Assembly-Language
Relational Database Management

System

VOL. | USER MANUAL

fmu%c‘anhed ,_b y..ﬂ,gc vxme ‘ Fiusrinatie, *

g"f-n.,i* f’ ; j s
£ | A .-"' L I..‘ j.il_

et b S LT Ane = TP T2 Tt LAl S ‘*
‘?7 ety App J) E’Us E!f‘sé' HOUP S .V d n eyA pple kColle
: S Ey SRS A e Ny, e g ;- ; _

!
'P =
e ;
o

g ¥ S - v\ e S S W - -
o 11 3 ’ o
E 1 . ¥, ‘*’?;;ri“ §

i

L
ibe

&

o

I |

L
_;. =, o

flle "

3 -

http://www.cvxmelody.net/AppleUsersGroupSydneyAppleIIDiskCollection.htm

Introduction and installation: 6

Intrpductinn-...I‘I‘llll‘.-..I'li.‘ll-'lﬂ-l-l'l.liiiiii

Typographic conventions used in this manual........
System RequirementS.....ccevvvcscsaninnncancnnnnens
dBASE II Specifications..cecsceccscccnscncnnss dEEa
Making a backup eesscvasssssesssnsssssnssannssnnans
Installing dBASE II on your system....c.ccecvecesse
Section I: 13

How to CREATE a2 databasS@escecossssscccccsnssssasnas
Entering data into your new database.....ciccacscss
Modifying data in a database.sscecenscncccncnnnonns
Full Screen Editing FeatureS...cesvecessconsssasscs
An introduction to dBASE II to commands and theé

error correcticn dialog..cccececiccecanes seesdne
Expanding commands with expreasinna................
.Looking at your data records......eieiesccese T
Positioning yourself in the I T
The interactive ? command....s scsesscsccssssesconis
Adding more records to a database..iceerennnacnnans
Cleaning up 2 database........ o B RN e epee

SactinnI sumary.-..-.'.".'.lll.'.‘."..‘..""-l.-'
Section II: - _ =5

Using expressions for selection and control...cce..
Coi.stants and variables..... ssssesnssns sessssessnse-
dBASE II operatorS..cssccsscssscscssccsssssssaansas
Logical operators...isevescstnsscnssncesncssnsrenes
Substring logical ODOPRB O 0 5. 660105 S0 100 EESERRED S
BErINE ODEPALOr . iveesines s iaieesiiesseiosee dave
Changing an empty database structure......ccesvveees
Duplicating databases and structures..icescccesesss
Adding and deleting fields ;

with data in the databas€..c.vesecccssaccans
Dealing with CP/M and other "foreign files™........
' Renaning database fieldsS.ccsessacsansssnnsaesesaans
MoAIPVing SALE PRDPIdLYsessaaved iesedeviainasees e bee

Orgnizins Yuur databasﬂal...llil'lil..illIII-IIIIl_

Finding the information you want...ceeeececcsccncss
Getting information out of all that data.....ceeveee
Automatic counting and summing...ccecvvece. DR
Summarizing data and. eliminating detallBssiaviviinie

Section II Summary.ccecscccecssccccnses veesssennean

6
€
T
4
7 .
8 INSTALL .
14 CREATE
16
18- EDIT
19 .
20 USE, DISPLAY, LIST
21 ,LIST
23 DISPLAY
24 GO0, GOTO, SKIP
25 ~ 7 |
26 APPEND, INSERT
28 DELETE, RECALL, PACK
29
32
"33 STORE
37
38
40
41
42 MODIFY .
43 COPY
45 COPY, USEs MODIFY
47 COPY, APPEND
49 COPY, APPEND -
50 REPLACE, CHANGE
52 SORT, INDEX .
54 FIND, LOCATE
56 REPORT
58 .CQUNT, SUM
59 TOTAL
60

'Section III: 61

Setting up a command. file

(writing your first program)..cecceccesseccsees 02
Making choices and decisienS...cesdecccsccensceanse 6H
Repeating a procesS......cceecesaibascscscsancssess 06
Procedures (subsidiary command fileS)e...eeeeeesnoes ' 67
Entering datd interactively during a ruf........... 68
Placing data and prompts exactly where :

) you want them.......cescseeasasssvcnssccccces 69
A command file that summarizes what we've learned.. 72
Working with multiple databaseS...reevsvensceansess 75
Generally useful system commands and functions..... 76
A few words about programming and planning

your command fileS...cseisedvescscnnncananses T7

Section IV: 79

Expanding ydur control with functionS.iescevssssvses OO

Changing dBASE II parameters and defaultS......s... BHY
Merging records from two databaseS....cceescvsssses 86

JOINING entire OatabasesS.icsrcsnrciarsessssennevnes ~OF

Full screen editihg and formattingZeicecsvenssssssss B8

Formatting the printEd p’apgell'l..l'.llilililllll .8 r a8 gﬁ

Setting up and pﬁinting a fOrMmicasvanssse ssasvesaes SF
Time t'D r‘egrﬂup - w '-!- W F B B & B B ¥ B F & @ & & B .-In ® & 8 B8 B & 8 B F B B & @ 93
Section V: = # ' 95

Patabase BasicCS.esvresvsevs SO e e RN creecers 96
A brief introduction to database organization...... 98

dBASE II Records, Files and Data TypeS..ievevessess 99
dBASE II OPERATION SUMMARY..oevesoicecrasnnvencveans 102
dBASE 11 FUNCTION SUMMARY .ssseanseissnsevsseibssvees 103
dBASE II COMMAND SUMMARY :cccvccsnnadosscans Gesaeas SR
Commands grouped by what you want done./.....c...a2. 100

109 File structure

110 File operations

110 Organizing database

110 Combining databases

111 Editing, updating, changing data

111 Using variables

112 Interactive input

112 Searching

112 Qutput

113 Programming -

Section VI: ' 115

A working accounting System..eveceseenccacsnecsnces 115

MODIFY COMMAND <file>

IF..ELSE. .ENDIF
DO WHILE..

DO <filed>

WAIT, INPUT, ACCEPT

@..SAY..CGET

SELECT PRIMARY/SECONDARY

| SET..
"UPDATE.
JOIN ~

SET:FUBHAT TO SCREEN
E- -SAY.# IGET- |FICTUHE- "
SET FORMAT TO PRINT

- €..SAY..USING..

dBASE 71...6

Introduction

dBASE II is a database managément tool that allows easy
manipulation of small and medium sized databases using
English-like commands. With dBASE II you can:

¥ Create complete database systems.

®# Basily add, delete, edit, display and print data from
your database, with a minimum of data duplication
on file.

%

*’Gain a large measure of program/data independence, so
that when you change your data your don't have to
change your programs, and vice-versa

* Generate reports from one or more databases, automat-
ically do multiplication, division, sub-totals,
totals and other data manipulation everv time you
use them.

* Use the full-screen editing capability to set up a
screen format, so that you see exactly what you're
going to get, and enter data by simply "filling
in the blanks." '

dBASE II is an extremely powerful system. To get the
most out of it, please takeithe time to read the instruc-
tions before you start using it. The time will be well
Bpent- . ; . :

Txgngraphid conventions used inm this“naﬁﬁﬁl:

Lowercase in the screen representations indicates material
that you type in.

Uppercase in the screen representations indicates the dBASE
II prompts ‘and responses. In text, uppercase is used for
dBASE II commands. .]

“ess” wiIl be used in the text of this manual:'to set off
dBASE II commands and materials you 'type. Occasionally,

- they may are used in the screen representations .if needed
for clarity. DO NOT TYPE THE SYMBOLS.

[;..] square brgckets will be used to iﬁdicate-parts 5?;&
dBASE II command that are optional. :

€«..> bracket portions of a dBASE II command that are to be
filled in with real ‘information. E.g.: <filename> means the
name of a file is to be inserted. They are also used in
text to bracket field names and file names.

{enter> means press the carriage return or "enter" key on
~sour keyboard. DO NOT TYPE THIS WORD, NOR THF SKMBOLS.

'dBASE II...T

Systea Requirements

dBASE II requires the following hardware and
software environment:

* 8080, 8085 or 7-80 based microprocessor system (Like the
TRS- 80111, Northstar, Apple II with the Z-80 card, etec.)
48K bytes minimum of memory (dBASE II uses locations
from 5CH to ALOOH) for most micros, 56k for Apple, Heath,
North Star and a few others.
®# CP/M (version_1.4 or E.x), CDOS OR CROMIX operating
‘‘'systems.
#* One or more mass 5torage devices
{uaual&y floppy disk drives)
A cursor-addressable CRT if full screen operat1ons
are to be used.
Optional text printer (for some commands).

dBASE II Specifications

Records per database file 65535 max

Characters per record 1000 max.

Fields per record max

Characters per field Eg max

Largest number +1.8 x 10 approx
Smallest number s 10 apprcx

Numeric accuracy _ 10 digits
Character string length ~ 254 characters max
Command line length : 254 characters max
Report header length _ 254 characters max
Index key length ; 100 characters max
Expressions in SUM command 5 max

o

-

BEFORE YOU DU ANYTHING ELSE, MAKE A COPY OF THE dBASE
II DISC. STORE THE ORIGINAL IN A SAFE PLACE AND USE
THE COPY.

Install a system disk in drive A and thé dBASE II disk in
drive B. Now type:

“PIP A:=B:®.®%[0V]~ _

The letter "0" is necessary to make certain that your
operating system will copy all of the data from the
distribution dlsk.

If you are working with a si ngle drive, use the CDPY or
BACKUP aommands, and follow the screen prompts.

Backups are essential, and should be done frequently.

If you have a short session on your computer, once a sessior:

~may be enough, otherwise do it much more frequently than

that. You can balance the cost of doing the backups versus

the cost of vour data better than we can, hut since you can

rewrite disks, the cost of the backups is low. What's vour

‘entire accounting database worth?- '
This gan't be over-emphasized!

dBASE II...8
INSTALLING dBASE II ON YOUR STYSTEM.

Load the copy (you did make a copy, right?) of dBASZ 1I
into your logged-on drive and do any initialization that has
to be done (control-C , reset, etc.)

Now type “INSTALL" to customize dBASE IT to your
gystem. (DO NOT TYPE THE """ SYMBOLS.)

~ If your terminal does not have cursor X-Y positioning
(see your manual), type "N in answer to the prompt.

‘Qtherwise, type "Y". This provides you with the abllity to

do full-screen editing, a convenient way to enter data and
work with your databases. Ratherr than ending up typirg on
the last line of the screen, with everything else scrolling
up, you can position the cursor wherever you want it using .
dBASE II commands.

dBASE JTI ther lists terminal types. If yours is
listed, type the appropriate letter. If your terminal is
not listed, type "Z".

A ' install

dBASE N1 INSTALLATION PROGRAM VER 2.4

ARE FULL SCREEN OPERATIONS WANTED (Y/N)7 y
SELECT TERMINAL TYPE
- HAZELTINE 1500 -S0OROC 120,140, TELEYIDEDO .
HEATH 859 PERKIN ELMER FOX 1100

-ADM-3A - ADM-31

- VDP-RO -INTECOLOR

- GNAT-SYSTEM 10 TAS-80 PICKLES TROUT
APPLE - VECTOR GRAPHICS

- SUPERBRAIN - VISUAL 100

Y - CHANGE/MODIFY PREVIOUSLY INSTALLED TERMINAL
Z-USER SUPPLIED TERAMINAL CHARACTERISTICS

If you selected one -of the listed terminals, dRASE II
then asks you which character you want to use for macro
substitution (described in Section IV, used in Section VI
and defined in Part II of this manual).® If the ampersand
will not conflict with your word processor, type {enter>.
Otherwise, type in the symbol you want to use.

Initially, you will want tc use the error correction
dialogue, so type <enter>. This will allow you to correct
an error without having to re-enter the entire command (page
20). (You can disable this feature later by using the
"Y-~CHANGE/MODIFY" option above).

ENTER A CHARACTER TO BE USED FOR INDICATING MACROS

OR A RETURN FOR DEFAULT CHARACTER CIF AMPERSAND (&)
ralum =

TYPE A RETURN IF THE ERROR CORRECTION.DIALOGUE IS

TO BE USED OR ANY OTHER KEY IF NO DIALOGUE IS WANTED
<.rslum >

TYPE Y TO SAVE, ANY OTHER CHAR TO ABORT INSTALL
¥

SAVING INSTALLATION PARAMETERS

dBASE II...9

At the end of the installation procedure, you can .
complete the installation by typing "Y®, or you can abort
the installation and return the terminal to whatever
condition it was in before you started the procedure.

If your terminal is not listed and you typed “Z%,
dBASE II ‘lists the terminal commands that you will require
to complete the installation procedure for your terminal.
"You may also want to use this customization procedure to
change the normal defaults that have been selected for your
sterminal (reverse video with certain commands, for example).

