E
e o s o o ofe e o s o o s ofe e s s o ofe e s o s ol ofe ok ok sk sk sk ol ke e s ke ok ke ofe ok ook

PEA

$8700 :Begin direct page

138

Super High-Resolution Graphics

80
81
8R
83
84
856
86
87
88
89
90
91
9R
93
94
95
96
o7
08
99
100
101
10R
103
104
105
106
107
108
109
110
1d1
112
113
114
115
116
1X¥
118
119

PEA $0000
PEA $0000 ;Screen size
LDA ID .Give ID
PHA
LDX #$0204 ;QDStartup
JSL TOOLS

e o e sfe e e e o e sfe o e sl s s s o ke o ok s e sfe sl e ok s ol e ofe ol she ofe e s o e sk e ok

* *

* First Line .

E] #*

e e e e e ofe e e o s e e s o o s ok s ok s e e ol e ol sl e s e e o o o ok s ok o o o e
PEA $05
LDX #$3704 ;SetSolidPen Color
JSL TOOLS

e e s s o e o ok o e ok sk sk s o sk o ol ol ol ok e e sl sk ol e ok e sl sk e e e o o o ok ke ke
PEA $0005 :SetPenWidth
PEA $0005 .SetPenHeight
LDX #$2C04 ;SetPenSize
JSL TOOLS

st e s sk s o o o o o o e e s s o o e e e s o sl o o o o o e e e s o o e e ok ok o e
PEA $7777 :Clear to scrn color
LDX #§$1504 :Solid bkgnd requires
JSL TOOLS ;all 4 values to be same

e s ok ok ol ok ok e s ok sk s sk sk sk sk sk sk sk ok sk ol ol ok ol ol ok sl sk sl ok sk sk ok sl ol o ofe ook
PEA $0064 :X pos of line end
PEA $0000 ;Y pos of line end
LDX #$3C04 :LineTo
JSL TOOLS

sk o 3 o e e e e e e o ol o o e e e sk s sk s s e e ke ofe ok ol ok sk o s o ke ok sk ok e sk ke

* *

" Second Line »

* *

ok b 4§ 3 e o 2 o ok e ke e e 3 e 3 ok o ol ok o b ok ok s o e e ok e sk o o o o ok ok ok ok
PEA $OB
LDX #$3704 -SetSolidPen Color
JSL TOOLS

ok s e 3 e e 3 ke e s e e s she e s e e e ofe e e sfe sfe ke she e she sk ok ke sl ol e o ok e ok e ok
PEA $000A :SetPenWidth
PEA $000A ;SetPenHeight
LDX #$2C04 ;SetPenSize

139

CHAPTER 7

120
1R1
12%
13
1R4
1R85
1R6
1:7
128
129
130
131
138
133
134
135
136
137
138
139
140
141
14R
143
144
145
146
147
148
149
150
181
182
183
154
185
156
187
158
189

JSL TOOLS

e ok 3k e ok ok 3k o ol ke ok ok sk ke ok sk o e o ke e ol ke obe ke sk ol e ok sfe e afe ke ok ok ok ok ok ok

PEA $0064 :X pos of line end

PEA $0080 .Y pos of line end
LDX #$3C04 -LineTo
JSL TOOLS

ke e o e s s sl e e e e o ok s s e e o o sk ol e ke e ok ok o sk sk e o o o sk ok o ok ok

* *

* Hold Screen Until Keypress *

* *

e s o sfe e sfe s e e sk s e ok e e e o s s o o s e e e e e e ol ofe e e ofe s e e e e e ok

SEC
XCE
JSR
CLC
XCE
REP $30

sl she sk e s ofe o s 3k s e sk e 3l o ok ok s e o ok ke ok ke o o ke o ok ok o ke sk o ke o ke e koK
% L
. Back out of QuicKDraw x
£ *

e she ofe e o vfe e sk o ok o ol e e o e e s e ke s ke b ok ol e o 2k ok o ok ok ok sfe ok o ke ok ok ok

LDX #$0304 ;QUIT QD
JSL TOOLS
ke ok e ke 3 v 3k o o ke ok o ok e e 3k e 3k ok ok sk ol o o ke e ol o o ke o Ak ok ok ke ok ok ok ok
PEA $0000 :Drop ID
LDX #$2103
JSL TOOLS
sk s ok ok ofe ke ok o afe ok o ok e o ok e s ol o ofe ok e o ol ok s sk ok ok ok sk ok ok ok sk ke ok ok ok ok
LDX #$0306 :Quit event manager
JSL TOOLS
akc 3k ke ok 3 ok sk o o ok sk e e o s sk e e e s ok ok ol o ke sk e e sk ok sk ke ke ke e ok ok ke ok ok
LDX #$0303 ‘Quit misc tools
JSL TOOLS
e e 3k ok ok ok ok 2k ok ok 3 ok e afe o o ok gk 2 o ol ofe ok o o ok o ke ke e ok ke ok o ke o e ok ok
LDX #$0302 :Quit memory manager
JSL TOOLS
sk ke o e ke ke e e e sk ke e e e o e s sk o sk s ol e s s o ok ol ol o o ok ok ofe ok e ke ke ok
LDX #$0301 :Quit tool locator
JSL TOOLS

140

Super Hz'gh-Reiqiution Graphics

160 Fokkskkokodokkkodokkokdokokokokok ookl ook kokok kol

161 SEC
16R XCE
163 RTS

If you don’t have an assembler, you can enter the program
with your monitor or mini-assembler. If you're using the monitor,
just type in the address, a colon, and the machine language values
following each address. For example, to type in the first three lines
of the program below from the monitor, you’'d enter:

*8000: R0 58 FC (press Return)
*8003: 18 (press Return)
*8004: FB (press Return)

From the mini-assembler, there are two steps. First, it's neces-
sary to set your processor, along with your registers and accumu-
lator, to the 16-bit mode. Do the following, using lowercase
characters only.

*O0=e 0=x O=m (press Return)
Next, enter the mini-assembler and type in the program:

*I (press Return)

18000: jsr fcB88 (press Return)
I clc (press Return)

| xce (press Return)

After the first line, you don’t have to keep entering the ad-
dress; but be sure to put a space between the exclamation point
prompt and the opcode (the three-letter combination). No space
goes between the beginning address (8000) and the prompt.

It doesn’t matter which process you use—monitor or mini-
assembler. Once the program is typed in, save it with the following
command.

BSAVE QD1,A$8000,L$116 (press Return)
When you want to run the program, just type BRUN QD1.

141

CHAPTER 7

Program 7-3.

00/8000:
00/8003:
00/8004:
00/80065:
00/8007:

00/800A.:
00/800D:

00/8010:
00/8013:
00/8016:

00/801A:

00/801B:
00/801D:
O0/801F:
00/8020:
00/80RR.:
00/808k4:
00/80R7:

00/80RA.:

00/802C:
00/802D:
00/802E:
00/8030:
00/8033:
00/8037:
00/803A.:
00/803E:
00/8041:
00/8044.:
00/8047:
00/804B:
00/804C:
00/804F:
00/805R%:
00/8055:
00/8059:
00/805A.:
00/805D:

R0
18
FB
Ce
F4
F4
F4
F4
AR
R&
68
85
85
68
85
85
AO
A9
o7
Cc8
C8
o7
AR
QR
AR
RR
F4
F4
AR
RR
68
8D
F4
AR
RR
68
F4
F4

58

30
00
00
El
00
0R
00

06
9D

08
OF
00
00
oD

oD
Ol
00
03
00
00
00
03
00

80
00
0.
00

00
00

FC

00
00
00
0
1A

00 El

00
00

0R
00
0R
00
00
10
0
00

0R
00
0:
00

86
00

El

El

Bl

El

JSR F(CG58
CLC

XCE

REP #30
PEA 0000
PEA 0000
PEA OOE1l
PEA 2000
LDX #1A02
JSL E10000
PLA

STA 06
STA 9D
PLA

STA 08
STA 9OF
LDY #0000
LDA #0000
STA [9D], Y
INY

INY

STA [9D], Y
LDX #0201
JSL E10000
LDX #0k03
JSL E10000
PEA 0000
PEA 1000
LDX #2003
JSL E10000
PLA

STA 0L80
PEA 0000
LDX #020%
JSL E10000
PLA

PEA 8600
PEA 0000

142

Super High-Resolution Graphics

00/8060:
00/8063:
00/8066:
00/8069:
00/806C:
O0/806F:
00/8070:
00/8073:
00/8077:

00/807A.:
00/807D:

00/8080:
00/8083:
00/8084:
00/8087:

00/808B:
00/808E:

00/8091:
00/8095:
00/8098:

00/809B:
0O0/809E:
00/80AR:
00/80AS:
00/80AS8:
00/80AC:
00/80AF:
00/80BR:
00/80B5:
00/80B9:
00/80BC:
0O0/80BF:
00/80C3:
00/80C6:
00/80C9:
00/80CC:
00/80D0:
00/80D3a:
00/80D6:

F4 00
F4 40

F4
F4
AD
48
AR
RR
F4
F4
F4
AD
48
AR
RR
F4
AR
QR
F4
F4
AR
RR
F4
A2
RR
F4
F4
AR
RR
F4
A2
RR
F4
Fa4
AR
R
F4
F4
AR

00
C8
80

06
00
00
00
00
80

04
00
05
04
00
05
05
04
00
X
04
00

00
04
00
OB
04
00
OA
OA
04
00
64
80
04

00
Ol
00
00
0R

0R
00
87
00
00
0R

02
00
0]0)
37
00
00
00
_C
00
¥
18
00
00
00
3C
00
00
37
00
00
00
_C
00
00
00
3C

El

El

El

Bl

El

El

El

El

PEA 0000
PEA 0140
PEA 0000
PEA 00C8
LDA 0R80
PHA

LDX #0206
JSL E10000
PEA 8700
PEA 0000
PEA 0000
LDA 0R80
PHA

LDX #0204
JSL E10000
PEA 0005
LDX #3704
JSL E10000
PEA 0005
PEA 0005
LDX #2C04
JSL E10000
PEA 7777
LDX #1504
JSL E10000
PEA 0064
PEA 0000
LDX #3C04
JSL E10000
PEA OOOB
LDX #3704
JSL E10000
PEA OOOA
PEA OOOA
LDX #2C04
JSL E10000
PEA 0064
PEA 0080
LDX #3C04

143

CHAPTER 7 Super High-Resolution Graphics

00/80D9: 22 00 00 El JSL E10000 40 POKE 32768 + X,QD

00/80DD: 38 SEC 50 NEXT

00/80DE: FB XCE 60 CALL 32768

00/80DF: 20 OC FD JSR FDOC 100 DATA 32,88,252,24,251,194,48,244,0,0,244,0,0,244,225,0
00/80E2: 18 CLC 110 DATA 244,0,32,162,2,26,34,0,0,225,104,133,6,133,157,104
OO/80E3: FB XCE 120 DATA 133,8,133,159,160,0,0,169,0,0,151,157,200,200,151,157
O0/80E4: C2 30 REP #30 130 DATA 162,1,2,34,0,0,225,16%,3,2,34,0,0,225,244,0

00/80E6: A2 04 03 LDX #0304
00/80EQ: 22 00 00 El1 JSL E10000
00/80ED: F4 00 00 PEA 0000
00/80F0: A2 03 21 LDX #2103
00/80F3: 22 00 00 El1 JSL E10000
00/80F7: A2 068 03 LDX #0306
00/80FA: 22 00 00 El JSL E10000
00/80FE: A2 03 03 LDX #0303
00/8101: 22 00 00 El1 JSL E10000
00/8105: A2 02 03 LDX #0302
00/8108: 22 00 00 El1 JSL E10000
00/810C: A2 01 03 LDX #0301
00/810F: 22 00 00 El1 JSL E10000

140 DATA 0,244,0,16,162,3,32,34,0,0,225,104,141,128,2,244
150 DATA 0.0,162,2,2,34,0,0,225,104,244,0,133,244,0,0

160 DATA 244,0,0,244,64,1,244,0,0,244,200,0,173,128,2,72

170 DATA 162,6,2,34,0,0,225,244,0,134,244,0,0,244,0,0

180 DATA 173,128,2,72,162,4,2,34,0,0,225,244

185 DATA 9: REM PEN COLOR

190 DATA 0,162,4,55,34,0,0,225,244

192 DATA 9,0,244,9: REM FIRST AND LAST VALUES = PEN X

AND Y
194 DATA 0,162,4,44,34,0,0,225,244
200 DATA 119.119: REM BACKGROUND COLOR
205 DATA 162.4,21,34,0,0,225,162,4,145,34
210 DATA 0,0,225,244,0,0,162,3,24,34,0,0,225,244,1,0

00/8113: 38 SEC 220 DATA 162,3,25,34,0,0,225,244,0,0,244,0,0,244,0,0
00/8114: FB XCE 230 DATA 162,3,23,34,0,0,225,104,104,141,2,2,104,141,0,2
00/8115: 60 RTS 240 DATA 173,0,2,72,173,2,2,72,162,4,60,34,0,0,225,173
250 DATA 0,2,201,255,0,208,208,56,251,3%,1%,253,24,251,194,48
260 DATA 162,4,3,34,0,0,225,244,0,0,16%,3,33,34,0,0
Mouse QuickDraw 270 DATA 225,162.6,3,34,0,0,225,162,3,3,34,0,0,225,162

This next program is a simple super high-resolution drawing rou- 280 DATA 2,3,34,0,0,225,163,1,3,34,0,0,2R5,56,251,96
tine using the mouse. Certain key parameters have been isolated in
the BASIC program so that you can easily change the background
color, pen colors, and pen size.

Change only the first and last DATA values of line 192 to alter
the height and width of your pen. (If you change any other values,
the program will crash.) See how fine or how fat you can make

the pen.

Here’s the commented source code.

Program 7-5.

1 o e sk o o o e ke o ke o o o s sk ok s o o o ke s ok ok ol ke sk s ok o ok sk ol sk ke ok ol ok e ok

* *

* QUICKDRAW MOUSE *

& *

sl s e ke ok o sk s ke e o o e e ok o o ok sk ok o ke ok o e e e s o ok o o ek ok o ol ok ok

Program 7-4.

10 TEXT : HOME

20 FOR X = 0 TO 303
30 READ QD

B5K =K + 1

ID EQU $280
TOOLS EQU $E10000
XPOS EQU $200

© 00O Ok G

144 145

CHAPTER 7

10 YPOS EQU $202

11 JSR $FC58

12 XC

13 XC

14

15 CLC

16 XCE

17 REP $30

18 *!Il*llulﬂlﬂt**#*lll!llIllllt*****#***t#**************
19 E E
20 * Recover ID Ownership »
Rl * So that program can run .
R * from BASIC.SYSTEM "
33 * A

24 30 3 ke s afe o e s e e ok ke o ok o e sk sk sl o el s s sk sk sk s sk e sk e ok ok ok ok o e ke e

5

26 PEA $0000 ;Find Handle
_7 PEA $0000

28 PEA $00E1l

R9 PEA $2000

30 LDX #$1A02

31 JSL TOOLS

52 ll‘ﬂll****#**Il!IIHF*IIHII****#**#**##*#****##***#t

33 PLA ;0et pointers
34 STA $06

35 STA $9D

36 PLA

37 STA $08

38 STA $9F

59 e sfe e ke s 3 e e e e s ke e e ke ofe s o sk ol ok ok ok ok ok ok sk sk sk s sk ok ke e ok ok ok ok ok ok

40 LDY #$00 ;Reset handle
41 LDA #$00

42 STA [$9D],Y

43 INY

44 INY

45 STA [$9D],Y

46

47 IIHIIIlt##*************#******#*#*******t**#*

48 E *

146

Super High-Resolution Graphics

49 * Path to QuickDraw II *
60 * Notice that this is the .

B8l * same as the first prgm .

52 * *

53 ke he e 3k 3 3k sk s sl s she ok sfe ok e dhe o s ohe sfe ofe ofe ofe ofe e ke e e de o o o o ok o ok o ok ok ok

54 LDX #$0201 ‘Tool locator

855 JSL TOOLS

56 !IHIHIHI!*#******lllIlﬂll***##**#*#*#**#***#####**

57 LDX #$0203 :Start misc tools

58 JSL TOOLS

59 !l!*##IIHIHII!IHF**#*lltlliili#*##*******#*#********#*

60 PEA $0000 :Get ID from misc tools

61 PEA $1000

62 LDX #$2003

63 JSL TOOLS

64 PLA -Pull ID off stack and put it
65 STA ID ;in 1D

66 #*lllliHIl***#*##*##**#*******#**#*****#*#**#

67 PEA $0000

68 LDX #$0202 :Start memory manager

69 JSL TOOLS

70 PLA

71 ****#*****#####***#*****#*##*****#*##***

72 PEA $8500 -address for one page work area
73 PEA $0000 -Number of event records (0=20)
74 PEA $0000 -Minimum X clamp for mouse
75 PEA 320 :Max X clamp for mouse

76 PEA $00 ‘Minimum Y clamp for mouse
{4 4 PEA 200 -Max Y clamp for mouse

78 LDA 1D -Get ID

79 PHA -Push it to the stack

80 LDX #$0206 :Bvent manager start up

81 JSL TOOLS

- L= PPN e 12 S

848 * "

84 * QuickDraw II Tools .

BE * %

BB ..iiieriiesssisrnssnansnsnrsasssnassansnssesgsrsrsesass

87

88 PEA $8600 :Direct pagespace

147

Super High-Resolution Graphics

CHAPTER 7
89 PEA $0000
90 PEA $0000 -screen size
91 ILDA ID .Give ID
92 PHA
03 LDX #$0R04 :Q@DStartup
94 JSL TOOLS
95 sfe 3 sje 3 sfe sk e o s o oo o e e s o s o e e e e ok o sk o ke ok ke sl ok ok ke ok sk ke el o
96 PEA $0B
o LDX #$3704 ‘SetSolidPen Color
98 JSL TOOLS
gg e e 3 e 2 e o e o s e o e ok o o e e o o e ok e o e ok ol ke ok ok ke b sk ke ok e ke o ok
100 PEA $0004 -:SetPenWidth
101 PEA $0002 :SetPenHeight
102 LDX #$2C04 :SetPenSize
103 JSL TOOLS
104 e 3 ok ok e ok s e e sk e ofe s she 2 e e e e e e 2 o ke e e e e e ok e e vk ok e e sk e ok
105 PEA $4444 :Clear to color
106 LDX #$1504
107 JSL TOOLS
108 s sk ok o 2k ol ok sk ok 3 s s sl o ke o ofe e o ol e b sk ok ok e 3 sk ke ke ke sk e o sl ke o ok e
109 LDX #$9104 :Show cursor
110 JSL TOOLS
11:1 e 3 she e e o sk o o ok s o e e e o e e o sk ke e sk sk ke e ok e e oo e o ofe e e e e e s e
112 PEA $0000
113 LDX #$1803
114 JSL TOOLS -InitMouse
1 15 s e e o e e e o e o o o sk o e o ke o sk ok s ok e o oo e o o e s e ofe ol e o e e o e o
116 PEA $0001
117 LDX #$1903
118 JSL TOOLS :SetMouse
1]}9 s e o e e e e o e o e e e e e e e o o e ofe s ok o e o ok ke ke ok e e ofe e e e ok e e ok
120 MOUSE PEA $0000 -ReadMouse
1231 PEA $0000
122 PEA $0000
123 LDX #$1703
124 JSL TOOLS
1256 PLA
126 PLA
127 STA YPOS

148

128
129
130
131
13R
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
180
151
16R2
153
154
185
156
187
158
189
160
161
162
163
164
165
166

PLA
STA XPOS
sk ke e o s ok e e s sk she sfe ke e s e sk ol e e e s s sk ok e s s sk sk sk s e s ok ok o e ke ke
LDA XPOS
PHA : X pos of line end
LDA YPOS
PHA Y pos of line end
LDX #$3C04 ;LineTo
JSL TOOLS
ake s o e sfe e ok e o ke 3 s 3k s ke s ok ke s sk s ok sk sk ke s ok e s e sk ke ok ok ok ke ok ok ok ok
LDA XPOS
CMP #§$FF
BNE MOUSE
afe e s 3k s she sk ofe e sfe fe sk ofe e s ke s sfe ke she ke s sk ke she e s ske sl ke ke sk e sk ke sk ok ok sk
* #
* It is important to -
* remember to switch to ’
* emulation mode when using *
* non-toolbox routines .
* *
sk ko ok 3 3 o 3k o o 3 o o ok 2k o o ok o o ok e s ok o o o ke o ok sk ok ok ok ok ok ok ok o ok
SEC
XCE
JSR $FDOC
CLC
XCE
REP $30
e e e e ke e e o e e e e e e e ok s e ol e e ol o e e o o s ofe ol e ol o e e e e e ol o
E E 3
’ Exit QuicKDraw ¥
ok E]
e o 3 o sfe s o e 3k e o s o e s s s ok s o sk ofe o s o sk ok e ke o e sk e s ok e ok ook ok
LDX #$0304 QUIT QD
JSL TOOLS
sfe 3¢ s ke s sk s ke ok ok e ok ok o s sk ok sk ke ok ok ok ok o 3k ok ok s s ofe ok o e ok ok ok sk ol ok ok
PEA $0000 -:Drop ID
LDX #$2103
JSL TOOLS
sk sk fc o sk ok e e sk o o o ok ke ok o ok o o ok e ok e ok ok o e sk sk ok o feol ok ok ke ok

149

CHAPTER 7

167 LDX #$0306 :Quit event manager
168 JSL TOOLS

169 e e e e e o she s she sfe s she s sfe e she e ok e she ol o ok e ol e e ok e e o ol o o ok ok ol ok ok ok

170 LDX #$0303 -Quit misc tools
171 JSL TOOLS

1772 Hokokskdeoododokoskook keskoolcok stttk oo ok st ok ok ok ok ok ok

173 LDX #$0302 Quit MM

174 JSL TOOLS

1I7E HkokskokokokokomokoorokaioRkook ko ok ok ol sokkok ok ok ok ek ok ok

s LDX #$0301 ;Quit TL

1%% JSL TOOLS

1'?8 e e e e o sfe e s e s ok o sk ok o ok e e e e e e o ke o ok ok ol ke o ok s ke ok ok ok sk ok ok

179 SEC

180 XCE

181 RTS

And here’s the listing you'll use if you're entering the program

with the monitor or mini-assembler.

Program 7-6.

00/8000: 20 58 FC JSR FC58
00/8003: 18 CLC
00/8004: FB XCE
00/8005: C2 30 REP #30

00/8007: F4 00 00 PEA 0000
00/800A: F4 00 00 PEA 0000
00/800D: F4 E1 00 PEA OOEl
00/8010: F4 00 20 PEA 2000
00/8013: A2 02 1A LDX #1A02
00/8016: 22 00 00 E1 JSL E10000

00/801A: 68 PLA
00/801B: 85 06 STA 06
00/801D: 85 9D STA 9D
00/801F: 68 PLA
00/8020: 85 08 STA 08
00/8022: 85 9OF STA OF
00/8024: A0 00 00 LDY #0000
00/8027: A9 00 00 LDA #0000
00/802A: 97 9D STA [9D),Y
00/802C: C8 INY
150

Super High-Resolution Graphic. _ '

00/80RD:
00/80RE:
00/8030:
00/8033:
00/8037:
00/803A.:
00/803E:
00/8041:
00/8044.
00/8047:
00/804B:
00/804C:
00/804F:
00/808%:
00/80585:
00/8059:

00/808A.:

00/808D:
00/8060:
00/8063:
00/8066:
00/80689:
00/806C:
00/806F:
00/8070:
00/8073:
00/8077:

00/807A.
00/807D:

00/8080:
00/8083:
00/8084:
00/8087:

00/808B:
00/808E:

00/8091:
00/8098:
00/8098:

00/809B:
00/809E:

C8
o7
AR
QR
AR
RR
F4
4
AR
RR
68
8D
F4
AR
RR
68
F4
F4
F4
F4
F4
F4

oD
01
00
03
00
00
00
03
00

80
00
08k
00

00
00
00
40
00
C8

AD 80

48
A2
R&
F4
F4
F4

06
00
00
00
00

AD 80

48
AR
RR
F4
AR
RR
F4
F4
A2
RR

00
OB
04
00
04
0R
04
00

0k
00
0k
00
00
10
R0
00

0!
00
0R
00

85
00
00
Ol
00
00
0%

OR
00
86
00
00
0k

0L
00
00
37
00
00
00
_C
00

El

El

El

El

El

El

El

Bl

INY

STA [9D],Y
LDX #0201
JSL E10000
LDX #0203
JSL E10000
PEA 0000
PEA 1000
LDX #2003
JSL E10000
PLA

STA 0280
PEA 0000
LDX #0202
JSL E10000
PLA

PEA 8500
PEA 0000
PEA 0000
PEA 0140
PEA 0000
PEA 00C8
LDA 0280
PHA

LDX #0206
JSL E10000
PEA 8600
PEA 0000
PEA 0000
LDA 0280
PHA

LDX #0204
JSL E10000
PEA 000B
LDX #3704
JSL E10000
PEA 0004
PEA 0002
LDX #2C04
JSL E10000

151

CHAPTER 7
00/80A2: F4 33 33 PEA 3333
00/80AB: A2 04 15 LDX #1504
00/80A8: 22 00 00 El1 JSL E10000
00/80AC: A2 04 91 LDX #9104
00/80AF: 22 00 00 El JSL E10000
00/80B3: F4 00 00 PEA 0000
00/80B6: A2 03 18 LDX #1803
00/80B9: 22 00 00 El1 JSL E10000
00/80BD: F4 01 00 PEA 0001
00/80CO: A2 03 19 LDX #1903
00/80C3: 22 00 00 El1 JSL E10000
00/80C7: F4 00 00 PEA 0000
00/80CA: F4 00 00 PEA 0000
00/80CD: F4 00 00 PEA 0000
00/80D0: A2 03 17 LDX #1703
00/80D3: 22 00 00 El1 JSL E10000
00/80D7: 68 PLA
00/80D8: 68 PLA
00/80D9: 8D 02 02 STA 0202
00/80DC: 68 PLA
00/80DD: 8D 00 02 STA 0200
00/80E0: AD 00 02 LDA 0200
00/80E3: 48 PHA
00/80E4: AD 02 02 LDA 0202
00/80E7: 48 PHA
00/80E8: A2 04 3C LDX #3C04
00/80EB: 22 00 00 El JSL E10000
00/80EF: AD 00 02 LDA 0200
00/80F2: C9 FF 00 CMP #00FF
00/80F5: DO DO BNE 80C7 {-30)
00/80F7: 38 SEC
00/80F8: FB XCE
00/80F9: 20 OC FD JSR FDOC
00/80FC: 18 CLC
00/80FD: FB XCE
00/80FE: C2 30 REP #30
00/8100: A2 04 03 LDX #0304
00/8103: 22 00 00 E1 JSL E10000
00/8107: F4 00 0O PEA 0000

152

Super High-Resolution Graphics

00/810A: A2 03 21 LDX #2103
00/810D: 22 00 00 E1 JSL E10000
00/8111: AR 06 03 LDX #0306
00/8114: 22 00 00 El JSL E10000
00/8118: A2 03 03 LDX #0303
00/811B: 22 00 00 E1 JSL E10000
00/811F: A2 02 03 LDX #0302
00/8122: 22 00 00 E1 JSL E10000
00/8126: A2 01 03 LDX #0301
00/8129: 22 00 00 E1 JSL E10000
00/812D: 38 SEC
00/812E: FB XCE
00/812F: 60 RTS
Summary

This chapter just begins to touch on the power of the QuickDraw II
routines and super high-resolution graphics. An entire book could
easily be written on using just the QuickDraw routines; volumes
would be required to explain how to use all of the Apple IIGS Tool-
box routines. For the time being, though, this should be enough to
launch you on a discovery path of QuickDraw II and super high-

resolution graphics.
To work most efficiently with these powerful new Apple IIGS

tools, it’s strongly recommended that you learn machine language
programming on the 65816 microprocessor. In the meantime,
though, you can enjoy seeing your own creations with the simple

programs provided.

153

Chapter &

Sound and Music
on the Apple IIGS

Yu can create two types of sound on your Apple IIGS. The
first kind of sound clicks the speaker more or less directly by
accessing a special address in your computer. A wide range of
tones, sounds, and music can be generated by timing the speaker

clicks.
The second kind of sound is produced the Apple IIGS Toolbox

and the Ensoniq sound chip. This type of sound is extremely power-
ful when accessed through assembly language programs in ProDOS
16. Unfortunately, it’s difficult to access while the BASIC.SYSTEM
is in memory. What's more, it requires a development assembler—
the current assembler requires a megabyte of memory and prefers
that a hard disk drive be connected. Because of the elaborate hard-
ware and software needed to access the sound elements through
the Toolbox, let’s concentrate on sound generation by tweaking the
speaker.