USER SUPPLIED SPECS ROUTINE

FOR THIS METHOD, YOU WILL NEED THE HEX
OR DECIMAL CODES THAT CAN BE SENT FROM
YOUR COMPUTER TO THE VIDEO TERMINAL TO
CONTROLIT

THE CODES OR SEQUENCES THAT YOU WILL
MNEED ARE:

DELETE A CHAR SEQUENCE
DIRECT CURSOR POSITIONING SEQUENCE
CLEAR SCREEN COMMAND
HOME CURSOR COMMAND

(CLEAR AND HOME CAN BE COMBINED)
OPTIONAL: BRIGHT/D!M COMMANDS OR

TYPE 'Y IFYOU WISH TO CONTINUE
v #

" If you know your terminal codes for the above
procedures, type “Y to continue. dBASE II then prompts
you through the entry of the codes. The example shown below
is for an IBM 3101/12 terminal. This terminal does not
allow highlighting or reverse video, so <{enter> was typed
for these questions. 2

dBASE II shows the previous value$ of ‘the control
bytes, so we have indicated the new values we typed in
between two """ symbols. DO NOT TYPE THESE SYMBOLS.

WILL YOU BE ENTERING COMMANDS AS HEX OR
DECIMAL? TYPE D FOR DECIMAL OR

H FOR HFI#DEEIMAL

h

COMMANDS ARE ENTERED AS A SEQUENCE OF
NUMBERS TYPE A CARRIAGE RETURN TO END
A SEQUENCE

NOW ENTER THE CODES FOR CHARACTER
DELETION THIS IS THE SEQUENCE BACKSPACE,
SPACE, BACKSPACE ON MOST TERMINALS IF
THIS IS TRUE FOR YOUR TERAMINAL. THEN

TYFPE Y

—~DIRECT CURSOR POSITIONING —

THE CURSOR CONTROL SEQUENCE IS
USUALLY A3TO 4 BYTE SEQUENCE. THE
FIRST ONE OR TWO BYTES ARE USUALLY
FIXED AND THE REMAINING BYTES CONTAIN
THE LINE AND COLUMN NUMBERS

FIRST. ENTER THE POSITION IN THE
SEQUENCE THAT HOLDS THE COLUMN
NUMBER

‘4

NEXT, ENTER THE POSITION IN THE
SEﬂyEHCE THAT HOLDS THE LINE NUMBER
“3°

MANY TERMINALS ADD A CONSTANT TO THE
LINE AND COLUMN NUMBERS. ENTER THE
CONSTANT BIAS FOR YOUR TERMINAL

20

NOW ENTER THE SKELETON FOR THE DIRECT
CURSOR COMMAND. ENTER A ZERO IN

THE PLACES WHERE COLUMN AND LINE
NUMBERS GO

(11 BYTE MAX)

ENTER CONTROL CODE BYTE 1: 03 1B
ENTER CONTROL-CODEBYTE 2: 00 59
ENTER CONTROLCODEBYTE3:00 0O
ENTER CONTROL CODE BYTE4: 00 0
ENTER TONTROL CODE BYTE 5: 00 < retum >

IS THIS CORRECT (Y/N)7 y

—DIM/BRIGHT VIDEO/REVERSE VIDEO -

ENTER THE COMMAND THAT WILL SWITCH TO
HIGH INTENSITY OR NORMAL VIDEO
(5 BYTE MAX)

ENTER CONTROL CODE BYTE 1: 1D <ratlum >

IS THIS CORRECT (Y/N)? ¥

—CLEAR AND HOME COMMANDI(S]—

ENTER THE COMMANDI(S) THAT WILL CLEAR
THE SCREEN AND PLACE THE CURSOR IN
THE UPPER LEFT CORNER OF THE TERMINAL
(11 BYTE MAKX)

ENTER CONTROL CODE BYTE1: 0C 1B
ENTER CONTROL CODE BYTE 2: 00 "4C~
ENTER CONTROL CODE BYTE 3: 00 < etum =

IS THIS CORRECT (Y/N)7 y

ENTER THE COMMANDS TO BE ISSUED WHEN
ENTERING THE FULL-SCREEN EDITING MODE
(IF ANY)

{11 BYTE MAX)

BNTER CONTROL CODE BYTE 1: 00 <relurn >

IS THIS CORRECT (Y/N)?7 ¢

dBASE II...10

ENTER THE COMMAND THAT WILL SWITCHTO
STANDARD INTENSITY OR NORMAL VIDED

TO RESET THE SCREEN AFTER FULL SCREEN
OPERATIONS

(5 BYTE MAX)

ENTER CONTROL CODE BYTE 1. 1D - return

IS THIS CORRECT (Y/N)?7y

ENTER THECOMMANDS TO BEISSUED WHEN
LEAVING THE FULL-SCREEN EDITING MODE

SUGGESTION: USE DIRECT CURSOR POSI-
TIONING TO PUT CURSOR ON THE BOTTOM
LINE OF THE SCREEN

{11 BYTE MAX)

ENTER CONTROL CODE BYTE1: 1D "1B
ENTER CONTROL CODE BYTE 2: 17 '§9°
ENTER CONTROL CODE BYTE 3: 03 “31°
ENTER CONTROL CODE BYTE 4: 00 '20°
ENTER CONTROL CODE BYTE 5 2E < retum =

IS THIS CORRECT (Y/N)? y

ENTER A CHARACTER TO BE USED FOR INDICATING
MACROS OR A RETURN FOR DEFAULT CHARACTER OF
AMPERSAND (&) < return =

TYPE A RETURN IF THE ERROR CORRECTION DIALOGUE IS

TO BE USED OR ANY OTHER KEY IF NO DIALOGUE IS
WANTED: < retum

TYPE Y TO SAVE, AND OTHER CHAR TO ABORT INSTALL

¥
SAVING INSTALLATION PARAMETERS

MODIFY EXISTING SPECS ROUTINE

FOR THIS METHOD, YOU WILL NEED THE HEX OR DECIMAL
CODES THAT CAN BE SENT FROM YOUR COMPUTER TO THE

VIDEQO TERMINAL TO CONTROLIT

TYPE Y IFYOUWISHTO CONTINUE
4

WILL YOU BE ENTERING COMMANDS AS HEX OR DECIMAL ™

TYPE 'D FOR DECIMAL OR'H FOR HEXADECIMAL
n

COMMANDS ARE ENTERED AS A SEQUENCE OF NUMBERS

TYPE ACARRIAGE AETURN TO END A 3EQUENCE

1 - DEI STE A CHAR SEQUENCE

2 - DIRECT CURSOR POSITIONING SEQUENCE
3-CLEAR AND HOME SCREEN COMMAND

4 - BRIGHT/STD VIDEO COMMANCS

5 - DIM/REVERSE VIDEO COMMANDS

6 - INITIALIZATION SEQUENCE |

7 -EXIT SEQUENCE

8 -RESET TO STANDARD VIDEQO MODE

SELECTITEM TOCHANGE ,
ANY CHAR OTHER THAN 1-8 TERMINATES |,ESSION

dBASE II...11

~ To modify an installed dBASE II system, type "INSTALL",
then “Y" or “N” in response to the full-screen editing
guery, then select the “Y" option from the terminal
"1isting. dBASE II responds with the following sequence of
‘commands. In this example, we wanted to change the "EXIT"

secuence to position the cursor on the 23rd line rather thdn.

the 17th line when leaving the full screen editing mode.
(You'll find out about this as we go through dBASE
instructions later in this manual.)

Notice that the numbers are entered in hexadecimal and
the lines are numbered from 0 to 23, columns from 0 to T79..

ENTER COMMANDS TO BE ISSUED WHEN LEAVING THE FULL-
SCREEN EDITING MODE :

SUGGESTION: USE DIRECT CURSOR POSITIONING TO PUT
CURSOR ON THE BOTTOM LINE OF THE SCREEN

(1*BYTE MAX]

CURBENT SEQUENCE

18

59

31

20

IS THIS CORRECT (¥Y/NI?n

ENTER CONTROL CODE BYTE 1: 1B. 1B~
ENTER CONTROL CODE BYTE 2: 59 59
ENTER CONTROL CODE BYTE 3: 31 36
ENTER CONTROL CODE BYTE 4; 20 20
ENTER CONTROL CODE BYTE 5: DD < retum =

IS THIS CORRECT (Y/N)? y
- DELETE A CHAR SEQUENCE
- DIRECT CURSOR POSITIONING SEQUENCE
CLEAR AND.HOME SCREEN COMMAND
- BRIGHT/STD VIDEDQ COMMANDS

INITIALIZATION SEQUENCE
EXIT SEQUENCE

1

2

3

4

5-DIM/REVERSE VIDEO COMMANDS
6

[.
B- RESET TO STANDARD VIDEQO MODE

SELECT ITEM TO CHANGE
ANY CHAR OTHER THAN 1-8 TERMINATES SESSION

raturn -

ENTEHR A CHARACTER TO BE USED.FOR INDICATING Mn’CHOS
OR A HETURN FOR DEFAULT CHARACTER OF AMPERSAMND (&)
= ralurm >

TYPE A RETURN IF THE ERAROR CORRECTION DIALOGUE IS
TO BE USED OR ANY OTHER KEY IF NO DIALOGUE IS WANTED
returm -

TYPE Y TO SAVE ANY OTHER CHAR TO ABORT INSTALL
v L]

SAVING INSTALLATION PARAMETERS

dBASE II...12

dBASE II is now installed, and you can begin using it
immediately. _)

Bring up dBASE II by typing "dBASE".. .

A prompt line asks for the date. If you enter a date,
this will be recorded in your files '‘as the last access every
time you add to or delete from the file, and can be useful
for keeping track of updates.- If you want to ignore it,
just hit <enter>. |

dBASE II loads into memory, displays a sign-on message
and shows the prompt dot (.) to indicate that it is ready
to accept commands.

To show you how powerful and easy to use dBASE II
actually is, the first thing we'll do is create a database
and enter data into it. _

It will only take a few minutes.

dBASE II..

Section I: 13

How to CREATE a databa@B8€ecsscscscascissessensansnse 14
CREATE :

Entering data into your new databas€....essessceces 16
Modifying data in a database......cecieerencnccccoas - 18
EDIT ' 7
Full Screen Editing FeaturesS.....ccceeccccceccssces 19
An introduction to dBASE II to commands and the

error Cnr‘r‘eﬂti{}ﬂ dialagiillilllll'lt:lllllllil'll!il-l'!l 20

USE, DISPLAY, LIST | |
Expanding ‘commands with expressions..ceseeveeescess 21

L1ST ;
Looking at your data records....iscessesscasscsssss 23
DISPLAY '

Positioning yourself in the database...ceeeessiveqss- 20
GO, GOTO, SKIP

The interactive 7 command..sissccsssnssssd sesesces 2D
Adding more records to a database€.....vevecicennans 26
APPEND, INSERT _
Cleaning up a databasS€....ccuuse SR SR L ey e | OB
DELETE, RECALL, PACK _ : ;
Section I SUMMALY i eeas issesessrsids desnssdsavesns 29

In this section, we create a database and enter .data.
We also introduce you to some dBASE II commands that will be
developed and added to throughout the rest of this manual.
" For a complete definition of a command, check Part II.

dBASE II...14

%

How to CREATE a database

We'll start b? creating a database of names for a
mailing list system. Each record in the database will
. contain the following informatioh:

NAME: up to 20 characters long
ADDRESS: up. to 25 characters long
CITY: up to 20 characters long
STATE: 2 characters long

ZIP CODE: 5 characters

First, type “CREATE".

dBASE II responds with: ENTER FILENAME:.

Enter a filename starting with a letter and up tc 8
characters long (limited by CP/M), no colons, no spaces.
Since this is a file of names, let's call it something that
makes sense to a human being: type “Names”.

When you hit return, dBASE II creates a file called
{NAMES.DBF>. The part of the name after the period is the
CP/M file name extension, and is short for database file
(Section V, File Types). :

In a database management system, each one of the items
that we want to enter into a single related grouping is
called a field and the grouping is called a record (Section
V, Database Basics). In our example, each record will have

'5 fields. dBASE needs to know the name of each field, what
type of data it will contain, how long it is and how many
decimal places if the data is numeric.

o Craadlo
ENTER FILENAME names
ENTER RECORD STRUCTURE

AS FOLLOWS
FIELD NAME TYPEWIDTH DECIMAL
001 FPLACES

, Field names can be up to 10 characters long, and may be
entered in upper and/or lowercase. The name must start with
a letter and cannot contain spaces, but can contain digits
and embedded colons. Don't abbreviate any more*than you
have to: the computer will understand what you mean, but
people might not.

The type of data is cspecified by a single letter:
C for Character, N for Numeric and L for Logical. In this
"case, all fields contain character data.

Field width can be any length up to 254 characters. 1If
the field is numeric and decimal places are specified,

remember that the decimal point alsc takes orie character
paaitian.l

dBASE II...15

We lnow what names we want to give our fields, the.type
of data that they will-contain, and their 1engtha SO Type
the information in now. Here's whag the screen looks like:

when you're finished:

« craale

EMTER FILENAME: names

ENTER RECORDSTRUCTURE
AS FOLLOWS
NAME TYPEWIDTH DECIMAL
FIELD PLACES
o0 namec.20
002 addressc25
003 . cilyc.20
004 slalac?
005 Zip codeac.5
BAD NAME FIELD
=7 005 zipcodec.s
0086 < returm

Nntlca what happanad at field 5: we made an error by
entering a space in the field name, so dBASE II told Us what
the error was and gave us a chance to correct it. .

Notice “also that the data type for the ZIP code was |
specified as "character”, even though we normally think of
cne digits here as numbers.

ThlB ‘was done hecause a dBASE II command such as

“TOTAL"” can total all the numeric fields in a record
(without you specifically listing them all). Doing so with
the ZIP code field would simply be a waste of fime. We can
still use the relational operators ("greater than", "less
than", %equal or not equal to") with the character data, so
this Wlll not. iﬁterfara with any ZIP code sorting we may
want to do later.

Whenn dBASE II asked us for the apac1fiaataana for a
sixth field, we hit <enter> to end the data definition.
dBASE II saved the data structure, than asked if we wanted
to.enter data in it.

The <Names.DBF> database-is immediately ready for data
entry, so type “y". On the next page we tell you how to
enter the data.

Entering data into your new database .

.If you do not have full screen editing on your
terminal, the record number and the field names will appear
one at a time below whatever has been typed on the screen up
until now. The length of each field ‘is shown by two colons,
with the cursor positioned for you to start writing. When
you fill the field or press <enter>, the next field will
appear. After the last field in a record has been filled
(or ignored), you start on a new record. v

To stop entering data, hit <enter> when the cursor is
-at the first character position of the first field in a new

1record.

screen will be erased, then the record number and all the
fields will be displayed starting in the upper left-hand
corner of the screen, with the cursor at the first character
position of the first field.

(If you chose one of the standard terminals on the
installation list, the field names may be in reverse video

or at half-intensity. If you want to change this later, you'

can disable it by using the "Y - CHANGE/MODIFY" option in
the installation procedure). :

RECORD 00001

NAME
ADDRESS
CiTY
STATE
ZIP:CODE

NOTE:: If this doesn't look 1like your screen, there is a
problem with INSTALL. Please re-do the installation.

Field lengths are inditated by two colons. When a
field is filled or you hit <enter>, the cursor Jumps down to
the next field. The cursor can be moved back up to a
previous field- by holding the control key.down and pressing
the letter E once: “control-E", abbreviated as “et1-E”. '
When you are finished with the last field, dBASE II presents
another empty record.

-~ Enter/the following names and addresses. We'll be

using them soon to show you some of the powerful features of ..

dBASE II.
ALAZAR, PAT 123 Crater Rd., Everett, WA 98206
BROWN, JOHN 456 Minnow Pl., Burlington, MA 01730

CLINKER, DUANE 789 Charles Dr., Los Angeles, CA 90036
DESTRY, RALPH 234 Mahogany St., Deerfield, FL 33441
EMBRY, ALBERT 345 Sage Ave., Palo Alto, CA 94303
FORMAN, ED 456 Boston St., Dallas, TX 75220
GREEN, TERRY 567 Doheny Dr., Hollywood, CA 50046
HOWSER, PETER 678 Dusty Rd., Chicago, IL ° 60631

If you installed dBASE II with full screen editing, the

| dBASE II...17
If you make any mistakes that can't be corrected by
backaﬁﬁﬁing and writing over them, read the next two pages

on editing before moving on to the next record. If you
accidentally get back to the dBASE dot prompt, type:

“USE Names™
“APPEND". -

and continue with your entries. (This will be explained

' 1ater in the manual).

- To stop entering data, after you've entered the last
7IP code and while you are on the first character of the

 fipst field of the next record, hit <enter>. If you have

typed in, some data or moved the‘curgnr, huidftha control key

down and press the letter "Q: ("control-Q7). :
dBASE leaves the data entry mode and presents its dot

prompt (.) to show you that it"s ready for‘yourlfommands.h
If you want to stop now, simply type "QUIT ..

“QUIT" must be typed every time you terminate a dBASE
II session. This automatically closes all fi}ua
properly. 0Unless you de so, you may destroy ?opr

database.

dBASE II...18

Modifying data with EDIT

If you made. any errors in the entries, you can correct
them quickly and easily in the Full Sereen Edit mode. Type:

“USE Nameg”
"EDIT <number>”

where "number™ 15 the number of one of bhe records in the
database.

dBASE Dbrings up the entire record and you can use the
Full Screen Editing commands to modify any or all of the
data in the record. To move to the next record, use

“etl-C". To move to the previous record. use “etl-R". To

try it, type “EDIT 3°".

RECORD 00003 DELETED

NAME = CLINKER.DUANE
ADDRESS 789 Charles Dr

CIY Los Angeles
STATE' . .. CA
ZIP-CODE 90036

. If you mark a record for deletion by using “etl-U",
"DELETED" appears at the top of the screen. Pressing .
“etl-0" again removes the word and "un-deletes" the record.
If you “LIST" (pp.20 and 21) or “DISPLAY" (pp. 20 and 23)
your database, you will see an asterisk next to.all recnrds
marked for deletion.
To abort full-screen editing, use “etl1-Q". This does
not make the changes that were on the screen Hhen you
| exited.
* 7O gxit gracefully and save the changes made so far,
use “etl-W" (“ctl-0"--the Tetter "0"--with Superbrain).

dBASE II...19

FULL SCREEN EDITING FEITURES.

-

etl—I moves cursor down to the next field (or ctl-F)-

ct1-E moves cursor back to the previous field (or ctl-A).

ct1-D moves cursor ahead one character.

ctl-S moves cursor back one character.

cetl1-V toggles between overwrite and insert-modes.

ct1-G deletes the character under the cursor.

{Rubout> deletes the character to the left of.the cursor.

et1-P toggles your printer ON and OFF.

ct1-Q quits and returns to normal dBASE II OpPPatlﬁn without making
changes, even in the MODIFY mode.

“MODIFY” functions:
ctl-T deletes the field where the cursor is and moves all the lower

fields up.
ctl=Y clears the current field to blanks, but 1eaves all fields where

they were.
ctl-N moves fields down one position to make room for insertion of a

new field at the cursor position.

“APPEND” functions:
¢tl-R writes the record to disk and moves to the next record.

' <Enter> when cursor is at the initial position of a new record

resumes normal dBASE II operation.
ctl-Q erases the record and resumes normal dBASE II operation

“EDIT" functions: (Do not use in "APPEND" mode)

ctl-C writes the record to disk and advances to the next record.

etl-R writes the record to disk and backs up to the previous record.

ctl-0 toggles the record deletion mark on and off.

ctl-W saves anv changes made and resumes normal JdBASE II operation.
With Superbrain, use “ctl-0" (the letter "0O").

ctl-Q aberts any changes in the record you're working on and prints
the coordinate prompt. Hit <enter> tc resume normal dBASE II
operation.

PREVIOUS RECORD

EXT--SAVE . DELETE FIELD
EXIT--NO SAVE “ l DELETE DATA

=0 'f U— DELETE RECORD

Q- i
e ‘ ’5 '5 ’ ‘G’— DELETE CHARACTER

hl HWSEHH'FIHJJ

' ' INSERT/OVERWRITE
NEXT RECORD

dBASE II...20

An introduction to dBASE II commands and the error
correction dialog (USE, LIST, DISPLAY)

dBASE II commands are generally verbs. You type them
in when you see the dBASE II dot (.) prompt.

When you want to tell dBASE II which database file you
want to work with, you type “USE <filename>"".

To look at the record you are on, type “DISPLAY".

To see all the records in the database, type "LIST".
(To stop and start the scrolling, use “eontrol-s".)

dBASE II commands ‘can be abbreviated to four letters
bEt if you use more letters they must all be correct '
("DISPLAY", "DISP" and “DISPLA" are valid commands ;
DISPRAY is not.)

If you chose the error correction dialog when you
installed dBASE II, the command line is scanned and you are
prompted with .error messages when mistakes are detected.

You get a second chance to make corrections without having
to retype the entire line.
Type "EDUT 3°.

Edut 3

"TUNKNOWN COMMAND
Edut 3

CORRECT AND RETRY (Y/N)? ¥

CHANGE FROM :u

CHANGE TO H

Edit 3

MORE CORRECTIONS (Y/N)? n

" _ddB:SE II repeats a command it does not know. If you
ecide to change it, you do not have to ret i
SoRmARYE. | ype the entire
In response to "CHANGE FROM:" t of ti
: : ype in enough of the
wrong part of the command so that it i
hit <enter>. W il gupngy sten

In response to "CHANGE TO:" type :
. : ype in the
for the material you wunt changed. ! sy
In this example, we changed only a sin -
: gle letter, but
you'll find this feature useful when you are testing ;nd
debugging long command lines.

Tip: The "ERASE" command erases the screen and positions.
the prompt dot at the upper left-hand corner of the

a:r:en S0 that you can start new commands with a. clean
3late, s

dBASE II...21

Expanding commands with expressions and relational

operators (LIST)

One of the mus; powerful features of dBASE II is the
ability to axpgnd and "tailor" the commands.

You can ddd "phrases" and expressions to most commands
to further défine what the commands will do. Commands can
be entered ip upper and 1uwercase letters, and command lines

. can be up to 254 characters long. To extend the line beyond
‘the width of your display, type in a semicolon (;) as. the

1ast character on the line (no space after it). dBASE II

will use the next line as part of the command.
'Since dBASE II is a relational DBMS,.you'll find the

relational operators useful:

: less than

: greater than

+ equal to ,

: less than or equal to

: greater than or equal to

VAILVA

- These commands mean exactly what the explanation on the
right says. They generate a logical value as a result (True
or False). If the expression is True, the command is
performed.. If the expression is false, the command is not
performed. .

Earlier, we mentioned that the LIST command will show
all the records in the -database (to stop and start the
scrolling, use “ctl-S"). The full form of the command is:

~LIST [OFF] [FOR <expression>]®

If the optional OFF is used, the record numbers will
not be displayed. :
' If the optional FOR clause is used, dBASE II will list
only the records for which the expression is true. Type the
following, using single 'quotés around the character data
(more on data types in Section II):

“USE Names”

“LIST"

“LIST OFF"

“LIST FOR Zip:Code = '9*'"
“LIST OFF FOR Zip:Code < *8'"
“"LIST FOR Name='"GREEN'"

. Notice that when you enter ‘only part of the contents of
the field, that is ‘all that is compared by dBASE. We did
not need Mr. Green's full name, for example, although we
might have used it if cur databo:e contained several
G!-’EN's. '

* USE names
s it

dBASE II...22

dBASE II...23

Looking at data with DISPLAY

The “DISPLAY" command is similar to “LIST". 1Its rgll

00001 ALAZAR, PAT 123 Crater Rd Everall WAS9BZ206

00002 -BROWN,JOHN 456 Minnow PI Burlington MAD1730 form is:

00003 CLINKER, DUANE 789 Charles Dr Los Angeles CAS0036 :

00004 DESTRY. RALPH 234 Mahogany Si Deerfield FL33441 (A1l]]
00005 EMBRY. ALBERT 345 Sage Avenue Palo Allo CA94303 : >
007 G Ry o gl o8 Bation St L S Dalls TX75220 pISPLAY [Record n] [OFF][FOR <expression
00007 GREEN. TERRY 567 Doheny Dr Hollywood CA90046 [Next n. 1 .

00008 HOWSER. PETER 678 Dusty Rd Chicago ILE0E31 : : ' " g

= ist off
ALAZAR, PAT
BROWN, JOHN
CLINKER, DUANE
DESTRY, RALPH "
EMBRY, ALBERT
FORMAN. ED

GREEN. TERRY
HOWSER, PETER

= list for zip:coda =9
00001 ALAZAR. PAT
00003 CLINKER. DUANE
00005 EMBRY ALBERT
00007 GREEN. TERRAY

s list for zip:code . 8
00002 BROWN.JOHN
00004 DESTRY, RALPH
00006 FORMAN. ED
0000B HOWSER, PETER

list lor name = GREEN"
00007 GREENM,TERRY

123 Crater Rd

1 456 Minnow PI

789 Charles Dr

234 Mahogany St. -

J45 Sage Avenue
456 Boston 51
567 Doheny Dr
678 Dusiy Rd

123 Crater Rd.
789 Charles Dr
345 Sage Avenue
567 Doheny Dr

456 Minnow P
234 Mahogsany St
456 Boston St
678 Dusty Rd. .

Eversil
Burlington
Los Angeles
Dearfiald
Palo Allo
Dallas

. Hollywood

Chicago

Everatt

Los Angeles
Palo Allo
Hollywood

Buriington
Dearfield
Dallas
Chicago

Hollywood

WA9B206
MAD1730
CA90036
FL33441
CA94303
TX75220
CA90046
L6031

WASB206
CAS0036
CA94303
CAS0DAE

MAD1730
FL33441
TX75220
ILE0B3

CAS0046

This gives you the option of specifying the scope for
= i STH)- i
: ~pISPLAY" command (also "LI .
e g::zifying-ﬁnecurd n* displays onl?ith?tdisgo;:;
t "n" records, 4nclu

t n" displays the nex 4 T e
.He:ent record. ~DISPLAY ALL"™ is the same as iLI::e ’
uigept that “LIST" will scroll all the records in
e .

database up the screen,

database in groups of 15
. displays the next 15 records).

while “DISPLAY ALL" shows you the
records at a time (pressing any Key
Type the following:

“DISPLAY All” &
“DISPLAY Recurd;3
“DISPLAY Next i

« fisplay all »
: [HJ:H'JL:“ ALATAR, PAT 123 Crater I-!-IZI‘
OO0K? BROWN JUOHN A56 Minnow Pl
00001 CLINKER DUANE 789 Charles Dr e ohas
00004 ‘DESTRY RALPH = 234 Mahogany Sl n_ 4®
EMBRY ALBERT . 345 Sage Avenue Falo Allo

-Everealt Wa9a206
Burlington MAG1730
Los Angeles CA90036

FL33441

CAS4303

g?ll_:::; FORMAN. ED 456 Boslon 51 D{!:dluﬂd ligzii%
. In addition to precisely selecting data from your : 00007 GHEEN reamﬂ 2?;3::_:1;;} E;*..:Zm_. Candps
database, the LIST command can be used to provide you with R NSEh PETE
system information. display record 3 e

CLINKER. DUANE 789 Charles Dr

“LIST STRUCTURE” shows you the structure of the e
database in USE. ;

"LIST FILES" shows the names of the database .(.DBF)
files on.the logged-in drive. “LIST FILES ON <drive>”
shows the database files on another drive (do NOT use the
usual CP/M colon).