Speaker Tweaking

Imagine that the speaker inside your IIGS is a diaphram. It’s either
out (full of air) or in (devoid of air.) Each time the diaphragm pulls
in or pushes out, it makes a sound, just as people do when they
exaggerate inhaling or exhaling. The speaker is just a paper cone
that pops in and out, making a click each time it pops.

To get the speaker to pop one way or the other (and thus
make a sound), all you need do is to access address $C030 (49200).
The easiest way to do that is to define a variable as the contents of
49200. For example, do the following:

P=PEEK(49200) (press Return)

157

CHAPTER 8

You should have heard a click when you pressed the Return
key. By controlling the timing of the clicks, you can make different
sounds.

For example, the following program clicks the speaker 30 times
for a buzzer sound.

Program 8-1.

10 TEXT : HOME
20 FOR X=1 TO 30
30 P=PEEK(49200)
40 NEXT X

To change that sound to something a bit different, install a de-
lay loop between the times the speaker is clicked.

Program 8-2.

10 TEXT : HOME

R0 FOR X=1 TO 30

30 P=PEEK(42200)

40 FOR PAUSE = 1 TO 40
50 NEXT PAUSE

60 NEXT X

That loop changed the sound to something akin to a deck of
cards being thumbed.

To find the range of clicks which can be generated by a pause
loop, generate a variable-length pause based on the number of
times the initial loop is run. Here’s how.

Program 8-3.

10 TEXT : HOME

R0 FOR X=1 TO 100

30 P=PEEK(42200)

40 REM *kikioksiokionk

50 REM VARIABLE LOOP
B0 REM *Hkssksodsodsodok

70 FOR PAUSE = 1 TO X
80 NEXT PAUSE

90 NEXT X

158

Sound and Music on the Apple IIGS

As you can see, depending on how the speaker tweaking is
spaced, different sounds emerge.

Speed and Sound Control

Depending on whether you have your system speed set to Fast or
Normal on your Control Panel, different sounds will emerge.
Check your Control Panel to see what speed your IIGS is set at
now. In case you don’t remember how to do that, press and hold
down the Open Apple and Control keys, then press the Esc key.
When the Desk Accessories window appears, move the cursor
using the arrow keys. Once in the Control Panel window, select
System Speed using the arrow keys again, and press Return. The de-
fault condition is Fast speed, but whatever it is, press the right ar-
row key to toggle it to the opposite. Press Return and then back
out of the Control Panel and Desk Accessories by choosing the
Quit option.

Once you're back to BASIC, run the last program once again.
If the computer was set on Fast, and now is on Slow, the sound
will be lower. If the computer is now on Fast, the sound will be
higher.

In addition to changing the system speed in the Control Panel,
you can also change the volume and pitch. Try different volume
levels and pitches.

Making a Racket

To really work with sound, it helps to use assembly language pro-
grams. Machine language routines give you finer control since they
run a good deal faster than programs written in BASIC. The fol-
lowing programs are simple and serve to illustrate different effects.
They're set to exit to BASIC as soon as you press any key.

Alarm or Alien?

The first two sets of programs illustrate how different system
speeds create different sound effects. The first program sounds like
a European police car if the system speed is set to Normal, but

159

CHAPTER 8

sounds like a space ship landing if the speed is set to Fast. (Since
these programs are so short, the monitor or mini-assembler can be

used to enter them. Of course, you may also use the accompaning
BASIC listing instead.)

Program 8-4.

Sound and Music on the Apple IIGS

00/0307: DO FD BNE 0306 {-05}

00/0309: CE FF 02 DEC OLFF

00/030C: AR FF LDX #FF <Delay loop begin
00/030E: CA DEX

00/030F: DO FD BNE O30E {-03} <Delay loop end
00/0311: AD 00 CO LDA COO0O0

00/0314: C9 80 CMP #80

00/0316: 90 E8 BCC 0300 {-18}

00/0318: 60 RTS

Program 8-7.

10 TEXT : HOME
20 REM **¥k**
30 REM ALARMR

00/0300: AC FF 02 LDY ORFF
00/0303: AD 30 CO LDA CO030
00/0306: 88 DEY

00/0307: DO FD BNE 0306 {-03}
00/0309: CE FF 02 DEC O2FF
00/030C: AD OO0 CO LDA CO000
00/030F: C9 80 CMP #80
00/0311: 90 ED BCC 0300 {-15}
00/0313: 60 RTS

Program 8-5.

10 TEXT : HOME
20 REM ¢ e ofe e ok
30 REM ALARM
40 REM e e e e ok
50 FOR X = 0 TO 19
60 READ D
70 POKE 768 + X,D
80 NEXT
90 CALL 768
100 DATA 172,255,2,173,48,192,136,208,253,206,255,2,173.0,192,
201,128,144 ,237,96

Since so many sound effects and routines have been written
for earlier versions of the Apple II, you may want to change them
so that they sound right using the Apple IIGS with a fast system
speed. The following program shows how to put a delay loop in
the above program to slow it down so that when it’s run with a
Fast system speed, it sounds similar to the first Alarm program
with a slow system speed.

Program 8-6.

00/0300: AC FF 02 LDY O2FF
00/0303: AD 30 CO LDA CO030
00/0306: 88 DEY

160

40 REM e ofe e s skeook
50 FOR X = 0 TO 24
60 READ D
70 POKE 768 + X,D
80 NEXT
90 CALL 768
100 DATA 172,255,2,173,48,192,136,208,253,206,255,2,162,255,
202,208,253,173,0,192,201,128,144,232,96

Sound Tricks

Since the basic way of creating sound is to vary the speed and fre-
quency of speaker tweaking, one trick is to pick an address in
memory and then use it as an offset for generating random values.
For example, a well-known address among assembly language pro-
grammers on the Apple II series is $FC58. That address 1s the be-
ginning of a routine which clears the screen and homes the cursor.
By using it, or some other address where there’s an assured collec-
tion of different values, it's possible to create a “saw-tooth” type of

wave form for sound effects.
This next program uses $FC58 as an offset to generate a sound

resembling that of a jackhammer. There are three loops In this pro-
gram. By using the X and Y registers along with an‘address (00 was
used in this example), it's possible to decrement (or increment) th.ree
values at once. The accumulator is busy tweaking the speaker with
LDA $C030, so it's out of commission as an added index register.

161

Sound and Music on the Apple IIGS

CHAPTER 8
Program 8-8.
00/0300: AR FO LDX #FO
00/0302: A9 0OC LDA #0C
00/0304: 85 00 STA 0O
00/0306: AD 30 CO LDA CO30
00/0309: BC 58 FC LDY FC58,X
00/030C: 88 DEY
00/030D: DO FD BNE 030C {-03)}
00/030F: CA DEX
00/0310: DO F4 BNE 0306 {-0C)
00/0312: C6 00 DEC 00
00/0314: DO FO BNE 0306 {-10}
00/0316: 60 RTS
Program 8-9.

This next program is a combination of BASIC and machine
language. The machine language program is automatically gener-
ated with the BASIC DATA statements, but it’s important to see
how it works. The zero page addresses $OD and $OE are used to
store the duration and pitch values respectively. The duration value
is loaded into the X register and the pitch value into the Y register.
The contents of $OD and $OE are POKEd in from the BASIC pro-
gram, controlled by an INPUT statement that allows you to control
the duration and pitch of each note. Using this program and a pi-
ano or some other comparative instrument, you can create an entire
musical scale. Just keep putting in different values until you get the
right pitch, and then record the value you used to get that pitch.
Later you can use it in a program to recreate a song if you want.
(The program will produce sounds about as high as you want, but
for lower pitches, change the system speed from Fast to Normal.)

10 TEXT : HOME
20 REM o e e o e e o e ok
30 REM JACKHAMMER
40 REM afe e ok o ok ok ok o o ok
80 FOR X = 0 TO RR
60 READ D
70 POKE 768 + X,D
80 CALL 768
100 DATA 162,240,169,12,133,0,173,48,192,188,88,252,136,208,

Program 8-10.

00/0300: A6 OD LDX 0D <Duration value stored here
00/0302: A4 OE LDY OE <Pitch value stored here
00/0304: AD 30 CO LDA CO030

00/0307: 88 DEY

00/0308: DO FD BNE 0307 {-03} <Inside Loop Terminal
00/030A: CA DEX

00/030B: DO F5 BNE 0302 {-OB} <Outside Loop Terminal
00/030D: 60 RTS

253,202,208,244,198,0,208,240,96
Program 8-11.

10 TEXT : HOME
R0 FOR X = 0 TO 13

Experiment with different loops and values to see what other
sounds you can create on your own.

= 30 READ M
Musical Tones 40 POKE 768 + X,M
Making musical notes and music on your Apple IIGS requires that 50 NEXT

you find the right combination of loops. The primary loops you
have to establish are:

e Pitch
e Duration

60 INPUT “"Duration “;DUR
70 INPUT “Pitch “;P
80 IF P> 255 THEN 70
90 POKE 13,DUR
100 POKE 14,P

The pitch loop is the sound produced and represents the inside 110 CALL 768

loop. The number of times the pitch loop is repeated is the dura-
tion. Thus, the duration loop is the outside loop. The longer the
duration, the more times the pitch loop is repeated.

162 163

CHAPTER 8

120 IF P = O THEN END
130 GOTO 70
140 DATA 166,13,164,14,173,48,192,136,208,253,202,208,245,96

This next program shows how to translate the pitch values into
keyboard notes. Beginning with middle C in a single octave, this
next program shows how the notes C-B (C,D,E,F,G,A,B) can be
generated from the keyboard. Use the Normal (slow) system speed

for this program and be sure to press the Caps Lock key so that
only uppercase letters will be read.

Program 8-12.

10 TEXT : HOME
ROFOR X =0TO 13
30 READ M
40 POKE 768 + X M
50 NEXT X
60 DUR = 255
70 INPUT “Note A-G <@> to quit ";N$
8O0IFN$ = "A"THEN N = 113
90 IF N$ = "B" THEN N = 101
100 IF N$ = "C" THEN N = 191
110 IF N$ = "D" THEN N = 168
120 IF N$ = "E" THEN N = 151
130 IF N$ = “"F" THEN N = 145
140 IF N$ = "G" THEN N = 128
150 POKE 14,N
160 CALL 768
170 IF N$ = "Q" THEN END
180 GOTO 70
200 DATA 166,13,164,14,173,48,192,136,208,253,202,208,245,96
300 PRINT X

Using the Keyboard to Generate Pitch
and Duration

Since all keys have an associated ASCII value, it’s possible to use
the keyboard to make a musical instrument. Just about everyone
who has ever played with the sound routines on the Apple has
made one version or another of this next program. Called the

164

Sound and Music on the Apple 1IGS

Cheap Organ, the program emits the pitch of the note generated by
the ASCII value of the key pressed. The higher the ASCII value,
the lower the note. Since uppercase letters have lower ASCII val-
ues than lowercase ones, the lower notes are generated by lower-
case characters. (Just remember lower notes and lowercase.) The
notes will continue until another key is pressed—that’s why it
sounds something like an organ. Press the Esc key to exit the pro-
gram, and use the Normal setting on the system speed for a fuller
range of low notes and Fast for a fuller range of high notes.

Program 8-13.

10 TEXT : HOME : GOSUB 200
20 REM s 3 e o o e oo e ok ok e
30 REM CHEAP ORGAN
40 REM e e e e e o e ofe e e ok
50 FOR X = 0 TO 20
60 READ MUSIC
70 POKE X + 768,MUSIC
80 NEXT
00 CALL 768
100 DATA 172,0,192,152,170,224,155,240,11,174,48
110 DATA 192,136,192,1,208,251,76,0,3,96
120 END
200 8¢ = “PRESS ESC TO END”
210 HTAB 20 - LEN (8$) / 2
220 PRINT S$
230 RETURN

Program 8-14.
00/0300: AC 00 CO LDY CO0O0

00/0303: 98 TYA
00/0304: AA TAX
00/0305: EO 9B CPX #9B
00/0307: FO OB BEQ 0314 {+OB}
00/0309: AE 30 CO LDX C030
00/030C: 88 DEY
00/030D: CO 01 CPY #01
00/030F: DO FB BNE 030C {-05}
00/0311: 4C 00 03 JMP 0300
00/0314: 60 RTS

165

CHAPTER 8

Mixing Sound and Animated Graphics

Anyone who ever played an arcade game will recognize the impor-
tance of combining sound and graphics. The trick is to coordinate
movement with sound so that one seems to go with the other. For
example, this next program creates a yellow beam that looks and
sounds like it’s drilling its way across the screen.

Program 8-15.

10 GR
20 COLOR= 13

30 FOR X = 0 TO 39
40 FOR V=1 TO 20
50 P = PEEK (49200)
60 NEXT V

70 PLOT X,20

80 NEXT X

Change the value of the delay loop in line 40 and you can get
sounds ranging from that of a ray gun to the pecking of a bird. Not
only does the loop affect the nature of the sound, it affects the ani-
mation of the line as well.

With a few more changes, you can make a single animated
character racing across the screen. The delay loop holds the major
character on the screen a bit longer.

Program 8-16.

10 GR
20 FOR X = 1 TO 30
B30 FORV = 1 TO 12
40 P = PEEK(49200)
50 NEXT V
60 COLOR= O
70 PLOT X - 1,20
80 COLOR= 13
90 PLOT X, 20

100 NEXT X

By changing the value of a single loop, not only do you
change the speed of the animation, but you also change the sound.

166

Sound and Music on the Apple 1IGS

For bigger projects, more planning and care is required. An in-
termediate level of animated programming can be found in double-
low-resolution graphics. There’s lots of color and somewhat better
resolution than simple low-resolution.

This next program simulates an ambulance driving through the
night with its siren on. Although its movement is slower and jerk-
ier than you’d see in a commercial program, it gives you an idea of
how to meld complex animated graphics with sound. (It would be
a lot smoother and faster if it were written in machine language.)

Program 8-17.