« display next 4 it |
00003 CLINKER,DUANE 789 Crisrles Dr : Angeies CASDO
00004 DESTRY RALPH 234 Mahogany Si. Deerlie e
oD005 EMBRY ALBERT 345 Sage Avenue Ffilalrj. Alto CAgaa0e
00006 FORMAN_ED . 456 Boston St Galias

Los Angoles CA90036

As with “LIST", the optional FOR clause can be used to

i ogical expressions.
By ike the LIST

= USanames
= list structure
STRUCTURE FOR FILE MAMES DBF
NUMBER OF RECORDS: 00010
DATE OF LAST UPDATE 00/00/D0
FRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
D01 NAME C 020 -
002 ADDRESS 025
002 Ty i DISPLAY FILES = LIST FILES.

C
c
C

select specific data by
.The DISPLAY command can also be used 1

command for system functions:

DISPLAY STRUCTURE =. LIST STRUCTURE.

o

. - ~ ~ » ow you specific types
005 ZIP.CODE 005 - Both “LIST" and "DISPLAY can Ehd cyardsﬂ' “DISPLAY

““TOTAL®* 00073 . rwil
of files on a drive using the CP/M would display all

®_COM ON B®, for example, WOl
:!];:E"S'C%Il-;gfiles on drivef B. If uncertain, check ynur_CP!M

manual, then use this form:

» list files

DATABASE FILES ®RCDS LAST UPDATE
MAMES DBF 00010 00/00/00
MIND DBF 00007 00/00/00
KEYFILE DBF 00211 00/00/00
CHECKS DBF 00783 0/00/00
TEMP DBF 00010 00 00700

“pISPLAY FILES LIKE <wild card>
MONEYOUT DBF 00000 00/00/00 .

ORDERS DEF 00000 00/00/00

dBASE II...24

Positioning commands (GO or GOTO and SKIPi-

Once you have ynﬁr database set up, you can also move
from record to record quickly and easily with dBASE TI.
Type the following:

“USE Names”
“Go TOP"
"DISPLAY”
“GO BOTTOM"

:DISPLAI“
GOTO 5°
“DISPLAY"
BA
DISPLAI _ = usenames

* go l0p

« display
00001 ALAZAR. PAT 123 Crater Rd Evarall WASB206

* Qo bolloam
= display : :
0000B. HOWSER,PETER &78 Dusty Rd. ' ILE0631

s Qo0 5
= display
00005 EMBRY,ALBERT 345 Sage Avenue Palo Allo CA94303

.8
= display
0000B HOWSER, PETER . 678 Dusty Rd Chicago ILE0OGE3

“GO0 TOP" (or "GOTO- TOP") moves you to the first
record in the database. "GO BOTTOM" moves you to the last
record. - You can go to a specific record by using “GOoTO"
<number> - (or GO <number>). - And you ¥an even eliminate the.
GO and juat specify the record number.

“SKIP" moves you to the next record. °“SKIP + n”

. moves you forward or backward "n" records. You can also use
~"SKIP i<variable/expression>, with the number of records’
skipped determined by the value of the variable or

- expression {(both defined later). Type the following:

*DISPLAY"
“SKIP-3"
“DISPLAY"
“SKIP”
“DISPLAY"

s chisplay ©
00008 HOWSER.PETER G678 Du,w Ad . Chicago = IL60631

s shp-3
RECORD: Q0005

«display

00005 EMBRY ALBERT 346 Sage Avenue Palo Allor CA94303

- ﬁ‘k]p
RECORD: 00006

= display y
00006 FORMAN, ED 458 Boston St . Dallas TX75220

dBASE II...25

- *2 Kame”

The interactive ? command - =

The “?" command allows you to use dBASE II in the

.calculatur mode. Simply type in the question mark and a

space followed by the quantity or mathematical function you
want evaluated and dBASE II will provide the answer on the
next line. Using ?? puts the answer on the same line.

Type the following:

~? 73/3.0000"
~2 73.00/3"

2 13/37 « 2 73/3.0000
' 243333

= 773.00/3

1 24.33
«773/3
24

The “7?" command shows the answers to a mathematical
operation to.the same number of decimal places as the

" maximum in the numbers entered.

You can also think of “?" as meaning: "What is ...",
with the dots replaced by an expression, a variable (a field
name or a memory variable), a dBASE II function or a list of

these aeparated by commas. Type the following:

“USE Nanes
o

~? Zip: Cude
*? Name™
“SK1ip”

- P
GO BOTTOM B . onemes
el L] . = E .
? CL t-]" » 7 zip:code
— 715220
s 7 name
FORMAN, ED
¢ Tsiate
TX

* skip 3
RECORD: 00007

« 7 NnEMA

GREEN, TERRY

» go botlom

= 7Teily

New York

In. the section on functions and commands, we'll show
you how the “?” can be used to access other dBASE II. !
functions, and to display CRT prompts to the operator from a
command file. :

dBASE II...26

Adding moré data with the APPEND and INSERT commands

You can add data to any database quickly and easily
with a one-word command. First choose the database file
‘into which you want to enter data by typing “USE
<filename>”, then typing in the command “APPEND":

“USE Names”
“APPEND"

* Use Nnamas
* append

RECORD »:00003

NAME
ADDRESS
CIiTY
STATE
ZIP:CODE

dBASE II responds by displaying the record number that
follows the last record in the file and the fields for that
database. If you fill in the record, it is added onto the
end of the file (appended).

The display includes the names of the fields, with
colons showing field lengths. The cursor is at the first
position where you can start to enter data. If you fill up
the entire field with data, the cursor automatically moves
down to the next field. 1If not, hit <enter>.

If there is no data to be entered in a field, use
{enter> to move the cursor to the next field. Character
fields will automatically be filled with blanks, numeric
fields- will show a zero. When entering numeric data, if
there are no digits after the decimal, there is no need to
type the decimal. dBASE II automatically puts in the
decimal point-and the necessary number of following zeros.

Records can be inaerted into a specific 1ucatinn in a

database (to keep them alphabetical, for. example) by typing:.

“INSERT [BEFORE] [BLnll]“

Using the word "INSERT" alone inserts the record just
after-the current record. -Specifying BEFORE will insert
the record just before the ¢urrent record. In either case,
- you are prompted the same way as with the "APPEND” and
“CREATE" commands. If BLANK is specified, an empty record
is inserted and there ‘are no prompts.

dBASE II...27

Add the following names alphabetically to the
{Names.DBF> database:

EDMUNDS, JIM 392 Vicarious Way, Atlanta, GA 30328
INDERS, PER 321 Sawtelle Blvd., Tucson, AZ 85702
JENKINS, TED 210 Park Avenue, New York, NY 10016
The sequence of commands is:

“USE Names”

ﬁ5ﬁ
“INSERT BEFORE” (enter the data for the first name)
“APPEND” (enter the data for the last names)

In the “INSERT” mode, when you fill the last field,
dBASE II will return to the command mode (dot prompt).

To exit the “APPEND” mode, position the cursor at the
start of a new field, then hit <enter> or “control-Q~".

In either mode, you can exit from inside a record by
using “etl-W" ("ctl-0" with Superbrain). This will save:
what has been entered up to that point and return you to the

command mode.

dBASE II...28

“Cleaning up a database (DELETE, RECALL, PACK)

Deletions can be made .directly from dBASE II as well as

in the “EDIT" mode. _
To delete the current record, type “DELETE”.

To delete more than one record, use the form “DELETE

¢{scope>”, where the scope is the same as for other dBASE II

~commands: All, Record n, or Next n,
To make the deletions conditional, expand the command

to:
“DELETE [acuﬁu] [FOR <expression>]”

where "expression" is a condition or set of conditions that
must be met. (This is developed in more detail in Sectinn
II).

Type “DELETE FILE <drive>:<{filename>” to deletb a
file. But onece you've done this, the data 1s_gune foreven,
so be careful. :

Unlike files, records marked for deletion can bé
recovered. Rather than erasing the data, “DELETE” mgrks
each record with an asterisk. You will see the asterisks
when you “LIST" or “DISPLAY" the records. dBASE II: then
ignores these records, and does not use them in any

processing.
To restore the records, use the following jcommand:

“RECALL [scopel] [FOR <axpreasiun>]“

This operates the same way “DELETE" does, with the
scope and condition being optionai. If a conditional
expression is used, it does not have to be the same as was
used to mark the records for deletion.

At some point, however, you will want to clean up your
files to clarify displays or to make more room for storage.
To do this, type:

“PACK".

This erases all records marked for deletion, and tells
you how many records are in the database.

Note: once you use this command, the records are'lost
forever.

dBASE II...29

To see how these commands work, type the following:

“USE Names”
*L1ist"

“DELETE RECORD 2°
‘DELETE RECORD 4°
“List"”
“RECALL - RECORD 4~
"LIST"

“PACK”

“LIST

The screen below shows the first few records in our

{Names.DBF> as we perform these commands.

= lisk

D0O001 ALAZAR, PAT 123 Crater Rd, Evereti
00002 BROWN,JOHN 458 Minnow PI. Burlington

WASB8206
MAD1 730

00003 CLINKER, DUANE 789 Charies Dr. Loz Angeles CABO0038

00004 DESTRY, RALPH . 234 Mahogany St. Deerlield
. DDOOOS EDMUNDS.JIM - 382 Vicarious Way Atlanta

= dadels record 2
00001 DELETION(S)
» delele record 4
000071 DELETION(S)
» list

00001 ALAZAR, PAT 123 Cater Rd. Eversil
00002 "BROWN. JOHN 458 Minnow PI. Buriington

FL33441
GA30328

WASS208
MAO1730

00003 CLINKER, DUANE 789 Charies Dr. Los Angelss CAB0038
FL33441

GA30328

00004 *DESTRY, RALPH 234 Mahogany Bl. Deerfisld

, D0005 EDMUNDS,JIM 392 Vicarious Way Atlanta

& tocall record 4
00001 RECALLIS)
e list

00001 ALAZAR, PAT 123 Cmater Rd. Everst
00002 "BROWN,JOHN 458 Minnow Pi. Burington

WASB208
MAO1730

00003 CLINKER, DUANE 789 Charies Dr. Los Angoles CAB003M&

HO004 DESTAY, RALPH 234 Mahogany 8t. Deerfield

00005 EDMUNDS,JIM 392 Vicarious Way Atlants

] l:-ck
PACK COMPLETE, 00004 RECORDS COPIED
= Jist

00001 ALAZAR, PAT 123 Crater Rd. Everstt

FL33441
GA30328

WAS8208

00002 CLINKER DUANE 789 Charles Dr.. Loz Angeles CA90038

00003 DESTRY, RALPH 234 Mahogany St. Deerfieid

00004 EDMUNDS. JIM 392 Vicarious Way Atlanta

FL33441
. GA30328

dBASE II...30

Section I Summary

At this point, you have learned about the power over
data that a relational database management system like chSE
II can give you.

You can now “CREATE" a new database and start enturing
aata in minutes.

If you want to change the data, this is easily done
with “EDIT", "DELETE", "RECALL" and "PACK". .

You can "APPEND” or “INSERT" more data as required,
and “LIST" and “DISPLAY" entire files or precisely
selected records. You can also “GOTO" and “SKIP” around
within a database quickly and easily.

Additionally, dBASE II can be used interactively as a
powérful calculator (and more) with the “?" command.

We have introduced,you to expressions and how they can
be used to expand the power of dBASE II commands. In the
next section, we will go into this in more detail and show
you how to get useful infourmation out of your databases
quickly and easily.

Before that, please “CREATE” these two files, as we
will need them for other examples.