10 TEXT : HOME
20 GR
30 POKE 49246,0: REM DOUBLE-LO-RES
40 FOR D = O TO 44
50 READ V
60 POKE 768 + D,V
70 NEXT
100 REM e e e e o o o ol o o e o e ok
110 REM DATA FOR SOUND
120 REM 3 sk 2k 3 o s 3 e o ofe oo e ofe ok
130 DATA 127,0,173,48,192,136,208,5,206,1,3,240,9,202,208,245
140 DATA 174,0,3,76,2,3,255,0,173,48,192,136,208,5,206,23
150 DATA 3,240,9,202,208,245,174,22,3.76,24,3.96

200 REM 3 s o 2 e o o e o e e ok ofe o sfe s s ol e sfe ok e ofe ok

210 REM ANIMATED NIGHT AMBULANCE
220 REM e e e 3 afe a2 o e o s 3 o e o o ke e e e oo ol sk ok
230 FOR X = 1 TO 59

240 COLOR= 0

250 PLOT X,32

260 COLOR= 15

270 HLIN X + 1,X + 9 AT 32
280 COLOR= 0

290 PLOT X,33

300 COLOR= 15

310 HLIN X + 1,X + 8 AT 33
320 COLOR= 9

330 PLOT X + 9,33

340 COLOR= 0

350 PLOT X,34

167

CHAPTER 38

Sound and Music on the Apple IIGs

360 COLOR= 15
370 HLIN X + 1,X + 5 AT 34
380 COLOR= 11

390 PLOT X + 6,34

400 COLOR= 15

410 HLIN X + 7,X + 8 AT 34
420 COLOR= 9

430 PLOT X + 9,34

440 COLOR= 0

450 PLOT X,35

460 COLOR= 15

470 HLIN X + 1,X + 4 AT 35
480 COLOR= 11

490 HLIN X + B,X + 7 AT 35
500 COLOR= 15

510 HLIN X + 8,X + 12 AT 35
520 COLOR= 13

530 HLIN X + 13,X + 20 AT 35
540 COLOR= O

550 PLOT X,36

560 COLOR= 15

B70 HLIN X + 1,X + 5 AT 36
580 COLOR= 11

590 PLOT X + 6,36

600 COLOR= 15

610 HLIN X + 7,X + 12 AT 36
620 COLOR= 0

630 PLOT X,37

640 COLOR= 15

650 PLOT X + 1,37

660 COLOR= 7

670 HLIN X + 2, X + 3 AT 37
680 COLOR= 15

690 HLIN X + 4,X + 8 AT 37
700 COLOR= 7

710 HLIN X + 9,X + 10 AT 37
720 COLOR= 15

730 HLIN X + 11,X + 12 AT 37
740 COLOR= 0

750 PLOT X + 1,38

168

760 COLOR= 7

770 HLIN X + 2,X + 3 AT 38
780 COLOR= O

790 HLIN X + 4,X + 8 AT 38
800 COLOR= 7

810 HLIN X + 9,X + 10 AT 38
900 REM ok e e e ok o ok o o ofe o ol ok

910 REM CALL THE SOUND
920 REM e e s e 3 e ok ok e ofe o ok e o

930 CALL 768

940 NEXT X

That should be enough to give you a start with sound and
some different things you can do with it.

Using the Sound Tools

This next example is long and somewhat complex, but it will pro-
vide a beginning to using the full power of your Apple IIGS. To
start with, there’s no way that this program can be run from the
BASIC.SYSTEM environment. It requires one 800K drive and a
one-megabyte RAM card, in addition to a second disk drive (either
5%- or 3%:-inch drive). Alternatively, a hard drive and a one
megabyte RAM card will suffice. All of the RAM must be allocated
to the program, none may be used for a RAM drive.

This example was created using the Apple IIGS Programmer’s
Workshop Version 1.0 from Byte Works, Inc. and Apple Computer,
Inc. If you don’t have that assembler, you may have to make some
adjustments.

The program has extensive comments, but so that you'll better
understand what’s going on, let’s go over some of the key features.

First of all, this is a speaker tweaker program, but as you'll see
when you run it, it does things with the speaker that are truely as-
tounding. That’s because it uses DOC, the Digital Oscillator Chip.
It uses the system tools, which must be on a disk in the system
when you run the program. In particular, it requires Tool #025.
(It's over 250 lines, and without the tools, it would be even longer.)
Like the QuickDraw II Toolbox mentioned in Chapter 7, there’s a

169

CHAPTER 8 Sound and Music on the Apple 11GS

Program 8-18.

o o o ok e e o o ofe oo s ofe o o s ofe o o e o o o ke o o sk ok o o ok ok ok o ok o o o ok ok ol o e ok ol e

KEEP TUNE

different protocol required to write programs which use the tools.
However, there are several more tools in QuickDraw II than there
are in the Sound Toolbox. Also, there are more data elements in
this program (DC is something like DATA in BASIC.)

You can change the notes by changing the values in the DC iR i
statements beginning with those labeled TRK1. The first value is Sl SRR
; : : P16 EQU $E100A8 . P16
the note itself, and the second value is the duration of the note. For e ;
example PLB
DC I2'$5F,$8000’ LOX, #eosul ; Tool Locator
JSL $E10000
indicates two integer values, the first (note) $5F and the second PEA $0000 , Start memory manager
(duration) $8000. When you first run the program, listen carefully LD #RQR0S
how the notes rise at an increasing speed and then accelerate more ;fi aad |
when they fall. That’s because the notes begin with a higher g
: STA ID ; stick it somewhere
value—$FFFF—than all the others. Further down the list, the val- LDX #$0203 . Shart mide: o 2
ues lower to $C000, $8000, and finally $4000. Try changing the JSL $E10000
values to see what notes and note lengths you can create. PEA TOOLTABL-18 ; Tooltable bank
For the sound of the note, you can change the waveform and i o e tocltableadaraay
other elements that affect the sound, but this is a little trickier, and 32};{ $E{;§géﬂ Rahaie
unless you have a full understa.nding of using the APW assgmbler PEA $0000 . Haatiita anate
(or the Orca assembler), you might crash the program in doing so. PEA $0000 . Block size
If you want to, though, keep it simple and change the decay rate or PEA $0000 ; $000100 - Space required
something else that merely involves changing a single value in the FEZ, 30100 ; 1 page required
program. Then if it bombs, you can easily repair it. I;Ei - ; P“:htiomtmk
: . ; : ; onto the stac
Finally, as a suggestion for debugging and using APW assem- PEA $G00L - WamAtirikutes <lodkeds oot
bler, save two copies of your program. Save one as TUNE.S and as PEA $0000 TR 2R haE
second as TUNE. When you assemble your program, enter PEA $0000 ; 0 = Let MemMan handle it
LDX #$0902 ; NewHandle
ASML TUNE (press Return) JBL. G605
If it indicates an error, first DELETE TUNE, then EDIT R ; TheHandle - bank
TUNE.S and after debugging it, save the two programs again under o R S L B
3 g PLA : TheHandle - address
the two respective names. (Note: At the beginning of the program, ama S ikt TR
it reads KEEP TUNE. If you want to try different variations, change LDA 0 e
TUNE to TUNEI1, TUNEZ2, and so on, so that you can test different PHA
arrangements of the program. Save the program you wish to as- LDA &
semble and link under the same name as the KEEP name.) S
LDA HNDL
STA 0 , Direct page
LDA HNDL+2 ; pointer setup

170 171

CHAPTER 8

Sound and Music on the Apple I1Gs

STA 2
LDA (O] . Pointer to low word LDA TRK1,X
STA SNDDP . Direct page sound AND #$007F ; Check that it’s less th
LDX #$0308 . SoundShutdown first STA TONE i
JSL $E10000 INX
LDA SNDDP . WAPT - addrs of work area ptr. INX ; Increment two bytes - 1
PHA . put it on the stack LDA TRK1,X b
LDX #$0208 . SoundStartup STA DURTN
JSL $E10000 STX BYTENUM ; Bytenum update
LDX #0 ‘Begin making waveform GENER PEA $0000 ; Room on stack for result
LDA #40 PEA $0040 ; Mid priority
SEP #$30 Bight-bit words LDX #$0919 ; Sound generator
LONGA OFF JSL $E10000
LONGI OFF BCC GR
SUSTAIN STA WAVEFORM BRK
INC A : Wave up from $40 to $CO Gs PLA ; Pull generator number of stack
INX STA GENNUM , but it somewhere
CPX #128 NOTEON LDA GENNUM ; Generator number
BNE SUSTAIN PHA
RELEASE STA WAVEFORM L5 TONE ; C= $60 for tone value
DEC A PHA
INX PEA $007F ; Volume (<$80)
CPX #2566 PEA INSTRUM ; Instrument loe. def.
BNE RELEASE PEA INSTRUM
REP #$30 LDX #$0B19 . NoteOn
LONGA ON JSL $E10000
LONGI ON o DEC DURTN ; Tap your feet to keep
PEA WAVEFORM ; Waveform bank BNE TAP . count. (Beat-duration)
PEA WAVEFORM - Waveform address LDA GENNUM
PEA $0000 . DOCstart - start addr of DOC buff PHA
PEA $0100 : Write 100 Bytes LDA TONE
LDX #$0908 . WriteRamBlock PHA
JSL $E10000 LDX #$0C19 . Turn note off
BCC STRTNOTE JSL $E10000
BRK BCC NEXT
STRTNOTE PEA 150 : LFO update rate BRK
PEA $0000 ; no interrupt routine NEXT LDA BYTENUM ; Note list position
PEA $0000 ; (4 BYTES) CMP #DONE-TRK1 . Length of note list
LDX #$0219 . Start up note synthesizer BCC PLAY
JSL $E10000 LDX #$0319 . Shutdown note synthesizer
PEA MSG1 ; Bank of first msg JSL $E10000
PEA MSG1 . Address of first msg BCC S2
LDX #$200C . TextTool command BRK
JSL $E10000 a8 LDX #8$0308 . SoundShutdown
BCC BEGIN JSL $E10000
BRK BCC QUIT
BEGIN STZ BYTENUM . Beginning of track BRK
PLAY ILDX BYTENUM QUIT JSL P16 . Stop this nonsense
DC IR’ $R9’ : Quit code

1i2 173

CHAPTER 8

PARMBL
FLAG
ERROR
MSG1

ID
TOOLTABL

HNDL
SNDDP
WAVEFORM
INSTRUM

ALIST
BLIST
TONE
GENNUM
DURTN
BYTENUM
TRK1

DC
BCS
BRK
DC
DC
BRK
DC
DC
DC
DC
DC
DC

DC
DC
DS
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

I14’PARMBL’ : Param table address
ERROR
14’$0000’ - Pathname pointer

12'$00’ . absolute quit
: Error break

C'This is a simple scale..’

11'15.10,14,10"

C’'not bad for an Apple’

| s

12’0’ : ID space

12’1’ » 1 TOOL

12'25,0

14’0’

14’0’ - 4 bytes for storage

256 . $100 storage
I1’8§7F,0,$7F : Ramp: $7F00 to $7F
11'$00,$60,80’ - Decay at rate of $0060
11’0,0,0’ . to $0000. Use this stage
I11'0.0.0° : for release as well
11’0,0,0’ : STAGE 5

11'0,0,0’ : STAGE 6

11’'0,0,0’ : STAGE 7

11'0,0,0’ » 8 STAGES

11! : Release segment - 1
11’32’ : increment priotiry
I11'_’ ; pitch bend range

1178 ; vibrado rate

11’88’ + and speed

11’0’ :

I1'y’ : No. of wavepoints of osc a
|18 i g . No. of wavepoints for osc b

11'13%,0,0,0,0.0° -topkey,addr,size,ctrl,pitch

11°127,0,0,016,0’

12'0° ; note value storage
12’0’ . generator number storage
12'$0000’ - current duration counter

I2'$0000’
I12’$54,$FFFF’
12'$55,$FFFF’
12'$56,$ FFFI’
IR’$57 $FFFF’
12'$58,$FFFF’
IR'$59,$FFFF’
I12'§5A,$FFFF’
I2'$5B,$C000’
I12'$5C,$C000’

: current note number

174

Sound and Music on the Apple 11Gs

DONE
END

Summary

DC
DC
DC
DC
DC

DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
ANOP

I2’$5D,$C000’
IR'$5E,$C000’
IR’$5F,$C000’
I2’$60,$C000’
I12’$61,$C000’
12’$60,$8000’
IR'$5F,$8000’
I2'$5E,$8000’
12'$5D,$8000’
I2'$5C,$8000’
I2’$5B,$8000’
I2’$5A,$8000’
I2'$59,$4000’
I12'$58,$4000’
I2°$57,84000’
IR'$56,$4000’
IR’$55,84000’
IR’'$54,$4000’
IR’$53,$4000’

; Note list finished

The Apple IIGS is an incredibly flexible and powerful computer. On
a relatively simple level, it’s possible to generate a whole plethora
of sounds and even musical notes. On a more complex level, it can
play music and talk to you. Like everything else you’ve examined
in this book, the key to working with sound is to start with some-
thing simple, then work your way into the more complex designs.
Unfortunately, there’s not a simple programming method (at
this time) that takes advantage of the DOC features, but with prac-

tice and patience—and a lot of RAM—you can develop spectacular
programs with the machine.

175

Chapter 9

rostScript
Graphics

BScrfpt is a programming language, just like BASIC or ma-
chine language. However, PostScript is used only for calculating
and arranging what will be sent to a printer; thus it’s called a page
description language.

PostScript has become the de facto standard page-description
language for laser printers. Both the Apple LaserWriter and the
LaserWriter Plus printers have PostScript built into them, as do
many other brands of laser printers.

The best thing about PostScript is that it’s computer indepen-
dent. As long as you can get the output into an ASCII text file
(TXT filetype), the PostScript interpreter inside the printer can
translate the text and print the desired results. Using a modem or
null modem cable and a communications program, you can send
the file from the Apple IIGS to the printer through the RS-232 port
on the laser printer. Alternatively, the text file can be sent to a
Macintosh and printed on the laser printer from the Mac.

The important question, of course, is why bother with Post-
Script in the first place. Primarily, it has to do with the printing
resolution possible with PostScript output. On an 8%2-inch screen,
the Apple IIGS in the 640-pixel mode produces about 75 dots per
inch (dpi). Output to a standard printer is about the same. With
PostScript, the output resolution is determined by the printer, not
the screen. The Apple LaserWriter and LaserWriter Plus printers
can print at a resolution of 300 dpi output, or four times what you
can get on your screen. Some PostScript-based typesetting machines
achieve resolutions of up to 2400 dpi. The great thing is that the
same program which produces 300 dpi on a LaserWriter will pro-
duce 2400 dpi on an advanced machine.

If you've used a programming language called FORTH, Post-
Script will seem familiar. Both languages use the stack and develop
words that contain instructions. Both also use what’s called reverse

179

CHAPTER 9

Polish or postfix notation. (Reverse Polish refers to the Polish math-
ematician who developed the particular stack arrangement for cal-
culations; the name PostScript was derived from postfix.)

The Work Area

In the world of typesetting, the basic unit of measurement is the
point. There are 72 points to the inch. (Notice how close that is to
the number of pixels per inch on an 8%:-inch screen in the 640 su-
per high-resolution graphics mode on the Apple 1IGS.)