* creale
ENTER FILENAME: MoneyOut
ENTER RECORD STRUCTURE
AS FOLLOWS
NAME. TYPEWIDTH
FIELD DECIMAL PLACES
001 Check Date C.7
002 Chock:Nmbr (.5
003 CheniC3
004 JobNumberiN. 3
D05 Nama C20
006 Descrip,C20
007 AmountN 92
008 Bill:Date.C.7
009 BilbkNmbrC.7
010 Hours N 62
011 Emp:NmbrN.3
012

s croale
ENTER FILENAME: orders
ENTER RECORD STRUCTURE
AS FOLLOWS:

NAME TYPEWIDTH.
FIELD DECIMAL PLACES
001 CustNmbe,C 9
002 ivem,C.,20
003 QiyNA4
004 PriceN.72

005 AmountN92
006 BackOrdrL 1

o7 OrdrDale C 8
008

dBASE II...31

Section II: 31

Using expressions for selection and control........ 32
Constants and variableS.ssveevsssscsssnvessrcsnnsns 33
STORE
dBASE II OperatorS.sescisesssssssssnsscscscsacnsoanes 37
Logical OpEeratorS..sssssssssssssssseesssessncasscss 38
Substring logical operator.issescscssscsnccnrasnsas 40
String OperatorS.iscsssssvsscsssessacconasssnansnas 41
Changing an empty database structure............... U2
MODIFY
Duplicating databases and structureS.cessesssccesns 43
COPY -
Adding and deleting field$

with data in the databas€..svesseesecssrscas 45
COPY, USE, MODIFY '
Dealing with CP/M and other "foreign riles“........ 47
COPY, APPEND .

Henam:i.ﬂg databaﬂe field!'l.i‘lllIlﬂlIlll‘li'l“ll!l!l !'I'g
COPY, APPEND :
Modifying data rapidly.ieescecsccanccass amianssmrmne: 30

REPLACE, CHANGE
Organizing your databaseS...csecesvscnannrronnnnnes 52
SORT, INDEX

Finding the information you want........ vesssenanes 54
FIND, LOCATE I
Cetting information out of all that data........... 56
REPORT '
Automatic counting and SUMMINE..:ecessccsssscaceses 5B
COUNT, SUM '

Summarizing data and eliminating details..........., 59

TOTAL
Section II Sumaryl-il.ll'l'.lll‘lllll!'liill-'llllllli‘ 60

In this section, we develop the use of expressions to .
modify dBASE II commands. This is may be the most -important
part of learning how. to use dBASE II effectively.

The dBASE II commands can be learned fairly easily
because they are English-like, and learning another command
is a matter of increasing your vocabulary (and your
rEpertoire} by another word.

Expressions, combined with the commands, give you the -

'fine control you need to manipulate your data to .perform

specific tasks. Once you have learned how to handle
expressions, you will only have to learn two more things
about programming to be able to write effective applications
command files. (These are how to make decisions and how to
repeat a sequence of commands, covered in Section III).

dBASE II...32

Using expressions for selection and control

We gave you a brief introduction to expressions that
can be used with dBASE II commands in Section I.

As you saw, they are a powerful way to extend the
commands and manipulate your data quickly and easily. If
you check the index of commands in Section VI, you'll see
that many dBASE II commands can be modified in the .form:

“<COMMAND> [FOR <expression>]”

This extended power gives you a flexibility that you
simply do not get with other database management systems.
We've been told by experienced programmers that they can
write a program (a dBASE II command file) for an application
in as little as one-tenth the time it would take them using
BASIC or even higher level languages such-:as COBOL, .. FOHTHAH
and PL/1.

But to take advantage of this power, you need to
understand how to work with expressions and operators, then
how to combine the modified commands into command files that
will perform the same tasks again and again. :

The next few pages will get you started. Ultimately,
axperiance ia going to be the best teacher.

Reminder: as we introduce commands .through the. text, we

' try to explain a particular aspect of the cammand that
will allow you to a few more things with your
database. This means that we do not cover the antire
command at cne time. To find out all that a command
can do, use the summary at the end of Part I and the
definitions of Part II.°

Note: 1If, after you've finished this Section, you are
still uncertain about how ‘to write expressions that
make the dBASE II commands do exactly what you want

~ done, you may want to look at some beginning
programming texts at your local library. Most of them
discuss expreasions within the first two chapters or
SO . ; :

dBASE II...33

Constants and variables (STORE)

Expressions in dBASE II are used to help select and
manipulate the data in your database (see "DISPLAY"). The
quantity that you manipulate may be either a constant or a
variable.

Constants are data items that do not change, no matter
where they appear in a database or within the computer.
They are literal values because they are exactly what they
represent. Examples are numerals such as 3 and the logical
valjues T and F.

Characters and character strings (all the -printable
characters plus spaces) can also be constants, but must be
handled a bit differently.

"Strings" are simply a collection of characters
(including spaces, digits and symbols) handled, modified,
manipulated and otherwise used as data. A "substring" is a
portion of any specifiic string.

If a character or collection of characters is to be
treated as a string constant, it must be enclosed in single
or double quotes or in square brackets so the computer
understands that it is to deal with the characters as
characters. To see what we mean, get dBASE II up on your

computer and USE <Names>. Type:

"dBASE”"
“USE Names”
“? "Name'”
"2 Name™

In response to the first "What is..." (the “?2"
command), the computer responded with NAME because that was
the valur of the constant. When you eliminated the single
quotes, the computer first checked to see if the word was a
command. It wasn't, so it then checked to see if it was the
name of a variable. '

Yariables are data items that can change. Frequently
they are the names of database fields whose contents can
changa. In this case, the computer found that our database

.had a field called. <Name> so it gave us the data that was in

that field at that time. Type the following:

“sKip 3°

"2 Mame”

= IS8 namas

« { Name
MNama

= 7 Name
ALAZAR, PAT

v Slup-3
RECORD Q0004

« 7 Nama
DESTRY. RALPH

dBASE II...34

. Now tyne "USE". Since we do not specify a file name,
the computer simply closes all files. _

If we type "7 Name™ again, the computer tells us that
we made an error. In this case, we tried to use a variable
‘that did not exist because we were no longer USing a file
with a matching field name. :

The variables can also be memory variables rather
than field names. dBASE II reserves an area of memory for
storing up to 64 variables, each with 2 maximum length of
254 characters, but with a maximum total of 1536 characters
for all the variables.

" You might want to think of this as a series of 64
pigeon-holes available for you to tuck data into temporarily
while working out a problem.
| Variable names can be any legal dBASE II identifier
(start with a letter, up to ten characters long, optional
embedded cclon and numbers, no spaces).

You can yse a memory variable for storing temporary
data or for keeping input data separate from field
variables. In one session, for example, we might "tuck"™ the
date into a pigeon-hole (variable) called <Date>. During
the session, we could get it by asking for <Date>, then
place it ‘into any date field in any database without having
to re-enter it (see GetDate.CMD in Section VI).

To get data (character, numeric-or logical) into a
memory variable, you can use the "STORE" command. The full

form is: _ -

“STORE <expression> TO <memory variable>"
Type the following:

“STORE "How's it going so far?" TO Message
“STORE 10 TO Hours” ,

"STORE 17.35 TO Pay:Rate”

“? Pay:Rate®Hours"”

“? Message”

*» STORE Hows it going so far? TO Message
How s il going so lar? '
= STORE 10 TO Hours

10
« STORE 1735 TO Pay Hatle

1735
= 7 Pay Rale*Hours

173.50

= 7 Message
Hew s it going so far?

dBASE II...35

Notice that we used doubie quotes around the character
string (a constant) in the first line because 'we wanted to
use the single quote as an apostrophe inside the string.

-If this isn't clear yet, try experimenting with and
without the quotes to get the distinction between constants
and variablea.d To-start you off, type the following:

“STORE 99 TO Variable”®
“STORE 33 TO Another”

- “STORE Variable/Another TO Third

“STORE '99' TO Constant”
“? Variable/Another”

“? Variable/3"

“? Constant/3"

~ "DISPLAY MEMORY

= STORE 99 1o Variable
49 '
« STORE 33 TO Another
33 . ’
» STORE Vanable/Another TO Third
3
« STORE 993 TO Constant
99 :
* 7 Variable/Anolher
K|
¥ ? Variable/ 3
33
= 7 Constanl’3
TS YNTAX ERROR*""

? CONSTANT/3

» DISPLAY MEMORY

. MESSAGE : : (C) Hows il going so far?
HOURS ; (N] . . 10 : '
PAY RATE {N) 1735
VARIABLE : . {N) Qg
ANOTHER (N) a3
THIRD (N} 3 :
CONSTANT ; (C) Y L e
TOTAL" 07 VARIABLES USED 00054 BYTES USED

Entering a value into a vériable automatically tells
dBASE II what the data type is. From then on, you cannot

mix data types (by trying.to divide a character string by a
number, for instance.) - . '

RULES: Character strings that appear in expressions must
be enclosed in matching single or double quote marks
or square brackets. Character strings may contain any
of the printable characters (including the space) .

If you want to use the ampersand (&) as a character,
it must be between two spaces because it is also used
for the dBASE II macro function (described later).

dBASE II...36

The last command in the previous screen representation

is another form of “DISPLAY" that you')l find useful. (You

- can also "LIST MEMORY .) :
Ycu can eliminate a memory variable by typing “RELEASE

<name>”, or you can get rid of all the memory wvariables by
typing "RELEASE ALL". :

Type the following (you may want to “ERASE” the screen
first):" ' :

“PISPLAY MEMORY"
“RELEASE Another”
“DISPLAY MEMORY"
“RCLEASE ALL"
“DISPLAY MEMORY"

Tip: When naming any variables, try to use as many
characterc as necessary to make the name meaningful to

humans .

Another tip: If you use only nine characters for database
field names, when you want to use the name as a memory
variable, you can do so by putting an "M" in front of
it. What it stands for will be clearer when you come
back to clean up your programs later than if you
invented a completely new and differernt name.

dBASE II...37

dBASE II operators

Operators are manipulations that dBASE II performs on
your data. Some of them will be familiar; others may take a
bit of practice.

Arithmetic operators should be the most familiar.
They generate arithmetic results. _

parentheses for grouping

() :

® : multiplication
/! ‘% division

+* : addition

. = * subtraction

The arithmetic operators are evaluated in a
sequence of precedence. The order is: parentheses; multiply
and divide; add and subtract. When the operators have equal
precedence, they are evaluated from left to right.:- Here are
some examples:

17/33#72 + 8 = 45.09 (divide, multiply then add)
17/(33%72 +8) =,0.00644 (multiply,add then divide)
17/33%(72 +8) = 41.21 (divide, add then multiply)

Relational operators make comparisons, then generate
logical results. They take action based on whether the

comparison is True or False.

'+ less than

: greater than
: equal to

: not equal to
: less than or equal to

: greater than or equal to

VA AN VA
R

Type the following:

“USE Names”

"LIST FOR Zip:Code <= 'T70000'"
“LIST FOR Address <> '123*"
“LIST FOR Name = "HOWSER'"

* LIST FOR Zip:Code 70000 5

00003 DESTRY, RALPH 234 Mahogany Sl Dearlield FL33441
00004 EDMUNDS, JIM : 392 Vicarious Way Atlanta GA30328
00008 HOWSER.PETER 678 Dusty Rd Chicago ILBOB31
00010 JENKINS.TED 210 Park Avanue New York NY10016

= LIST FOR Address — =123 :

00002 CLINKER. DUANE 7889 Charles Dr . Los Angsles CAS00386
00003 DESTRY RALPH 234 Mahogany St Daearfiald FL33441
Oo0004 EDMUNDS, JIM 392 Vicarious Way Aflanta GAJ0D328
00005 EMBRY ALBERT 345 Sage Avenue Palo Alta CAS4303
00006 FORMAN, ED 458 Boston St Dallas TX75220
DO007 GREEN, TERRY 567 Doheny Dr. Holiywood CA30046
00008 HOWSER. PETER 678 Dusty Rd Chicago iLe0&31
00009 INDERS. PER 321 Sawtelia Bivd. Tucson AZBSTO2
00010 JENKINS, TED 210 Park Avenue New York NY10016
= LIST FOR Nama - HOWSER)

00008 HOWSER,PETER 678 Dusty Rd. Chicago . IL80631

dBASE II...38

The logical operators greatly expand the ability to
refine data and manipulate records and databases.

Explaining them in depth is beyond the scope of this manual,

but if you are not familiar with them, most computer texts
have a chapter very near the beginning that explains their
use. They generate logical results (True or False). They
‘are listed below in the order of precedence within an
expression (.NOT. is applied before .AND., etc.):

() : parentheses for grouping
.NOT. : boolean not. (unary operator)
-AND. : boolean and
.OR. : boolean or

$: substring logical operator

(substring search)

“LIST FOR (JobNumber=730 .OR. JobNumber=731);
AND. (Bill:Date >= '791001" -AND.
Bill:Date <= '791031')"

displays all the October, 1979 records for costs billed
against job numbers 730 and 731 (notice how the command line
was extended with the semi-colons). _

If you're not familiar with logical operators, start
with the basiec fact that these operators will give results
that are True or False., 1In our example, dBASE II asks the
following questions about each record:

1) Is JobNumber equal to 730 (T on,F)?