In PostScript programs, the 72 dpi measure is used as well. On
a standard 8% X 11 inch sheet of paper, you're dealing with a 612
(8.5 X 72) by 792 (11 X 72) matrix. That’s about half a million
points per page. Since PostScript is a very smart language, it can
translate those 72 dpi into 300 dpi on the LaserWriter, or into an
even higher dpi resolution on a larger printer.

Unlike most matrices, such as your computer screen which be-
gins the X,Y 0,0 position in the upper left corner of a page, Post-
Script begins in the lower left. The following figure shows the
relationship of point positions on an 8% X 11 inch page.

Figure 9-1. PostScript Point Positions

b 792 612,792

0,0 612,0

180

PostScript Graphics

Positive values indicate a move upwards and to the right. To
move down and to the left, negative numbers are used. Thus, to

move one inch (72 points) to the right and two inches (144 points)
down would be expressed as

TR —144

in a PostScript program.

PostScript Conventions

Before you actually start programming in PostScript, there are some
key conventions you need to know.

Lowercase statements: All commands and statements in Post-
Script are in lowercase.

Comments: Use the percent sign (%) to indicate a comment
line. Comments must begin with %. Everything is ignored by the
PostScript interpreter from that point to the end of the line.

Word definitions: Word definitions begin with a slash (/) and
end with the statement def. All fonts also begin with a slash.

To run a PostScript program, the statement showpage is placed
at the bottom of the program. When the interpreter reaches that
point, the laser printer prints everything which precedes the
showpage statement.

The easiest way to write a PostScript program is to use a text or
word processor that can save a file in text (ASCII) format. If your
word processor can’t save a file as a text file or you don’t have a
word processor program, use the following text editor program to
write your PostScript programs.

Program 9-1.

10 DIM A$(300): D$ = CHR$4)
R0 INPUT "Name of file ";NF$
30 PRINT “<N>ew OR <A>ppend “:
40 GET AN$
50 IF AN$ = "N”“ OR AN$ = “n” THEN OP$ = "OPEN"
60 IF AN$ = "A” OR AN$ = “a” THEN OP$ = "APPEND”
70 INPUT “"PS=> “;A$X)
80 IF A$(X) = "Q” OR A$(X) = “q” THEN 200
PO X = 30 +]
100 GOTO 70

181

CHAPTER 9

PostScript Graphics

200 PRINT D$;0P$;NF$
210 PRINT D$;"WRITE"NF$
220 FORN =0TOX- 1
230 PRINT A$(N)

240 NEXT

250 PRINT D$;”CLOSE"

This crude editor doesn’t give you much editing ability, but as
a last resort, it works.

Moving and Drawing

To get started, the operator, newpath, declares the current path to
be empty. The path refers to the course the imaginary pen takes as
you draw, place text, or move. After each activity, this imaginary
pen is at the end of the current path, and newpath simply indicates
it’s starting a new path. Thus, the current point is not defined.

Having declared newpath, you can move to a current point
with the moveto operator. Remember that moving up and right is
a positive value and moving left and down is a negative value,
since you begin in the lower left corner of a page.

The moveto operator requires two values: the horizontal (x)
and vertical (y) coordinates preceding the operator. Thus, the line

100 150 moveto

places the current point 150 points from the bottom and 100 points
to the right. Figure 9-2 shows approximately where the current
point will be.

For many applications, you'll want some points away from the
lower left corner as a point of reference. For example, your page
margin may be one inch all the way around. Therefore, instead of
having the 0 0 point in the lower left corner, you want it 72 points
(one inch) to the right and 72 points above the bottom.

The translate operator redefines, or translates, the new 0 0
point. Thus,

72 72 translate

would make the 0 0 point one inch from the bottom and one inch
to the right. When more advanced programming is required, this
operator will be very handy.

182

Figure 9-2. Up and to the Right

_

Lines

To draw something, you'll need a statement to tell the printer to

create lines, arcs, and other shapes, and then to draw them on the
screen. Let’s start with lines.

There are two basic types of lines, absolute and relative. The
lineto operator draws an absolute line from the current point to the

point specified. For example, if the current point were 100 100, and
the lineto statement were

150 150 lineto

there would be a line drawn from 100 100 to 150 150.

In contrast, rlineto creates a relative line of a specified length.
The start of the line is the current point. Beginning at the same 100
100 point, a rlineto statement of

150 150 rlineto

creates a line from 100 100 to a point 150 points up and 150 points
to the right. The result is a line from 100 100 to 250 250.

183

CHAPTER 9

Figure 9-3. lineto and rlineto

lineto rlineto

250 250

150 150 /
/

Actually, the lineto and rlineto operators don’t really draw a
line, but instead define the path of the line. The stroke operator
tells the printer to draw. Several lines at once can be stroked with a
single stroke operator.

When you want an actual drawing to appear on paper, use the
operator showpage. As already mentioned, showpage is usually the
final operator in a PostScript program.

At this point, you have enough information to write a Post-
Script program. This first short PostScript program draws three
lines, making three sides of a box using both lineto and rlineto.

Program 9-2.
%Three lines
newpath
v9o 73 translate %Now the O O point is 1 inch up and to the right
0O O moveto %Starting point is actually 72 78
0 72 lineto %0One inch straight up

72 O rlineto %0One inch to the right

0 -72 rlineto %0One inch straight down
stroke %Draw the lines
showpage %0ut to the printer

If you wrote the program correctly, the output should look like Fig-
ure 9-4.

184

PostScript Graphics

Figure 9-4. Three-Sided Box

At first glance, you might wonder why the lineto line and the
rlineto lines are the same length. The reason is that the first lineto
operator sent a line to vertical point 72 from the 0 0 position (which
pre.:vlously had been translated to be 72 72). The absolute vertical
point 72 is the same as the relative point 72, since the first current
point was 0 0. If the current point had been anything else, the first
line would have been a different length than the second t;uo.

| ’I"o close the box, all that’s required is the closepath operator
This is a handy operator—once two nonstraight connecting lines .
have been drawn, a single closepath operator will make a polygon.

Add the operator closepath right before stroke in the above
program and the fourth side is drawn.

Program 9-3.

%Box
newpath
7R 7R translate %Now the O O point is 1 inch up and to the right
O O moveto %Starting point is actually 72 72
0 72 lineto %0One inch straight up

72 O rlineto %0ne inch to the right
O -72 rlineto %0One inch straight down

closepath %Completes the box
stroke %Draw the lines
showpage %0ut to the printer

| Before moving to curves, let’s look at some other polygons
using more or less random lines.

185

CHAPTER 9

PostScript Graphics

Program 9-4.

%Strange shape
7R 7R translate
O O moveto
30 90 lineto
70 15 rlineto
-20 -40 rlineto
closepath %Who knows what it looks like?
stroke
showpage

Experiment with lines and shapes to see what you can draw.

Curves

Curves require a different approach. Instead of two parameters,
there are five.

X Y Radius Begin End

The arc operator draws arcs counterclockwise, while the arcn
operator draws them clockwise. The X and Y positions plot the
arc’s center. It's best to think of the arc as a side of a circle and the
X Y position as the circle’s center.

If the moveto operator is used before drawing the arc, there
will be a straight line from the current position to the beginning
point of the arc. It’s best to plot the relative position with the trans-
late operator, and then begin your arc. Let’s take a look at an
example.

Program 9-5.

%Arc one
newpath
200 200 translate %Give it some room
50 80 100 0 180 arc %From O to 180. Also try arcn
stroke
showpage

This program makes an arc like the one shown in Figure 9-5.

186

Figure 9-5. Half-Circle

180 0

Notice that the zero (0) point is at the 3 o’clock position and
180 is at the 9 o’clock positon. Change the operator from arc to
arcn, and the curve will look like the one in Figure 9-6.

Figure 9-6. Half-Circle Reversed
180 0

Since there are 360 degrees in a circle, a beginning point of 0
and an ending point of 360 makes a complete circle. The following
line does that.

60 80 80 O 360 arc

What would happen if the closepath operator were used?
Would it close the circle or draw a line from the beginning o.f the
path to the current point? The best way to find out is to try it.

187

CHAPTER 9

Program 9-6.

%Moon over Miami
newpath
200 200 translate
50 50 100 0 180 arc
closepath
stroke
showpage

The results should show an arc with a straight line from the
beginning to the ending point of the arch.

Figure 9-7. Moon Over Miami

Fills and Line Width

An enclosed area can be filled with various shades of gray. A full
black is 0 and a full white is 1. Using the setgray operator and a
fraction, it’s possible to establish a particular shade of gray. By
using fill, the enclosed area can be shaded with that gray scale.

To illustrate, let’s draw a fan shape made up of an arc and two
straight lines. Neither the lineto nor the rlineto operator will be
used. This will also illustrate what happens if moveto is used
before an arc is drawn.

Program 9-7.

%Fan
newpath
200 200 translate
O O moveto %This will cause a line to begin-point of arc
0 0 50 36 144 arc %Curve over the top
closepath %This will draw second straight line

188

PostScript Graphics

.R5 setgray %25% white/75% black
fill %Fill enclosed area
stroke

showpage

The program draws a fan-shaped object something like the one
in Figure 9-8.

Figure 9-8. Shaded Fan

PostScript operators can make different-sized line thicknesses.
The operator setlinewidth does exactly what it says. The default is
1 point, but by specifying size, you can make any line width de-
sired. For instance, this next program draws circles with different
line widths.

Program 9-8.

%Fat and skinny circles
100 100 translate

80 850 80 O 360 arc

5 setlinewidth %Before the stroke set the line width
stroke

150 150 50 0 360 arc

2 setlinewidth %Before the stroke set the line width
stroke

showpage

189

CHAPTER 9

PostScript Graphics

Figure 9-9. Thick and Thin Circles

Text

Now that you have a way of expressing lines and curves, the next
step is to print text on the screen. The fonts must be in the laser
printer before they can be effectively used in a PostScript program.
Also, the fonts must be called exactly as they exist in your printer’s
ROM or RAM. For example, the LaserWriter Plus has 35 fonts
called by the following names.

AvantGarde-Book
AvantGarde-BookOblique
AvantGarde-Demi
AvantGarde-DemiOblique
Bookman-Demi
Bookman-Demiltalic
Bookman-Light
Bookman-Lightltalic
Courier

Courier-Bold
Courier-BoldOblique
Courier-Oblique

Helvetica

Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Narrow
Helvetica-Narrow-Bold
Helvetica-Narrow-BoldOblique

190

Helvetica-Narrow-Oblique
Helvetica-Oblique
NewCenturySchlbk-Bold
NewCenturySchlbk-BoldItalic
NewCenturySchlbk-Italic
NewCenturySchlbk-Roman
Palatino-Bold
Palatino-BoldItalic
Palatino-Italic
Palatino-Roman

Symbol

Times-Bold

Times-Boldltalic
Times-Italic

Times-Roman
ZapfChancery-Mediumltalic
ZapfDingbats

Remember, PostScript doesn’t require that these fonts be in
your computer. As long as they’re in the printer, you can use them
in writing PostScript programs on your Apple IIGS.

First set up a font. To do that, use this formula

/Font-Name findfont N scalefont setfont

where N is the size of the font in points.

For example, suppose you want to use boldface Helvetica in a
14-point size. You need to locate Helvetical-Bold with findfont,
then set the size with a value preceding scalefont. Finally, setfont
sets the type face and font size. The entire statement would be

/Helvetica-Bold findfont 14 scalefont setfont

Once the font is set, use moveto to place the first letter of the
text, then place in parentheses () the string of characters you want
to print. The operator show places the text, and showpage, as al-
ways, prints it.

Program 9-9.

%Simple text printing
/Helvetica-Bold findfont 14 scalefont setfont

72 720 moveto %Top of page with 1 inch
margin

(Printing text is as easy as 1,2,3.) show %Message out

showpage

And your message looks like this:

Printing text is as easy as 1,2,3.

Angled Text

Besides printing in a straight line, you can angle your text using the
rotate operator, and change its shape using scale.
Using the rotate operator, you can start in the middle of a

page.

Program 9-10.
%Flip out
/Helvetica findfont 8 scalefont setfont
7R 396 translate %Middle of page with 1 inch left margin
0 O moveto
30 rotate

191

CHAPTER 9 PostScript Graphics

(Flip out!) show %Note 3 spaces before second parenthesis By combining text and graphics, it’s possible to label your

40 rotate graphics. To label a triangle, for instance, draw the triangle, then
(Flip out!) show label it. Notice that in Program 9-12 the label is set under the base
50 rotate of the triangle.
(Flip out!) show
showpage Pl‘ogram 9-12.
. ' %Labeled Triangle
Figure 9-10. Flip Out newpath
£, 72 72 translate
'oo N O O moveto
%" F'l'po _st' 7R 72 lineto
utf 7R -T2 rlineto
Note the arrangement of the string Flip out! and how each ;tii;pa‘th SRk %0 0 0 posison
e

string begins near the end of the preceding string. The current
point is always the end of a string until it’s moved.

The scale operator expects two values: the x- and y-scale of a
string or graphic. Let’s stick with text strings to see how it works.
By using a larger value for y than for x, it’s possible to create tall,
narrow characters. For short squatty ones, a larger x value is in or-
der. The following program shows both and introduces the oper-
ator rmoveto.

/Times-Roman findfont 1R scalefont setfont
40 -14 moveto

(Triangle) show

showpage

Figure 9-12. Triangle and Triangle

Program 9-11.

%The Long and Short of It
/Times-Roman findfont 12 scalefont setfont
newpath
72 720 translate
O O moveto
1 1 scale
(Normal Nelly) show
10 O rmoveto

Triangle

Modifying Text

You can change text characters in other ways with PostScript. Two

1 4 scale placement operators are important here—gsave and grestore.
(Long tall Sally) show As you create more and more complicated graphics, you need
showpage operators which can keep track of where you've been. The gsave

operator saves the current point and grestore restores it. For ex-
ample, if you want to perform two different operations on the same
graphic, you may need to go back to the beginning point. The
gsave operator keeps the x,y position until it encounters grestore.
The operator charpath refers to the path of a character or char-
acter path. Since all fonts are actually characters drawn in memory

Figure 9-11. Long, Tall Sally

oty LAY

192 193

CHAPTER 9

PostScript Graphics

which can be stroked just like lines, text is actually outlines of
characters which can be drawn and filled. Using the true charpath,
the path can then be stroked (drawn) and filled with whatever
value of setgray you wish. To create a character with different
shades, it's necessary to first create them with true charpath instead
of using the show operator. The fill operator will fill the character
with the chosen setgray color, and stroke will treat it as a drawn

character.
Since you first have to fill the character, then stroke the path,

it’s necessary to return to the character’s starting position. Before
the fill, gsave is used—after the fill, grestore sets the positon for
stroke. Program 9-13 shows how to do all this.

Program 9-13.