2) Is JobNumber equal to 731 (T “r F)?

A
3) Is Bill:Date greater than or eqal to '791001' (T or F]°
4) Is Bill:Date less than or equal to '791031' (T or F)?

dBASE II then performs three logical tests (.0ORK.,
+AND., .AND.) before deciding whether the record should be
displayed or not.

_ Parentheses are used as they would be in an arithmetic
expression to clarify operations and relations. Because of
the first .AND., dBASE II will display recor<is only when
the conditions in both parenthetical statements are true.

Evaluating the first expression, it first checks the
(Job:Number> field. If the value in the field is 730 or
731, this sub-expression is set to True. If the field
. contains some other value, this sub~expression is False and.
~ the record will not be displayed.

If the first sub-expression is true, dBASE II must
still check the contents of the <Bill:Date> field to
evaluate the second sub-expression. If the contents of the
field are between '791001' and '791031, inclusive, this
expression is true, too, and the record will be displayed.
Otherwise, the complete expression is false and dBASE II
will skip to the next record, where it proceeds through the
same evaluation.

dBASE II...39

Let's try some of this with <Names.DBF>. Type the
fnllowing.

“"USE Names” ' - _
“DISPLAY all FOR Zip:Code > '5' _AND. Zip:Code ¢ 9~
"DISPLAY all FOR Name < 'F'" -
“DISPLAY all FOR Address > 'H00' .AND. Address < '700'"
“DISPLAY all FOR Address > '400' .0OR. Address < '700'"

» USE Names , _
« DISPLAY all FOR Zip:Code =5 AND. Zip:Code < 9

00006 FORMAN, ED 456Boston St. ‘Dallns TX75220
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL60631
00009 INDERS, PER 321 Sawtelie Bivd. Tucson AZ85702
+DISPLAY all FOR Name <'F

00001
000072
00003
00004
00005

= DISPLAY all FOR Address

. 00006
00007
00008

= DISPLAY all FOR Addeass

00001
00002
00003
00004
Q0005
00006
00007
00008
00009
00010

ALAZAR, PAT
CLINKER, DUANE
DESTRY, RALPH
EDMUNDS, JIM
EMBRY. ALBERT

FORMAN, ED
GREENM, TERRY
HOWSER, PETER

ALAZAR, PAT
CLINKER, DUANE
DESTRY. RALPH
EDMUNDS, JIM
EMBRY, ALBERT
FORMAN, ED
GREEN, TERRY
HOWSER, PETER
INDERS, PER
JENKINS, TED

123 Craler Rd.
789 Charles Dr.
234 Mahogany St
392 Vicarious Way
345 Sage Avenue

400 AND. Address = 700

456 Boston St.
567 Doheny Dr.
678 Dusty Rd

~' 400 .OR. Address < TOD

123 Crater Rd
789 Charles Dr.
234 Mahogany St.
232 Vicarious Way
345 Sage Avenue
456 Boston 51.
5687 Doheny Dr. -
678 Dusly Rd

321 Sawlella Bivd
210 Park Avenue

Evearant
Los Angeles

Daarfiald
Atlania
Palo Aito

Dﬁllnu
Hollywood
Chicago

Everstt

Los Angeles
Dearfield
Atlanta

Palo Alto
Dallas
Hollywood
Chicago
Tucson

New York

Notice what happened with the last commands:

 WA98206
CA90036
FL33441
GA30328
CA94303

TXT5220
CAS0046
ILE0B3

WABB206
CASO036
FL33441
GA30328
© CA94303
TX75220
CAS0046
ILBEO&31
AZ8B5702
NY10016

all the

records were displayed. If you're not familiar with logical.

operators, this kind of non- selectlve "selection™ will have
to guarded against.

dRASE II...40

The $§ substring logical operator is extremely useful
because of its powerful search capabilities. The format is:

"“<substring> $ <string>”

This operator searches for the subsiring on the left within
the string on the right. Either or both terms may be string
variables a8 well as string constants. To see how this
works, type the following:

“USE Names” .

“LIST FOR 'EE' $ Name”
‘LISI FOR 'T' $ Addreaa“
"LIST FOR "CA' $ State”
“? '00' $ "Hollywood'"
"o GO 5

* e DISPLAY"

“? State $ "CALIFORNIA™"

« USE Names

» LIST FOR 'EE § Nama

00007 GREcH, TERRY 567 Doheny Dr. Hollywood

« LISTFOR 7 5 Address

00003 CLINKER, DUANE 788 Charles Drive Los Angeies
00007 GREEN, TERRY 587 Doheny Dr. Hollywood
00008 HOWSER, PETER €78 Dusty Rd. Chicago
«LIST FOR 'CA' § State _
00003 CLINKER, DUANE 788 Charles Drive Loz Angoles
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto
00007 GREEN,.TERRY 587 Doheny Dr. = ' Hollywood .

* 7'00' § Hollywood'
I

s go S
« display
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto

= 7 State § 'CALIFORNIA"
2

With this function we could have, for example,
simplified the structure of our mailing list names file.
The states could have been entered as part of the address.
To call out names within a specific state, we could have
simply typed the following, where XX is the abbreviation for
the state we gant:

“<COMMAND> FOR 'XX' $ Address”

dBASE II...Uu1

String operators generate string results.

string concatenation (exact)
string concatenation (moves blanks)

+

Concatenation is just another one of those fancy
computer buzzwords. All it really means is that one
character string is stuck on to the end of another one.

Type the following:

“USE Names"™

“? Name + Address”

“? Name - Address”

"2 'The name in this record is ' + Name;
- ' and the address is "+ Address”

= USE Names
= 7 Name + Address
ALAZAR, PAT 123 Crater Rd.

s 7 Name — Address

ALAZAR,. PAT123 Crater Rd.

s 7 The name in this record is + Name, - and the address is * Address
Thanama in this racord is ALAZAR, PAT and the address is 123 Crater Rd

] -~

The “+" and "-" both join two strings. The "plus"
sign joins the string exactly as they are found. The
"minus" sign moves the trailing blanks in a string to the
end of the string. They are not eliminated, but for many
purposes this is enough, as they do not show up between the
strings being joined. '

If you want to eliminate the trailing blanks, you can
use the “TRIM" furiction. This is used By typing “STORE
TRIM(<variable>) TO <variable>”. As an example, we
could have typed: "STORE TRIM(Name) TO (Name)” to
eliminate the blanks following the characters of the name. .

To eliminate all of the trailing blanks in our example,
we could have typed: “STORE TRIM(Name - Address) TO

Example”.

Now that we've introduced you to expressions and dBASE
IT operators, we'll continue with other dBASE II commands.
We'll be giving you some practice in using expressions and
operators as we work our way up to'develpping command files. .

dBASE II...42

Changing an empty database structure (MODIFY)

WARNING: the “MODIFY" command will destroy your
database. Please follow instructions carefully.

When there is no data in your database, the “MODIFY"
command is the fastest and easiest way to add, delete,
rename, resize or otherwise change the database structure.
This destroys any data in the database so don't use it after
you've entered data. (Later we'll show you a way to do 80,
safely.)

{MoneyOut .DBF> has no data in it yet, so we'll work
with it. A useful ¢hange would be to rename <JobNumber> to
<Job:Nmbr> so that the abbreviation is consistent with
<Emp:Nmbr> and <Bill:Nmbr>. ‘Type the following:

“USE MoneyOut”

“LIST S'FRUCTURE 3 (page 22)
“MODIFY STRUCTURE"
YT« SN (in response to the question)

s use MoneayOul

s lisl structure

STRUCTURE FOR FILE: MONEYOUT.DBF
NUMBER OF RECORDS: 00000

DATE OF LAST UPDATE: 00/00/00

FRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 CLIENT 004
002 JOBNUMBER 003
003 BILL:DATE 006
004 SUPPLIER 028
005 DESCRIP 010
006 HOURS 006
007 EMP:NMBR - 002
D08 AMOUNT 009
009 BILLNMBR o006
010 CHECK:NMBR 005
011 CHECK:DATE 006
**TOTAL" 00086

DOOZOZOOOOO

=smodily struclure
MODIFY ERASES ALL DATA RECORDS . PROCEED? ["I”Nl-

dBASE II erases the screen and lists the first 16 (or
fewer) fields in the database. Use "Ctl-X" to move down one
field. Just type in the new field name over the old one
(use a space to blank out the extra letter). .

You can exit “"MODIFY" in either of two ways: ctl-W
changes the structure on disk, then resumes normal dBASE II
operation ("ctl-0" for Superbrain). ectl-Q quits and
returns to normal dBASE II operation without making the
changes. This actually gets you back without destroying the
database, but play it safe and have a backup file (aee next

page).

dBASE II...43

Duplicating databases and structures (CﬁPI)

 Duplicating a file without going back to your computer
operating system is straightforward. Type the following:

“USE Names”

“COPY TO Temp”

“USE Temp”

“DISPLAY STRUCTURE"
“LIST"

" USe namas
s copy o temp y
00010 RECORDS COPIED
s Use temp
» display struclure

—'STRUCTURE FOR FILE: TEMP DBF
NUMBER OF RECORDS: 00010
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME : WIDTH
001 NAME . : 020
002 ADDRESS - 025
003 CITY ' : o 020
004 STATE 002
05 ¢ ZIP.CODE 005
“*TOTAL* . 00073
* list

00001 ALAZAR, PAT 123 Crater Ad. o Everatt WASB206
00002 BROWN.JOHN ' 456 Minnow P1. Burlington MAO1730
00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CAS0036
00004 DESTRY, RALPH 234 Mahogany Si. Deerfield FL33441
00005 EMBRY.ALBERT 345 Sage Avenue Palo Alto CA94303
00006 FORMAN. ED 456 Boston S5t Dallas TX75220
00007 GREEN, TERRY 567 Doheny Dr. _ Hollywood CAS0044
00008 HOWSER. PETER 678 Dusty Rd. Chicago IL60E31
00009 INDERS. PER 321 Sawtelle Bivd. Tueson AZB5702

00010 JENKINS. TED 210 Park Avenue New York NY10016

Warning: When you “COPY" to an existing filename, the file is

written over and the old ‘data is destroyed.

"COPY TO TEMP" created a new database called <Temp.DBF>. It
is identical.-to the <Names.DBF>, with the same structure and the
same data. The command can be expanded even further:

“COPY TO <filename>. [STRUCTURE] [FIELD list]1”

With this command, you can copy only the structure or

some of the structure to another file. Type the following:

“USE Names”

“COPY TO Temp STRUCTURE"
"USE Temp” _
"DISPLAY STRUCTGRE"

* USEe Nnames

= COopy structure 1o lemp -

= use temp

= display struclure

STRUCTURE FOR FILE: TEMP.DBF
NUMBER OF RECORDS: 00000
DATE OF LAST UPDATE: 04/00/00
PRIMARY USE DATABASE

FLD NAQME TYPE "WIDTH DEC
DO+ NAME C 020

002 ADDRESS C 025
0a3 CITY C 020
004 ETATE C. 4 .,002
— D05 ZIPCODE C 005
"*TOTAL** CX73

dBASE II...A4H

We can copy a portion of the structure by listing only
the fields we want in the new database. Type:

“USE Names” _

“COPY TO Temp STRUCTURE FIELDS Name, State”
“USE Temp” ' :

“DISPLAY STRUCTURE”

¢

. USE NAMOS
» copy structure_lo temp fields name, stale

« Use lamp

« display structure

STRUCTURE FOR.FILE: TEMP DBF
NUMBER OF RECORDS: 00000

DATE OF LAST UPDATE: 00/00/00

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME C 020

002 STATE c 002
TOTAL" 00023

FOR ADVANCED PROGRAMMERS: COPY can also be usea
your program access to a database structure. Type:

“USE Names”
“COPY TO New STRUCTURE EXTENDED"

“USE New”
“LIST"

s use Namaes

» copy lo New siruclure axtended

00006 AECORDS COFPIED

* USE New

» display struclure

STRUCTURE FOR FILE. NEW.DBF
NUMBER OF RECORDS 00006

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH
D01 FIELD-NAME C 010
001

002 FIELD:TYPE C
003 FIELD:LEN N 003
N

004 FIELD:DEC 003
**TOTAL™™ 00018
s list

00001 MNAME 20
o0o02 ADDRESS 25
00003 CITY 20
0004 STATE

00005 ZIP:.CODE

Q0006 TUSTCODE

The <New.DBF> database records describe the <Names> database
structure, and an application program has direct access to
this information (see Review.CMD, Section. VI).

Alternatively, a file with the same structure as
{New.DBF> could be embedded in a program so that the
operator could enter the structure for a file without
learning dBASE II. The program would then create the
database for him with the following command:

“CREATE <datafile> FROM <structurefile>”

dBASE II...H5

'Adding and deleting fields with data in the database

As you expand the applications for dBASE II, you'll
probably want to add or delete fields in your databases.

“MODIFY STRUCTURE" alone would destroy all the data
in your database, but used with “COPY"~ and "APPEND", it
lets you add and delete fields at will.

The strategy consists of copying the structure of the
database you want to change to a temporary file, then making
your modifications on that file. After that is done, you
bring in the data from the old file into the new modified
structure. _

_As an example, we'll use our <Names> file and our
{Orders> file. At some point, it would be useful to list
the orders placed by a given customer. This could be done
easily by adding a customer number field to <Names> file to
match the field in the <Orders> file. To do so without
destroying the records we already have, type the following:

“USE Names”

“COPY TO Temp STRUCTURE"
“USE Temp”

"MODIFY STRUCTURE"

~ A

y (in answer to the prompt)

Use the Full Screen Editing features to move down to
the first blank field and type in the changes in the
appropriate columns (name is "CustNmbr", data type is "C",
length is 9). Now type “"ctl-W" ("ctl-0" with Superbrain)
to save the changes and exit to the dBASE II dot prompt.

“DISPLAY STRUCTURE"™ to make sure that it's right. If
it is we can add the data from <Names> by typing:

“"APPEND FROM Names”

We coéuld also have changed field sizes: the "APPEND"
command transfers data to fields with matéhing names.

= display structure

STRUCTURE FOR FILE: TEMP.DBF
NUMBER OF RECORDS: 00010

DATE OF LAST UPDATE: 00,/00/00
PRiMARY USE DATABASE

FLD MNAME TYPE WIDTH DEC
001 -NAME C 020

025

020

002 ADDRESS Cc

003 CiItY C

004 STATE LG 002
C
C

005 ZIP.CODE 005
006 . CUSTNMER 009
“*TOTAL™ 00082

dBASE II...H%6

Our new file <Temp> should now have the new field we
wanted to add and all of the old data. “DISPLAY
STRUCTURE” then “LIST" to make sure that a power line_
glitch or a bad spot on the floppy hasn't messed anything
ups

If the data got transferred correctly, we can finish up
by typing:

“COPY TO Names
"USE Names”

. The "COPY" command writes over the old structure and
data. After displaying and listing the new <Names> file,
wou can "DELETE FILE Temp”.

To summarize, the progedure can be used to add or
delete fields in a database in the following sequence:

“USE <oldfile>”

“corPY TO <newfile> STRUCTURE"
“USE <newfile>”

“MODIFY STRUCTURE”"

“APPEND FROM <oldfile>”

“COPY TO <oldfile>”

* use Names

= cOpy 1O lemp struclture

= use lemp

» modily structure

MODIFY ERASES ALL DATA RECORDS
(Y/N) y "

* append lrom ngmes
00010 RECORDS ADDED

dBASE II...U7

Dealing with CP/M and other "foreign" data files (more
on COPY and APPEND)

L]

@BASE II information can be changed into a form that is
compatible with other processors and systems (BASIC, PASCAL,
FORTRAN, PL/1, etc.). dBASE II can also read data files -
that have been created by these processors.

With CP/M, the standard data format (abbreviated as
SDF in dBASE II) includes a carriage return and line feed
after every line of text. To create a compatible data file
(for wordprbcessing, for example) from one of your
databases, you use another form of the “COPY"~ command.

Type:

"USE Names” .
“COPY TO SysData SDF~

This command creates a file called <SysData.TXT>. Now
“QUIT" dBASE II and use your word processor to look at the
file. You'll find that you can work with it exactly as if
you had created it under CP/M.

The Standard Data Format also allows dBASE II to work
with data from CP/M files. However, the datz must match the

structure of the database that will be using it.

If we had used a wordprocessor to create a file called
{NewData.TXT>, we could add it to the <Names.DBF> file with
this command. NOTE: the spacing of the data must match the
structure of the database. If the <{NewData.TXT> file |
contained the following information:

| ' FREITAG, JEAN 854 Munchkin Ave. Housten TXT77006

00010 RECORDS COPIED GOULD, NICOLE 73 Radnor Way Radnor PA19089

: 57 PETERS, ALICE 676 Wacker Dr. Chicago IL60606

::?;-;l:ziﬂv";f:’ucture } GREE“’ FRANK a1 Spiﬂﬂr Ave. Ta-pa FL33&22
STRUCTURE FOR FILE: NAMES DBF i :

DATE OF LAST UPDATE 00/00/00 (20) (25) (20) (2) (5)

PRIMARY 136 E DATABASE |
FLD NAME TYPE WIOTH -~ DEC
Q01 - NAME - 020
002 ADDRESS : 0%s
003 CITY 920 - -
004 STATE : 002 USE Names

. - ~ -
005 ZIP:CODE 005 APPEND FROM NewData.TXT SDF
006 CUSTNMBR : 009
“*TOTAL"" : 00082

we would add it to the <Names> file by typing the following:

Adding data to an existing file from a system file
takes only seconds.

COPY [scope] TO <filename> [FIELD 1list] [STRUCTURE]

JdBASE II...u8

The procedure is similar if your "foreign" files use
different delimiters., A common data file format uses commas
between fields and single quotes around strings to delimit
the data. To create or use these types of data files, use
the word DELIMITED instead of SDF. To see how this works,

type: _
“COPY TO Temp DELIMITED"

then go back to your operating system to look at your data.

If your systém has a differeat delimiter, you can
specify it in the command: “DELIMITED [WITH <delimiter>]”
(do NOT type the "<" and ">" symbols). If your system uses
only commas and nothing around strings, use: “DELIMITED
WITH ,”. '

The full forms of “COPY” and "APPEND” for working
with system data files are:

[SDF J.

L

APPEND FROM <filename.TXT> [SDF 1 [FOR <expression>]

[DELIMITED [WITH <delimiter>]] .

Both commands can be madé selective by using a
conditional expression, and the scope of “"COPY" can be
.specified as for other dBASE II commands.

NOTE: While dBASE II automatically generates extensions for
ffles it creates, you must specify the ".TXT" filename
extension when APPEHDingﬁfram a system data file.

NOTE: With the APPEND command, any fields used in-‘the
{expression> must exist in the database to which the
data is baing transferred.

[FDR_(axpreaaina)].
[DELIMITED [WITH <delimiter>]]

dBASE II...U9

Ranaiing database fields with COPY and APPEND

As we sad earlier, “APPEND" transfers data from one
file to another for matching fields. If a field name in the
FROM file is not in the file in USE, tha data in that field
will not be transferred.

However, the full form does allow you to transfer only
data, and we can use this feature to rename the fields in a
database. If we wanted to rename <CustNmbr> to <{CustCode>
in <Names.DBF>, we would type:

“USE Names” - _ _
“COPY TO Temp SDF” _ (data only to Temp.TXT)
“MODIFY STRUCTURE"

“APPEND FROM Temp.TXT SDF" (after changing field name)

Now when you “DISPLAY STRUCTURE", the last field will
be called {CustCode>. Don't forget to change the name of
the <CustNmbr> field in our <Ordara> database so that the
fields match.

* UsSE Names

4 copy to temp sdi

00015 RECORDS COPIED

= modily structure

MODIFY ERASES ALL DATA RECORDS ...PROCEED?
(Y/N) Y

= append from temp.TXT sdt
00015 RECORDS ADDED

Data in a <.TXT> file created by using the SDF (or
DELIMITED) option is kept in columns that are spaced like
the fields were in the original file. While you can edit a

. <.TXT> file with your word processor, this can be'dangercus:

-Harning Do not change field positiofis or sizes: the

data you saved is saved by positiongy notﬁhy name! If-
you change the field sizes when you mndify the
structure, you will destroy your database when you
bring the. saved data back into it.

When you “COPY" data to a <.TXT> file, you can use the
full command to specify the scope, fields and conditions
(see earlier axplanatian}

dBASE II...50

Modifying data rapidly (REPLACE, CHANGE)

Changes can be made rapidly to any or all of the
records using the following command:

“REPLACE [scope] <field> WITH <data> [, <field> WITH

{data>;...]
[FOR <expression>]”

This is an extremely powerful command because it
REPLACES a "<field-that-you-name> WITH <whatever-you-write-
in-here>", You can REPLACE more than one field by using a
comma after the first combination, then listing the new
fields and data as shown in the center brackets.

The "data" can be specific new information (including
blanks), or it could be an operation, such as deducting
state sales tax from all your bills because you have a
resale number (REPLACE all Amount WITH Amount/1.06).

You can also make this replacement conditional by using
the FOR and specifying your conditions as an expression.

To show you how this works, we need to add some data to
both the <Names> and <Orders> database files.

First, "USE Name™ then type "EDIT 1°. Now enter a _
*1001" in the <CustCode> field, using the full screen
editing features to get into position. Use “etl-C”™ to move
on to the next record when you are finished customer codes
should be entered as four-digit numbers, with the record
number as the last two digits (1001, 1002, 1003, etc.)

Now “"USE Orders” and "APPEND” the following order
information (do not type the column headings): |

(Cust) (Item) (Qty) (Price)”

~1012 38567 5 .83"
“1003 83899 1 UPETT
“1009 12829 7 AT
*1012 73833 23 1.47°

“USE Orders”
"REPLACE All Amount WITH Qty®Price
“LIST"

= use Orders
= repltace all amount with gly"price
00004 REPLACEMENTISY

& ligl

00001 1012 38567
00002 1003 B3899 .
00003 1009 12829
00004 1012 73833

You'll also find "REPLACE” .useful in command files to
fill in a blank record that you have appended to a file.
Data from memory variables in your program is frequently
used to fill in the blank fields.

dBASE II...51

Changes to a few fields in a.large number- of records can

also be made rapidly by using:

“CHANGE [scope] FIELD aist> [FOR <expression>]”

' The "scope" is the same as for other dBASE II commands.
At least one field must be named, but several field names
can be listed if separated by:- commas. This command finds
the first record that meets the conditions in .the

nexpression", then displays the record name and contents ...

with a prompt. To change the data in the field, type in the
new informaticn. To leave it the way it was, hit <enter>.
If the field is blank and you want to add-data, type a

space.
Once you have looked at all the listed fields within a

record, you are presented with the first field of the next
record that meets the -conditions you set. To return to
dBASE II, hit the "ESCAPE”™ key.

s USE NAMEes
= change lield custcode

RECORD; 0DOO1

CUSTCODE

CHANGE? [ENTER A SPACE TO CHANGE AN EMPTY FIELD)
TO 1001

CUSTCODE: 1001
CHANGE? - enter

RECORD: 00002

CUSTCODE
CHANGE?

dBASE II...52

Organizing your databases (SORT, INDEX)

Data is frequently entered randomly, as it was in our
{Names> database. This not necessarily the way you want it.
8o dBASE II includes tools to help you organize your
databases by SORTING and INDEXING it.

INDEXED files allow you locate records quickly
(typically within two seconds even with floppy disks).

Files can be sorted in ascending or descending order.
The full command is:

“SORT ON <fieldname) TO <filename> [DESCENDING]

The <fieldname> specifies the key on which the file is
sorted and may be character or numeric (not logical). The
sort defaults to ascending order, but you can over-ride this
by specifying the descending option.

To sort on several keys, start with the least important
key, then use a series of sorts leading up to the major key.
During sorting, dBASE II will move only as many records as

it must. |
To sort our <{Names> file so that the customers are in

alphabetical order, type:

“USE Names” |
“SORT ON Name TO Temp~
“USE Temp”

LIST"

“COPY TO Names"

s US®E names

50rt on name 10 teamp

SORT COMPLETE

" use teamp

= list

00001 ALAZAR, PAT 123 Craler Rd Everetil WASB2061001
00002 BROWN, JOHN 456 Minnaw PI. Burlinglon MAO017301002
00003 CLINKER, DUANE 789 Charles Dr. Los Angelas CA900361003
00004 DESTRY.RALPH 234 Mahogany 5t Dearlield FL334411004
00005 EMBRY ALBERT 345 Sage Avenuo Palo Allo CA943031005
00006 FORMAN.ED 456 Bosion Si Dallas TA752201006
00007 FREITAG, JEAN 854 Munchkin Ave Houston TX 70061011
00008 GOULD, NICOLE 73 Radnor Way Radnor PA130A91012
00009 GREEN, FRANK 441 Spicer Ave Tampa ° ° FL33622
00010 GREEN,TERRY S67 Doheny Dr Hollywood CA900441007
00011 HOWSER. PETER 678 Dusty Rd Chicago IL60631100A8
00012 INDERS.PER : 321 Sawtelle Blvd Tucson AZAS5T021009
00013 JENKINS, TED 210 Park Avenue Now York NY100161010
00014 PETERS,ALICE 676 Wacker Dr : Chicago IL60B0GE

* copy lo names ’

00014 RECORDS COPIED

WARNING: Do not SORT a database to itself. A
power line "glitch™ could destroy your entire database
if it came along at the wrong moment.