%Creative characters
/Helvetica-Bold findfont 72 scalefont setfont
7R 396 translate

0 O moveto
(Compute!) true charpath %Use instead of show

gsave %Save this point

T setgray

fill

grestore %Restore saved point
O setgray

stroke %Do it again

showpage

Figure 9-13. COMPUTE! Filled

194

Defining Words

The structure of PostScript is centered around developing variables
and procedures. These are placed into a dictionary, then executed
when the variable or procedure name is placed in the program. In
other uﬁrords, you can build a dictionary of words which consis£ of a
PostScript program. To see how this works, let’s start with a simple
f1gure, a triangle, and define it as a procedure. Each procedure defi-
nition begins with a slash (/) and ends with def. Braces ({})en-
close the defined procedure.

Program 9-14.

/Triangle {O O moveto
7R 72 lineto

78 -7R2 rlineto
closepath stroke } def
72 72 translate
Triangle

showpage

By itself, this isn’t very interesting. However, if you have a
program that requires lots of triangles—or any other shape for that
matter—it’s far easier to write Triangle several times than to rewrite
the entire triangle routine. To see how this works, let’s change the
program to draw several triangles.

Program 9-15.

/Triangle {O O moveto
72 7R lineto

78 -72 rlineto
closepath stroke } def
72 7R translate
Triangle

144 144 translate
Triangle

R16 216 translate
Triangle

showpage

195

CHAPTER 9 PostScript Gr aphics

40 rotate
Triangle
grestore
gsave

60 rotate
Triangle
showpage

Figure 9-14. Three Triangles

Figure 9-15. Rotating Triangles

Likewise, once a shape is defined in a procedure, you can ro-

tate and scale that shape. Summary

This chapter has only given you some elementary PostScript infor-
mation. Two books, PostScript Language: Tutorial and Cookbook and
PostScript Language Reference, both by Adobe Systems, Inc., have a
full description of the language. If the information here has
touched your interest, take a look at these two books.

Program 9-16.

%Rotating Angles
/Triangle {O O moveto
72 7R lineto

72 -7& rlineto
closepath stroke } def
200 396 translate
gsave

Triangle

grestore

gsave

20 rotate

Triangle

grestore

gsave

196 197

Appendices

Appendix A
Error Messages

Whenever you have an error-handling routine using ONERR and
PEEK (222), you'll be given a code which represents an error. For
example, error 42 means that you are OUT OF DATA when your
program contains a READ statement and a number of DATA
statements.

The first set of error messages are from DOS 3.3 and
Applesoft. The second set consists of ProDOS 8 error messages,
and the third set of messages, while you may not encounter them
with Applesoft programs, are ProDOS 16 error messages.

Applesoft and DOS 3.3 Error Messages

Error Message

NEXT WITHOUT FOR
LANGUAGE NOT AVAILABLE
RANGE ERROR
WRITE-PROTECTED

END OF DATA

FILE NOT FOUND
VOLUME MISMATCH

/0 ERROR

DISK FULL

FILE LOCKED

DOS SYNTAX ERROR

NO BUFFERS AVAILABLE
FILE MISMATCH
PROGRAM TOO LARGE
NOT DIRECT COMMAND
PROGRAM SYNTAX ERROR
RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL QUANTITY

201

APPENDIX A

69 OVERFLOW

4 OUT OF MEMORY

90 UNDEFINED STATEMENT
107 BAD SUBSCRIPT

120 REDIMED AN ARRAY

133 DIVISION BY ZERO

163 TYPE MISMATCH

176 STRING TOO LONG

191 FORMULA TOO COMPLEX
224 UNDEFINED FUNCTION
254 BAD INPUT RESPONSE
255 CONTROL-C INTERRUPT

ProDOS 8 Error Messages

Error Message

o NI Ok LN

11
12
13
14
15
16
17
18
19
20
21

RANGE ERROR
NO DEVICE CONNECTED
WRITE-PROTECTED

END OF DATA
PATH NOT FOUND
PATH NOT FOUND

1/0 ERROR

DISK FULL

FILE LOCKED

INVALID OPTION

NO BUFFERS AVAILABLE
FILE TYPE MISMATCH
PROGRAM TOO LARGE
NOT DIRECT COMMAND
SYNTAX ERROR
DIRECTORY FULL

FILE NOT OPEN
DUPLICATE FILENAME
FILE BUSY

FILE(S) STILL OPEN

202

Error Messages

ProDOS 16 Error Messages

$1
$5
$6
$10
$11
$20
$25
$26
$27
$28
$2B
$2E
$30-$3F
$40
$42
$43
$44
$45
$47
$48
$49
$4A
$4B
$4C
$4D
$4F
$50
$51
$52
$53
$54
$55
$57
$58
$59
$5A

Invalid call number

Call pointer out of bounds
Invalid caller identification
Device not found

Invalid device ref number
Invalid request code
Interrupt table full

Invalid operation

I/O Error (Note: Different code number from DOS 3.3 above.)

No device connected
Write-protected

Disk switched
Device-specific errors
Invalid pathname syntax
FCB full

Invalid file reference number
Path not found

Volume not found
Duplicate file name

Volume full

Directory full

Version error

Unsupported storage type
End of file encountered (EOF)
Position out of range

Access not allowed

File is open

Directory structure damaged
Unsupported volume type
Parameter out of range

Out of memory

VCB full

Duplicate volume

Not a block device

Invalid level

Block number out of range

203

APPENDIX A

Fatal Errors . AppendiX B

$1 Unclaimed interrupt
$A VCB unusable

2C. ok s lced el Selected Apple IIGS
Toolbox Routines

QuickDraw II Calls

Chapter 7 included a detailed example and explanation of how to
get into the QuickDraw II Toolbox to create graphics. An entire
book would be required to detail every QuickDraw II Toolbox call,
but several are useful as starting points for super high-resolution
graphics on the Apple IIGS. This appendix lists by name all of the
calls, though some have been explained in greater detail.

The fundamental procedures for using a Toolbox call are:

e Place the necessary paramters on the stack, usually using PEA
» Using LDX, load the call number in the immediate mode into the

X register
e Using JSL, jump to the Toolbox address at $E10000

All of this is to be done in 16-bit (65816) mode.

The first set of functions in the QuickDraw II Toolbox are for
housekeeping purposes. They set up the various registers and
pointers to allow access to the graphics tools. They include QDBoot-
Init to initialize the QuickDraw II tools when the system is booted,
QDStartup to initialize QuickDraw II and set the standard port and
clear the screen, and QDShutDown, which turns QuickDraw II off
and frees the buffers. QDVersion and QDStatus provide infor-
mation on the version of QuickDraw II and whether or not it’s ac-
tive, respectively.

A second set of calls are considered global in that they involve
scanning, which sets general properties of graphics. A scan line has
a Scanline Control Byte (SCB) that controls the line’s characteris-
tics. The call GetStandardSCB returns information about the SCB.

204 205

APPENDIX B

Selected Apple IIGS Toolbox Routines

The first four bits (0-3) are used for Color Table 0, bit 4 is reserved,
bit 5 is Fill (0 = off, 1 = on), bit 6 interrupt (0 = off, 1 = on), and
bit 7 is the Color Mode (0 = 320, 1 = 640). The call SetMasterSCB
is used for setting the low byte of the master SCB, and GetMaster-

SCB returns the information in the low byte of the master SCB.
SetSCB, GetSCB, and SetAllSCBs are further scan-line control
byte calls. For setting the color table, either in the 320 or 640
mode, the InitColorTable call is used.

Calls to SetColorTable, GetColorTable, SetColorEntry, and

GetColorEntry all access the routines to set and get information
about the colors.

The other global calls deal with the fonts, clearing the screen,

and turning the super high-resolution graphics mode on and off.

The calls include SetSysFont, GetSysFont, ClearScreen, GrafOn,
and GrafOff. As you can see, the calls are fairly self-explanatory as

to their function, making it much easier to use the graphics than
more obtuse codes.

QuickDraw Calls

GrafPort Calls $—04

both horizontal and vertical pixel widths. Both the vertical and hor-
izontal parameters must be at least $0001.

SetPenSize Parameters

Toolbox number = $2C04

Pen Width Number of pixels wide

Pen Height Number of pixels deep

Notes: Lines can be very wide to work almost like a background or block.

Setting Colors

The two key calls for setting the color are the SetSolidPenPat color
routine and ClearScreen. ClearScreen sets the screen memory to
the specified background color and the other sets the color of the
pen which will draw on the background.

ClearScreen Parameters

Toolbox number = $1504

Color code (See below)

Notes: All four hexadecimal values for the color code must be the same. For
example, $1111 would give a solid dark gray background. However, $0001
would give a pattern broken by vertical lines.

OpenPort InitPort ClosePort SetPort GetPort SetSolidPenPat Parameters
SetPortLoc GetPortLoc SetPortRect GetPortRect SetPortSize .
MovePortTo SetOrigin SetClip GetClip ClipRect Toolbox number = $3704
HidePen ShowPen GetPen SetPenState GetPenState Color code (See below)
SetPenSize GetPenSize SetPenMode GetPenMode SetPenPat Notes: Onl 1ol] h as $E, $2 d
GetPenPat SetSolidPenPat SetPenMask GetPenMask SetBackPat R URC R SHIGE TRINE SUCIE U8 by ey WG 80701,
GetBackPat SetSolidBackPat SolidPattern PenNormal MoveTo 320 Mode
Move SetFont GetFont SetFontID GetFontID :
GetFontInfo GetFGSize GetFontGlobals ~ SetFontFlags GetFontFlags Pixel Color Code
SetTextFace GetTextFace SetTextMode GetTextMode SetSpaceExtra $0 Black 000
GetSpaceExtra SetCharExtra GetSpaceExtra ~ GetForeColor GettForeColor
SetBackColor GetBackColor SetBufDims ForceBufDims SaveBufDims $1 Dark Gray 28 8
RestoreBufDims SetClipHandle GetClipHandle SetVisRgn GetVisRgn $2 Brown 8 4 1
SetVisHandle GetVisHandle SetPicSave GetPicSave SetRgnSave
GetRgnSave SetPolySave GetPolySave SetGrafProcs GetGrafProcs $3 Purple 7 2 C
SetUserField GetUserField SetSysField GetSysField $4 Blue 0 0 F
$5 Dark Green 080
$6 Orange i
Some GrafPort Parameters $7 Red DO 0
In high-, low-, double-high- and double-low-resolution graphics, $8 Flesh F A9
there’s only a single line size, but in super high-resolution graphics, $9 Yellow FFO
in either the 320 or 640 mode, the size of the pen that draws the $A Green 0 EO
line can be controlled by the user. $B Light Blue 4 DF
Using SetPenSize, it’s possible to vary the size of the pen in
206 207

APPENDIX B

Selected Apple IIGS Toolbox Routines

¢C - Lilac D AF Line Parameters

$D Periwinkle Blue 7 8 F Toolbox number = $3D04

$E Light Gray CCC X position ($0-$0280 or $0-$0154)

640 Mode Y position ($0-$C8)

Pixel Color Code

i? Ef;k g g g Rectangles

) Green 0F O FrameRect PaintRect EraseRect InvertRect FillRect
$3 White F FF

$4 Black 000 .

$5 Blue 0 0F Regions

$6 Yellow BB 0 FrameRgn PaintRgn EraseRgn InvertRgn FillRgn
$7 White F F F

$8 Black 0080

$9 Red F OO Polygons

$A Green 0 FO FramePoly PaintPoly ErasePoly InvertPoly FillPoly
$B White FFF

$C Black 000

$D Blue 00F Ovals

$E Yellow FFO FrameQOval PaintOval EraseOval InvertOval FillOval
$F White F FF

Rounded-Corner Rectangles
Drawing CﬂllS FrameRRect PaintRRect EraseRRect InvertRRect FillRRect
This set of Toolbox calls are what most programmers use most
often when creating graphics directly or when writing a drawing
program. Arcs

FrameArc PaintArc EraseArc InvertArc Fill Arc

Lines

| Pixel Transfers
LineTo Line

ScrollRect PaintPixels PPToPort
These two routines operate very much alike.
LineTo Parameters . _
Toolbisemes = EIC04 Text Drawing and Measuring
X position ($0-$0280 or $0-$0154) DrawChar DrawText DrawString ~ DrawCString CharWidth
Y position ($0-$C8) TextWidth StringWidth CStringWidth CharBounds TextBounds

StringBounds CStringBounds

208 | 209

APPENDIX B

Mapping and Scaling Ultilities
MapPt MapRect MapRgn MapPoly ScalePt

Miscellaneous Utilities

Rectangle Calculations

SetRect OffsetRect InsetRect SectRect UnionRect
PtInRect Pt2Rect EquallRect EmptyRect

Point Calculations

AddPt SubPt SetPt EqualPt LocalToGlobal

GlobalToLocal
Region Calculations

NewRgn DisposeRgn CopyRgn SetEmptyRgn SetRectRgn
RectRgn OpenRgn CloseRgn OffsetRgn InsetRgn
SectRgn UnionRgn DiffRgn XorRgn PtInRgn

RectInRgn EqualRgn EmptyRgn
Polygon Calculations

OpenPoly ClosePoly KillPoly OffsetPoly
Other
Random SetRandSeed GetPixel

The Sound Manager

The program in Chapter 8 that showed how to use the sound tools
was a simple example of what can be accomplished with the Tool-
box routines. These routines take advantage of the 5503 Ensoniq
Digital Oscillator Chip (DOC). The DOC has 32 multiplexed digital
oscillators to give you everything from beeps and buzzes to a talk-
ing computer and symphonic orchestra. However, like the super
high-resolution graphics, you need to use the DOC Toolbox to
really take advantage of this feature.

To get started, let’s take a quick look at the registers used to
control the sounds in DOC.

Frequency Control (Low and High)
Each of the 32 digital oscillators is composed of two eight bit regis-
ters—joined together they form a 16-bit value used for the 24-bit
linear accumulator. The value of this register pair is added to the

210

Selected Apple 11GS Toolbox Routines

current value stored in the 24-bit accumulator.

Address: $00-$1F (low)
$20-$3F (high)

VYolume
This register set controls the volume level of the sound created.
Address: $40-$5F

Waveform Data Sample
This reads the last value from the waveform table.

Address: $60-$7F (Address Pointer)

These registers are used to determine where in RAM the wave-
form tables are located. Each waveform table begins with the first

address of a page and must continue upward through RAM. It can-
not exceed 64K.

The next register keeps track of where the table ends.
Address: $80-9F

Control Register

Channel assignment, oscillator mode, and halt bit are all controlled
by this register. Bits 4-7 make up the channel assignment. Those
four bits can assign up to 16 channels for sound. Bit 3 is the inter-
rupt enable used for ordering output when more than a single os-
cillator has generated output. It helps keep all of the different
sounds organized. Bits 1 and 2 set the oscillating mode for each os-
cillator. Bit 0 is the halt bit, indicating when an oscillator has been
stopped by the microprocessor or DOC.

Address: $A0-$BF

Bank Select/Resolution/Waveform Registers

Each register uses seven bits for controlling three major functions.
(Bit 7 is not used.)

Bit 6 determines whether the DOC address range is 0-64K

211

APPENDIX B

- Selected Apple IIGS Toolbox Routines

(Bank 0) or 65K-128K (Bank 1). Bits 3-5 specify the size of the SetSoundVolume Parameters

waveform table, ranging from 256 bytes to 32K bytes. Finally bits Toolbox number = $0D08

0-2, called the resolution determination bits, actually determine the Volume setting $0-FF

final address for the waveform table. Generator number $0E-$FF

Address: $C0-$DF | Notes: If the generator number is from $00-$0E, the pair of generators is
changed. But if the value is $OF or greater, the volume of the system is
affected.

Oscillator Interrupt, Oscillator Enable, and A/D Converter

Low Level Routines

Reglsters | _ | Read Register Write Register
These three registers (not bits) control the oscillators and analog-to- | Read Ram Write Ram
digital conversion. Read Next Write Next

Addresses: $E0-$E2

Sound Tools $—08

It’s not simple to crank up the kinds of sound seen in musical dem-
onstrations on the IIGS. The sound tools are provided to assist the
programmer.

There are 18 sound function calls and and 6 low-level routines
for accessing the power of DOC. It works through a Sound Toolset
with a specified number. The ToolLocator finds this number to use
the sound tools. The following calls are available.

Function Calls

SoundBootInit SoundStartup
SoundShutdown SoundVersion
SoundReset SoundToolStatus
WriteRamBlock ReadRamBlock

GetTableAddress GetSoundVolume
SetSoundVolume FFStartSound
FFStopSound FFSoundStatus
FFGeneratorStatus SetSoundMIRQV
SetUserSoundIRQV FFSoundDoneStatus

To set the volume, for example, you'd use the
SetSoundVolume tool. It has two parameters: one for setting the
volume and one for the generator to be set.

212 213

Appendix C

Using the APW
Assembler

The Apple 1IGS Programmer’s Workshop Assembler, better known as
the APW Assembler, can be used to create assembly language pro-
grams for graphics and sound.

Specifically, this assembler is used to create the sound pro-
grams which call the built-in Toolbox routines in Chapter 8. It’s
also useful for accessing the super high-resolution graphics or any
other program requiring assembly language programming.

You don’t have to use the APW Assembler, for there are other
Apple IIGS assemblers on the market. The Merlin 816 Assembler by
Roger Wagner Publishing Company is a very popular macro assem-
bler, for example. The ORCA /M Assembler is very similar to the
APW Assembler.

System Requirements

To use APW, you'll need an Apple IIGS with at least one 800K 3'--
inch disk drive for the program and one other drive. It will work
with the following combinations:

* Two 800K 3%:-inch drives
e One 800K 3%2-inch drive and one standard 5%-inch inch drive

e One 800K 3Y2-inch and one hard disk

The program disk must go on the hard drive or in the 800K
3%2-inch drive. A standard 5%-inch drive doesn’t have sufficient
room for the files.

It's also necessary to have considerable memory. A minimum
of 512K is required (256K on the motherboard plus 256K on a

215

APPENDIX C

memory expansion board). More is recommended. Programs for
this book, for instance, were developed on a one-megabyte system.
For larger programs, especially those making several Toolbox calls,
it's a good idea to have lots of memory.

Getting Started with APW

No matter what type of system you use, make a backup of your
APW disk. It's very easy to accidentally erase a disk in the APW
and assembly language environment by mistake. If you only have a
single 800K 3%2-inch disk drive, copying is a tedious chore, but it
can be done. Here’s what you need to do to copy your APW disk.

Step 1: Open the write-protect window on your original APW
disk and insert it in the drive. Boot your system with the APW disk.

Step 2: Get a blank disk. Use the INIT command and name
the device and file to prepare the blank disk. (If you're copying to a
hard disk, it’s unnecessary to initialize it.) The device name is
accessed by using the commands SHOW UNITS.

For example, with a single disk drive, the sequence will look

something like

INIT .D1/APWBU <Return>

Your screen would tell you to insert the disk. Put in the blank
disk. (The disk name APWBU simply refers to APW Back Up.)

Step 3: Put the write-protected original APW disk in one drive
and the blank disk in the second drive. If you have a single 800K
drive and no hard disk, you'll have to swap disks several times.
The process will take close to 15 minutes. Once the disks are ready

in their drives, type
COPY /APW/= JAPWBU /=

Follow the swapping prompts if you have a single 800K drive
and no hard disk. Otherwise, just wait until the disk is copied.

Step 4: When you're finished, you'll want to rename your disk
from APWBS to APW. To do this, enter

RENAME /APWBU /APW

216

Using the APW Assembler

Using the Editor

Get a blank disk and initialize it for the programs you'll write your-

§e1f. There’s not enough room to put many on the APW disk. Even
if you have a RAM disk, there probably won't be enough roc;m

there either.
You'll use this blank disk to save and test your assembly lan-

guage programs. To make it the key or current disk, use the
command

PREFIX ASSEM

The rest of this discussion assumes the name of the disk to be
ASSEM. Any other legal filename is fine, of course. Now that the
ASSEM disk is the current disk, you can begin writing assembly
language programs with the editor.

Begin

To begin writing an assembly language program, pick a filename
and enter

EDIT filename

Even if no such file exists on the current disk, your editor will
work. So type

EDIT TEST1 <Return>

and you’ll see a blank screen with a cursor at the top and an in-
verse ruler at the bottom showing the current tab stops for
opcodes, operands, and comments. The screen also shows the
name of the file you're editing. Use the arrow keys to move the
cursor around and the other keys to type in what you need. The
following is a selected list of editor commands.

Keys Function

Command-arrow key Jump to top or bottom of page or move up or down
one screen.

Esc-E Enter insert mode. Key combination toggles mode
on and off.

Tab Jumps tab stops. Useful, but not essential, for sepa-

rating label, opcode, operand, and comment fields.

217

Using the APW Assembler

APPENDIX C
Esc-E/C Scrolls screen up/down one line.
Delete Pressing the key erases the character to the immedi-

Command-Z
Command-Delete

Command-C

Command-X

Command-V

Command-L/K

Control-Q

ate left of the cursor.

Undo single character delete.

Selects line to be deleted. Pressing arrow keys se-
lects more for deletion. When Return key is pressed,
all selected material is deleted. Command-Z won't
restore this deletion.

Copies selected materials. After pressing this key
combination, more material can be selected using
arrow keys. Material will be placed in SYSTEMP
file when Return key is pressed. The APW disk
must not be write-protected for this to work
correctly.

Deletes selected materials. After pressing this com-
bination, more material can be selected using arrow
keys. Material will be deleted from screen and
placed in SYSTEMP file when Return key is
pressed. The APW disk must not be write-protected
for this to work correctly.

Pastes materials in copy buffer to screen. It does not
clear copy buffer. This can be used to recover ma-
terials cut by the Command-X function. The APW
disk must not be write-protected for this to work
correctly.

Search down/up. Prompt in the bottom bar will
query for string to search. **String Not Found** mes-
sage appears if unable to locate string. Otherwise,
cursor moves to search string.

Quit. This takes you to a menu with several
options.

<R> Return to editor

<5> Save to the same name

<N> Save to a new name

<L> Load another file

<E> Exit without updating

218

Writing Assembly Language Programs

If you're familiar with other assemblers, there are a few important
things to note about APW. After entering the editor, all you need
do is place a space between fields. However, it’s clearer and easier
to use the leftmost column for labels, then use a tab stop for the
other three fields.

For example, the following shows a typical line with label,
opcode, operand, and comments.

Label Opcode Operand Comment
Loop sta $0400,X ;Decrement loop

To get started, let’s look at some required formatting
procedures.

KEEP

The first line of a program must use the KEEP command to define
the object-code name. This is the name the program will use when

you run it.
For example, the line

KEEP GRAPH

would name the EXE and object ((ROOT) file of the program, as
GRAPH. The source code, the SRC file, can be any name you wish,
and it doesn’t have to be saved as the name in the program.

For instance, you could save the program source code as
CHART, and if the KEEP name was GRAPH, when the code is as-
sembled, the EXE and object files will still be called GRAPH. Since
it would be confusing to have a lot of different names, it’s easiest
to save the SRC file with the .S suffix. Then you won’t end up with
different source- and object-code names.

Once a program is assembled, there are three files, the source,
the object, and EXE file. If you mistakenly name the source and ob-
ject files with the same name, you’ll lose your source code. A cor-
rectly developed program on APW would have files that would
look like the following when assembled and linked with the ASML

command:

Filename Type
GRAPH.S SRC

219

APPENDIX C

GRAPH.ROOT OB]
GRAPH EXE

The OBJ and EXE files are automatically created by the assem-
bling process.

START

After the Keep command, the first line of the source code which
will be assembled must be START. Also, it must have a unique la-
bel in the same line. For example, the following line could be used
for the Start line:

Label Opcode
alpha start

The Start pseudo-opcode goes in the opcode field. There’s no
operand. Any legal label can be used. The label MAIN is a com-
mon one used by programmers.

END

At the end of the code to be assembled, there must be an End
pseudo-opcode. Unlike Start, no label is required. End usually goes

after an rtl opcode. The following code shows all of the necessary
requirements for a program:

keep tabs
main start
ldx #$0022
loop sta $0400,x ;Decrement loop
cpx #0001
bne 1loop
rtl
end

220

Using the APW Assembler

It's RTL

On the 6502 microprocessor, it’s common to end an assembly
listing with RTS (ReTurn from Subroutine.) A JSR—RTS pair
is used to call and return from a machine language subroutine
located in the same bank of memory as your main program.
However, with a 65816 microprocessor, you sometimes need
to jump to a subroutine in a different memory bank. This is
done with a new set of instructions: JSL (Jump to Subroutine
Long) and RTL (ReTurn from subroutine Long). These instruc-
tions work just like the JSR—RTS pair, except they allow
jumping from one bank to another.

In a single program, each subroutine can be segmented by
Start and End. That is, while it’s necessary to have at least a single
pair of Start and End commands, it’s also possible to have several.
The Link function ties them together into the entire program dur-
ing the link process when the assemble and link command (ASML)
is given.

For example, the following shows how two subroutines are
combined in a single program with two sets of Start and End
commands.

keep dubs
alpha start :Begin routine #1
ldx #$00R23
loop sta $0400,x
cpx #0001
bne loop
jsr beta -Jump to beta
rtl :Back to ProDOS 16 and out of program
end
beta start :Begin routine #&
ldy #$0004
rts :Back to alpha
end ‘End of subroutine, not program

There’s much, much more that can be done with APW, but the
above material should get you started. See the complete APW docu-
mentation for instructions on creating macros and other special
programming capabilities using the Apple IIGS.

221

APPENDIX C Using the APW Assembler

Saving, Assembling and Linking Programs Selected APW Commands

Once a program has been written in the editor, press Control-Q to
quit, and, using the S or N key, save the program under the name
listed next to Filename: or give it a new name.

When developing a program and debugging it one routine at a
time, it’s a good idea to use the N option to save to a new name.
Then, as each part is tested and debugged, there’s a sequential list
of source code files. Once you have it fully developed and tested,
you can delete the unnecessary files and keep a working sequence
of source code files.

After the file is saved, choose E to return to the APW com-
mand mode.

To assemble the source code into something that will run on
your Apple IIGS, such as the music program in Chapter 8, use the
ASML command in the APW command mode. For example, if you
saved the program under the name Tabs.s, there should be a file

TABS.S SRC

on your disk when you catalog it with the CAT or CATALOG com-
mand. Now type in

ASML TABS.S <Return>

and your code will be assembled and linked. If the Keep name was
Tabs, a successful assemblage and linkage produces a ROOT and
EXE file. The EXE file is executable and can be run by simply typ-
ing the program name and pressing Return. For instance

TABS <Return>

runs the program called TABS.

If there is an error in your source code, APW will tell you.
Sometimes, however, it will still assemble and link a program and
give the correct files. For example, if you change the word START
in the Dubs program to NOP (No OPeration, a legal dummy
opcode), the first part of the program will bomb and there will be
error messages. However, since the Beta routine is perfectly correct,
the assembler/linker will go ahead and produce a complete set of
files on your disk.

222

APW is very powerful. When you're not using the editor, assem-
bler, or linker, there’s a very useful set of commands in the
ProDOS 16 operating system under which APW runs. The follow-

ing commands can be accessed when the pound sj :
iai n (#
visible on the screen. P gn (#) prompt is

Catalog or Cat

Lists the files in the current directory to the screen. If a subdirec-
tory or main directory is not specified, the current directory is
listed. If one or more subdirectories are specified, the Catalog com-

mand finds the desired directory, even if it's on a disk other than
the the current one. For example

CAT /COMPUTE/CH9

lists the files in the subdirectory CH9 found on the disk named
COMPUTE.

Compress

Compress can do two things. First, it compresses the files on your
disk. This function collects the gaps left in the directory when a file
1s deleted. Second, it can sort the directory in alphabetical order. If
you use the Compress command with no parameters, it prompts

you to choose either C (Compress) or A (Alphabetize) or both. If
both are used, leave a space between them.

Copy

Copy a file from one disk and/or subdirectory to another. It’s actu-
ally a lot easier to do this from the desktop. To copy a file to the
same disk and to the same directory, specify the file to be copied
and the filename to assign to the copy. For example

COPY TUNE TUNE.BKU

makes a copy, named TUNE.BKU, of the file TUNE and places it in
the same directory.

223

APPENDIX C

Using the APW Assembler

To copy from one disk to another, specify the pathnames sepa- It's possible to delete a subdirectory, but only if that directory

rated by slashes. There’s no need to create a new filename. For in- is empty. The files in the subdirectory must be deleted before the
stance, to copy the file TONE, which is in the current directory subdirectory itself is erased.

CH9 (part of the path named /COMPUTE/CHY9), to the root direc-
tory of the disk /APWPROGS, you’d use

COPY TONE /APWPROGS Dumpobj

Only the TONE file is copied, not the whole disk. The file is Lhis-commne- wasks ssmetiig Ok o memory dump from the
saved on the second disk under the name TONE. monitor, except instead of dumping memory, it dumps the contents

If you wanted to use a different filename, you could append it of an OF] file. There are several ditferent opHonEE NN,

. how you wish to see the object code.
o thie e ol e pAEWERDIGS patiiame, 3% i The default dump is called Object Module Format (OMF), but

COPY TONE /APWPROGS/TONE2 if so desired, it can dump the code in hexadecimal code or 65816
Now the file TONE has been copied to /APWPROGS under disassembly. For example
the filename TONE?2. DUMPOBJ DUBS.ROOT
uses the default OMF format. Alternatively,
Create DUMPOBJ +X DUBS.ROOT
Creates a new subdirectory in the current directory. For example, to dumps hexadecimal code with text in the margins.
create a directory called SAMPLES, the command sequence The following options are available with DUMPOBJ.
CREATE SAMPLES Option
would do. Identifier Option
+X Hexadecimal dump
+ 1) 65816 disassembly format
Delete -H With +X option, list headers as hex also
Deletes the specified file from the current directory. Although this -O JU_lSt show the headers
erases the file from disk, the disk has not yet been compressed. In 3 Fﬂ.E type suppress o |
other words, the file is still recoverable. If several developing pro- -M With +D GpHon, assume the accumulator. is in Elgh.t_bl.t modfs
grams have been written, it’s possible to use a wildcard to erase an -1 With +D option, assume the X and Y registers are in eight-bit
entire group of files with the wildcard characters. The wildcard in- mode | |
dicator is the equal sign (=), and if placed at the beginning or end -A Just prm'.ude Dperatlc:’fn 'codes and operands for OMF and
of a filename, all files with the indicated attributes will be deleted 65816 disassembly listings
in the current directory:. -S Only segment name and type in segment headers
DELETE =.BKU More than a single combination can be used, but each must be

deletes all the files with the extender .BKU. separated by a space.

DELETE TON=

deletes all the files with the first three letters, TON. Filenames
TONE, TONY, TONAKA, TONIGHT would be deleted from the

current directory.

224 295

APPENDIX C

Using the APW Assembler

Filetype

This command changes a specified file to a specified type. There
are three different ways a file can be specified—by decimal code,
by hexadecimal code, or by text code. Since the text code is used in
the directory, let’s use those. They include:

File Type Definition

TXT Text

BIN ProDOS 8 binary load
DIR Directory

SRC Source code

OB] Object code

LIB -~ Library

S16 ProDOS 16 System load
RTL Run-time library

EXE Shell load

STR Startup load

5Y0 ProDOS 8 system load

To change a program to a startup file, for example, you would
enter

FILETYPE HELLO STR
and the file named HELLO becomes a startup file.

Help

By itself, the Help command lists all available commands to the
screen. If a command name follows Help, then information about
that command is brought to the screen. To find out more about the
Help command, enter

HELP HELP

This command is used to format a disk. It's easier and somewhat
safer from the desktop, but again, you can use it from APW if you
want.

All the command requires is the device number (use SHOW
UNITS to see connected devices) and a filename. For instance

226

INIT .D2 OLDSPOT <Return>

initializes the disk in device .D2 as OLDSPOT. This command com-
pletely erases the contents of a disk.

Move

Move lets you organize your disk by moving files from one direc-
tory to another. To use the command, specify the file in a current
directory and the name of the directory it’s to be moved to. For
example

MOVE GRAPH PORTFOLIO

moves the file GRAPH to the dire‘cfory called PORTFOLIO. More
complicated moves can be made through several layers of subdirec-
tories as well.

Prefix

This standard ProDOS command sets the current directory.
PREFIX SAMPLES

makes the directory SAMPLES the current directory.

Quit

Exits APW and gives the option of rebooting, executing the Start
program, or providing the pathname of an alternative start
program.

Rename

A standard ProDOS command which lets you change the name of
a file. A space between the old name and the new name is
required.

RENAME ONE TWO
changes the name of the file called ONE to a file now called TWO.

227

APPENDIX C

Show

The show command can display the following;:

Appendix D

Selected Non-

Option Function
Language Current language
Languages All languages in language table and their numbers

Time Shows the date and time
Units Devices connected to system
P @
Switch I OOlB OX BUllt'lll

The Switch command swaps the positions of two files in the direc-
tory. For example

SWITCH APPLES ZEBRAS
switches the directory position of the files APPLES and ZEBRAS.

Graphic Routines

Graphic/Text Soft Switches

Switch Address Function

$C050 49232 Graphics mode

$C051 49233 Text mode

$C052 49234 All text or graphics
$C053 49235 Mixed text and graphics
$C054 49236 Page 1

$C055 49237 Page 2

$C056 49238 Low-resolution graphics
$C057 49239 High-resolution graphics

Type
Lists SRC and TXT files to the screen. Type is a useful command
for checking the contents of a source file. Enter the command and a
filename. To see the source code file GRAPH.S, for instance, enter

TYPE GRAPH.S

and its contents are listed to the screen.

Selected Low-Resolution Routines

Subroutine Address
Notes
PLOT $F800 A=vertical position 0-$2F
Y =horizontal position 0-$27
HLINE $F819 A=vertical position 0-$2F
Y =left horizontal position 0-$27
Address $2C=right horizontal position 0-$27
VLINE $F828 A=top vertical position 0-$2F
Y =horizontal position 0-$27
Address $2D=right horizontal position 0-$27

228 229

APPENDIX D

CLRTOP
SETCOL

$F836
$F864

Clears to 40 lines of lo-res screen
Sets lo-res color
A register holds color code

$0=Black

$1=Deep red
$2=Dark blue
$3=Purple

$4=Dark green
$5=Dark gray

$6 =Medium blue
$7=Light blue

$8=Brown
$9=0Orange
$A=Light gray
$B=Pink
$C=Light green
$D = Yellow
$E=Aquamarine
$F=White

Selected High-Resolution Routines

Subroutine Address

HGR
HGR2
BKGRND

$55

$2A

$D5

$AA

$FF

$00
HCOLOR
HPLOT

HRLINE

$F3E2
$F3D2
$F3F4

$F6F0
$F457

$F53A

Notes
Starts up HGR1
Starts up HGR2

Background color from A register (mask)
Solid color values for background:

Violet

Green

Blue

Orange

White

Black
Color 0-7 in X register
Vertical position A register
Horizontal low byte X register
Horizontal high byte Y register
Horizontal low byte A register
Horizontal high byte X register
Vertical position Y register

230

Index

{ } See braces
< See less than symbol
% See percent sign
/ See slash
accumulator 30
A /D converter registers 212
algorithm 128
animating low-resolution graphics 57-59
animation 21-38
animation with page switching 69-71
Applesoft error messages 201-2
Apple IIGS Programmer’s Workshop Assem-
bler 215
APW assembler 215-28
assembling 222
commands 223-28
editor, using 217
END 220
getting started 216
KEEP 219
linking programs 222
saving 222
START 220
system requirements 215-16
writing assembly language programs
219-21
arc 186, 209
arcn 186
ARRAY tables 25-28
array, using 80-81
assembler 14
assembler, using 134-35
bank select 211
bank-switching 29-34
BASIC statements summary 63-64
bitmapped graphics 101-8
bitmapped graphics colors (figure) 102
BLOAD 73
braces 195
BSAVE 67
CALL 64
calls, drawing 208-10
character path 193-94
character patterns 12-13
charpath 193-94
carriage return 6
chart
labeling 116-19
multiple 126-28
proportional 114-16
circles 128-30
ClearScreen 207
closepath 185
color 41-43
color combinations 48-51

231

color memory 74-79
color, setting 207
COLOR statement 47
color, storing 78-79
complementary positions 75
control bit 74
control register 211
current point 182
curves 186-88
data table 25-28
def 181, 195
delay loop 160
development assembler 157
diagonal movement 24-25
digital oscillator chip (DOC) 169, 210
DOS 3.3 error messages 201-2
double-high-resolution graphics 79-83
double-low-resolution graphics 52-57
DRAW 99
drawing calls 108-10
drawn objects 57
duration loop 162
80-column screen 28-34
error messages 201-4
even address 75-77
fill 188-90
FLASH 6-8
font 181, 190-91
FORTH 179
frequency control 210
global 205
graphic drawings, saving 67-68
graphic routines, built-in 229-31
graphics
mixing with sound 166-69
on the screen 106-7
screen 45
graphic/text soft switches 229
grestore 193
gsave 193
handle 135
HCOLOR 63, 123
HGR 63, 69
HGR2 63, 69
high bit 101
high nibble 91-92

high-resolution color values 1-8 (figure) 75

high-resolution graphics 63-83, 119-30
high-resolution routines 230-31
HLIN 43

horizontal grid lines 125-26
horizontal movement 21-22
horizontal spacing 119-21
HPLOT 64

HPLOT TO 121, 129

HTAB 116

indexed 30
INVERSE 4-6
keyboard notes 164
keyboard, using 164-65
LDA 31

less than symbol 80
line 183-86, 208-9
line feed 6

line graphs 121-26
lineto 183

line width 188-90
LOMEM 81

long jump 29-34
loops 162

low nibble 91-92

low-resolution graphics 41-59, 111-19

animating 57-59

color combinations 48-51

in BASIC 43-52
low-resolution graphics screen 46-48
low-resolution routines 229-30
machine language speed 13-14
mapping 210
memory banks 28-34
memory manager 135
Merlin 816 Assembler 215
mini-assembler 14, 141
monitor 79-80, 141
movement 21
moveto 182
moving memory 104-5
music 162-65
newpath 182
odd address 75-77
offset 161
opcode 141
ORCA/M Assembler 215
oscillator enable 212
oscillator interrupt 212

ovals 209
page description language 179

page switching, animation 69-71

path 182

percent sign 181

pitch loop 162

pixel 74

pixel transfers 209

PLOT 45

ploygons 209

point 180

pointer 95

postfix 180

PostScript 179

PostScript graphics 179-97
comments 181
lowercase 181
point positions (figure) 180
word definitions 181

232

PostScript Language Reference 197

PostScript Language: Tutorial and Cookbook

197

primary page 63, 67, 68, 73

procedure 195

ProDOS 8 error messages 202

ProDOS 16 error messages 2034

proportional chart, drawing 114-16

proportional data 112-14

“QuickDraw Lines” program listings
137-41

“QuickDraw Mouse" program listings
144-53

QuickDraw II 135-44

QuickDraw II calls 205-10

QuickDraw, using mouse 144-53

quotation marks 4

rectangles 209

rectangles, rounded-corner 209

regions 209

relative offset 96

relocatable 96

resolution 211

reversed 102

reverse Polish 180

rlineto 183

rmoveto 192

RND statement 67

ROT 99

rotate 191

RIS 221

SCALE 98

scale 191, 192

scalefont 191

scaling 210

scatter graph 120

screen 17

screen address 10-12, 75-77

screen mapping 3

secondary page 63, 67, 68, 73

sequential memory 104-5

setfont 191

setgray 188

setlinewidth 189

SetPenSize 206

SetSolidPenPat 207

SGN function 34

shape manipulation 98-101

shapes 87-101
drawing in memory 88-91
moves and values table 88
moving memory 104-5
sequential memory 104-5
translating by hand 91-93

shape table 95-98
entering from BASIC 95-97
entering from the monitor 97-98

show 191

showpage 181, 184

slash 181, 195

slide show effect 71-73

soft switch 43, 64

software translation 93-94

sound 157-62

sound control 159-61

sound generation 8

sound manager 210-13

sound, mixing with graphics 166-69
Sound Toolbox 169-70

sound tools 212-13

spaces 3—4

SPC function 4

speaker tweaking 157-9

speed control 159-61

STA instructions 30

step loop 107

stroke 184

super high-resolution graphics 133-53
switching screens 68-74

text 190-91

text, angled 191-93

text drawing and measuring 209
text editor program listing 181-82
text graphics 3-17

233

TEXT mode 43

text, modifying 193-94
text screen 8

text screen, mapping 8-13
text spaces 44

Toolbox, Apple IIGS 133
Toolbox routines 205-13
top color/bottom color (figure) 47
translate 182

translating by hand 91-93
translation, software 93-94
utilities 210

vertical grid 122-25
vertical movement 22-24
visible screen 135

VLIN 43

volume 211

VTAB 116

WAIT routine 8

waveform 211

wildcard 224

words, defining 195-97
XDRAW 99

Zap command (Z) 80

- Great Sound, Great Graphics

The &S in Apple lics stands for Graphics and Sound, the two most
advanced features of the newest Apple Il personal computer. With
exceptional high-resolution graphics and synthesizer-quality sound,
the Apple llcs can paint the screen with more than 4000 colors and
make music like a symphony.

But because the graphics and sounds are so sophisticated,
using them in your own programs on the lics is more complicated
than on other Apple Il computers, COMPUTE!’s Guide to Sound and
Graphics on the Apple llcs shows you how to access and control
this machine’s impressive power. With a patient approach and clear
writing and programming examples, this book takes you on a tour
of the liGs’s capabilities, from the Apple Il-like low-resolution graphics
to the new super high-resolution screens.

William Sanders, author of the Elementary Apple 1I1Gs as well as
a number of other programming books, shows you step by step how
to create your own programs. Here's just some of what’s inside:

e Drawing simple graphics on the text screen.

* How to animate shapes to create moving pictures.

 Using the low- and high-resolution graphics modes.

* Making shapes, shape tables, and creating bitmapped graphics.
» Generating terrific-looking graphs and charts on the lIGs.

e Accessing the new super high-resolution mode of the computer.
e Tweaking the speaker for simple sounds.

» Getting to the Apple llcs Toolbox to create dazzling sounds.

Scores of program examples—in both BASIC and machine lan-
guage—illustrate each concept. You can alter the programs at will
to make new designs and to explore new areas.

COMPUTE!'s Guide to Sound and Graphics on the Apple IIGS is
an instant education in programming on this new and powerful
Apple personal computer.

g 21695

80874 6

	COMPUTE!'s Guide to Sound & Graphics on the Apple IIGS (1987)
	Table of Contents
	Foreword
	Acknowledgments
	Chapter 1 - Text Graphics
	Chapter 2 - Fundamentals of Animation
	Chapter 3 - Low-Resolution Graphics
	Chapter 4 - High-Resolution Graphics
	Chapter 5 - Shapes and Bitmapped Graphics
	Chapter 6 - Making Graphs and Circles
	Chapter 7 - Super High-Resolution Graphics
	Chapter 8 - Sound and Music on the Apple IIGS
	Chapter 9 - PostScript Graphics
	Appendices
	Appendix A - Error Messages
	Appendix B - Selected Apple IIGS Toolbox Routines
	Appendix C - Using the APW Assembler
	Appendix D - Selected Non ToolBox Built-in Graphic Routines

	Index