Instead, sort to a temporary file, then "“COPY" it back
to the original file name after you've confirmed the data.

dBASE II...53

A datafi{se can also be INDEXED so that 1t_appanra to be
sorted. The form of the “INDEX" command is:

~“INDEX ON <key (variable/expression)> TO <{index filename>

This creates a file with the new name and the extension
¢.NDX>. Only the data within the "key" is sorted, although
it appears that the entire database has been sorted. The
key may be a variable name or a complex expression up to 100

| characters long. It cannot be a logical field. To organize

our customer database by ZIP code, type:

“USE Names” X
“INDEX ON Zip:Code TO Zips
“USE Names INDEX Zipa~
“LIST |

We could also index our database on three keys by typing:

~“INDEX ON Name + CustCode + State TO Compound”

Numeric fields used in this manner must be converted to
character type. If CustCode were a numeric field with 5
positions and 2 decimal places, “STR"™ function (described
later) performs the conversion like this:

~“INDEX ON Name + STR(CustCode,5,2) + State TO Compound”

To take advantage of the speed built inEu aq‘INDEI
file, you have to specify it as part of the. "USE"~ command:

“USE <<abasa name> INDEX <index filunn:a)f

Positioning commands (GO, GO BOTTOM, etc.) given with
an INDEX file in use move you to positions on the index,
rather than the database. “GO BOTTOM", for example, will
position you at the last record in the index rather than the
last record in the database. - R

Changes made to key fields when you “APPEND", "EDIT ,
“REPLACE” or "PACK" the database, are reflected in the
index file in USE.

Other index files for your database can be
updated by typing: “SET INDEX TO <index File
1>, <index File 2>, ...<indexXx File n> . Then
perform your “APPEND", "EDIT", etc. All named
index files will now be current.

A major benefit of an INDEXED file is that it allows
you to use the "FIND" command (described next) to locate
records in seconds, even with large databases.

dBASE II...54

Finding the information you want (FIND, LOCATE)

If you know what data you are looking for, you can use
the FIND command (but only when your database is indexed,
and the index file is in USE). A typical FIND time is two
-seconds with a floppy disk system.

Simply type FIND <character string> (without quote
marks), where the "character string" is all or part of the
contents of a field.

e This string can -be as short as you lika, but should be
long enough to make it unique. "th", for“example, ockurs in
a large number of words; “theatr" is much more limited.

Type the following:

“USE Names INDEX Zips”
“FIND 10"

“DISPLAY"

“FIND 9°

“DISPLII‘

“DISPLAY Next 3°

= USE nanes imdex rips

= Imct 10

= thzplay . _
0oor3 JENKINS, TED NY100167010

= fimd 9
= chisplay
00003 CLINKER, OUANE 78S Ctaries Dr. Los Angeles CAS00361003

= display next 3 ‘ ;

DODD3 CLINKER. DUANE THS Charles Dr. Las Angeles CASDO361003
Qo010 GREEN, TERRAY S&7 Doheny Or. Hollywood ; CAS0DDasT0O07
00005 EMBRY ALBEAT 145 Sage Avenue Palo Alto CA9S43031005

If the key is not unique, dBASE II finds the first

" record that meets your specifications. This may or may not

be the one you're looking for. If no record exists with the
identical key that you are lanking for, dBASE II displays
NO FIND.

. “FIND® can also be used with files that have been
INDEXED on multiple keys. The disadvantage of a compound
.key (which may not be a disadvantage in your application) is
that it must be used from the left when you access the data.
That is, you can access the data by using the FIND command
and just the Name, or the Name and CustCode, or all three
fields, but could not access it using the State or CustCode
alone. To do that, you would either have to use the LOCATE
command (next), or have another file indexed on the State

field as the primary key.

dBASE II...55
When looking for specific kinds of data, use

“LOCATE [scope] [FOR <expression>]”

‘This command is used when you are looking for specific
data in a file that is not indexed on the key you are
interested in (file is indexed on zip codes, but you'ra
1ntaraatad in states, etc.)

"If you want to search the entire database, you do not
have to specify the scope, as "LOCATE" starts on the first
record. To search part of a file, use "LOCATE Next
<number * The search will start at the -record the pointer
is on and look at the next "number" of records. If this
would move the pointer past the end of the file, LOCATE
examines every record from the pointer position to the end
of the file.

If you are looking for data in a character field, tha
data should be-enclosed in single quotes. Type the
following:

“USE Names”

“LOCATE FOR Name='COU'"

“DISPLAY"

“"LOCATE FOR Zip:Code>'8' _AND. Name < 'G'"
"DISPLAY Name, Zip:Code”

If a record is found that meets the conditions in your
expression, dBASE II signals you with: RECORD n. You can
display or edit the record once it is located.

If there may be more than one record that meets your
conditions, type CONTINUE to get the next record number.

i
“CONTINUE"
“CONTINUE"
“CONTINUE"

If dBASE II cannot find your record within the "scope"
that you defined, it will display: END OF LOCATE or END OF
FILE €NCOUNTERED.

& Use names

* focale lar Name *GOU

RECORD QO0DA

s tisplay

00008 GOULD, NICOLE 73 Radnor Way : PA190891012

locate lor ZippCode '8 and. Name — G
RECORD: 0ODD

s display Name. Zip,Code

00001 ALAZAR, PAT 98206

« conlinue

RECORD: 0OG0O3

= gonlinue

RECDRD: 00005

= continue

ENMD OF FILE ENCOUNTERED

'dBASE II...56

Getting information out of all that data (the REPORT
command)

FIND and LOCATE are fine for locating individual
records and data items, but in most,applications you will
want data summaries that include many records that meet
certain specifications. The "REPORT” command lets you do
this quickly and easily. '

If you are using single sheets of paper in your
printer, first type "SET EJECT OFF" to turn the initial
formfeed off. Now select the database you want the report
from and create your custom report format by typing:

"SET EJECT OFF"
“USE <database>”
“REPORT"

dBASE II then leads you through a series of prompts to
create a custom format for the report. You specify which
fields from the database you want, report and column
headings, which columns should be totalled, ete. The
standard defaults are 8 columns from the left edge of the
paper for the page offset, 56 lines per page, and a page
width of 80 characters.

You can try this with the files you've created on the
demonstration disk, but the <Names> and <Orders> databases
that we've used as examples so far don't have enough data in
them to really show you how powerful dBASE II can be. For
our examples from here on we will be using <MoneyQut.DBF>
and other databases that are part of an existing business
system. (The entire system is in Section VI, including
database structures and the command files that run it.)

This would be a good time for you to create 'a database .
- structure that you would actually use in your business.
Enter data in it, then substitute it for <(MoneyOut> in our
axamples.

= use MoneyOul

s raport
ENTER REPORT FORAM NAME JobCosls
ENTER OPTIONS. M = LEFT MARGIN, L = LINES/PAGE, W = PAGE WIDTH
PAGE HEADING? (YN Y
EMTER PAGE HEADING: COST SUMMARY
DOUBLE SPACE REPORT? (Y/N)n
ARE TOTALS REQUIRED7?{Y/N} ¥
‘SUBTOTALS IN REPORT? (Y/N) n
COL WIDTH.CONTENTS
001 10.Check:Date
ENTER HEADING: DATE
002 22 Name
ENTER HEADING: SUPPLIER

22 Descrip -

ENTER HEADING: DESCRIPTION
004 12 Amount '
ENTER HEADING: AMOUNT
ARE TDTALS HEQLIIHED? (V/N) ¥
005 ~enler:

#¥ ' PAGE NO. 00001

dBASE II...57

When you have defined all the contents of the report,
hit <enter> when prompted with the next field number. dBASE
I1I immediately starts the report to show you what you have
specified, and will go through the entire database if you
let it. To stop the report, hit the <escape> key.

At the same time, dBASE II saves the format in a file
Wwith the extension .FRM, so that you can use it without
having to go through the dialog again. The full form of Fhe

command is:

~“REPORT FORM <formname> [scope] [FOR <expression>] [TO PRINT]

By typing
“REPORT FORM JobCosts FOR Jobz:Nmbr="770""

we can get a listing of all the job costs for job number 770
without having to redefine the format.

» REPORT FORM JobCosts FOR Job:Nmbr =770

PAGE NO. 00001

. COST SUMMARY
DATE SUPPLIER DESCHIFTIDN ' AMOUNT

17700
680500
37.10

810113 LETTER FONT TYPE
810113 ABLE PRINTER MAILER
810113 MARSHALL RALPH TYPE

810113 > MARSHALL, RALPH LAYOUT 200.00
810113 SHUTTERBUGS, INC PHOTOGRAPHY 565.00
810113 MAGIC TOUCH RETOUCHING * 56.00
“*TOTAL** 1640.10

You can change the information in the heading by typing
“SET HEADING TO character string” (up to 60 characters and
spaces, no quote marks). The "scope" defaults to "all" when
not specified.

The expression could have been expanded with other
conditions, and the entire report could have been prepared as a
hardcopy by adding TO PRINT at the end of the command.

This report capabi.ity can be used for just about any
business report, from accounts payable (FOR Check:Nmbr=' '),
to auto expenses (FOR Job:Nmbr='4 ') to anything else you need.

dBASE II...58
Automatic counting and summing (COUNT, SUM)

In some applications, you won't need to see the actual
records, but will want to know how many meet certain
conditions, or what the total is for some specified
condition (How many widgets do we have in stock? How many
are on back order? What is the total of our accounts
payable?)

For counting use:

"COUNT [scope] [FOR conditions] [TO memory variable]”

This command can be used with none, some or all of the
modifiers.

Unqualified, it counts all the records in the database.
The "scope" can be limited to one or a specified number of
records, and the "condition"™ can' be any complex logical
expression (see earlier section on expressions). The result
of the count can be stored in a memory variable, which is

. created when the command is executed if it did not exist.
To get totals, use:

"SUM field(s)[scopel[FOR condition][TO memory variable(=)]"

You can list up to 5 numeric fields to total in the
database in USE. If more than one field is to be totaled
the field names are separated by commas. The records ,
totaled can be limited by using the "scope" and/or
-conditional expressions after the FOR (Client <> 'SEM' .AND
Amount > 10...). .

If memory variables are used (separated by commas),
remember that totals are stored based on position. If you
-don't want to store the last fields in memory variables but
do want to see what the amounts are, there's no problem:
simply name the first few variables that you want. If
there's a gap (you want to save the first, third and fourth
field totals out of six), name memory variables for the

first four fields then RELEASE the second one after the SUM
is done.

« USE MoheyQOul

» COUNT FOR Amount <100 TO Small
COUNT = 00087

* SUM Amount FOR Job;Nmbr =770 TO Cl:lil

1640.10
& display mamory
SMALL ; (M) 67
COST (N) 1840.10
**TOTAL*™™ 02 VaARIABLES USED 00012 BYTES USED

dBASE II...59

Summarizing data and eliminating details (TOTAL)

~POTAL" works similarly to the sub-total capability in
the REPORT command except that the results are placed in a
database rather than being printed out:

TOTAL ON <key> TO <(database> [FIELDS 1ist] [FOR conditions]

NOTE: The database that the information is coming from
must ‘be presorted or indexed on the key that is used in this

command.
This command is particularly useful for eliminating

detail and providing summaries. The screen shows what
happens with our <{MoneyQut> database:

“USE MoneyOut”
“INDEX ON Job:Nabr TO Jobs”™

“USE MoneyOut INDEX Jobs”
“TOTAL OH Job:Nmbr TO Temp FIELDS Amount FOR Job:Nmbr >699,
- .AND. Job:NMbr < 800"

“USE Temp”
“LIST"

The new database has one entry for each job number, and
a total for .all the costs against that job number. in our
{MoneyOut> database. One problem with the new database,
however, is that only two of the fields contain useful
information. r

This can be handled with one more command line.

“TOTAL" transfers mll -the fields if the database named did

not exist, but uses the structure of an existing database.
In the commands above, we could have limited the fields in
the new database by creating it first, before we.used the

“TOTAL"™ command:
“COPY TO Temp FIELDPS Job:Hmbr, Amount”

Now when we “TOTAL” to <Temp>, the new database will
contain only the job numbers and cotals. Try it with your

database.
This same technique can be used to summarize

quantities of parts, accounts receivable or any other
ordered (SORTed or INDEXed) information.

= USE MoneyOul "

*» INDEX ON Job:Nmbr TO Jobs
00093 AECORDS INDEXED

« USE MonaeyOut INDEX Jobs

» TO¥AL ON Job:Nmbr TO Femp FIELDS AMOUNT FOR Job:Nmbr >899
AND. Job:Nmbr <800

00025 RECORDS COPI ED

= USE Temp
s LIST .
00011 B10129 3148 SML 779 - 13800 LETTER FONT TYPE

810129 2633 0.00 * .0 -
00012 810129 3152 SML 782 5949 MAGIC TOUCH BACKGROUND
TONE Y 810120« 429 000 0O

00013 810129 23148 SMM 784 4800 LETTERFONT TYPE

810129 3003 0.00 0 3 .

00014 810129 3148 DOC 788 25100 " LETTER FONT TYPE

810129 2764 0.00 [
(Partial listing)

dBASE II...60 dBASE II...b61

Section II Summary Section III:
This aectipﬁ has broadened thé scope of what you can Setting up a command file
now do with dBASE II. (writing your first program)..c.ceceeesesasee 62 MODIFY COMMAND <file>
We have shown you how different operators (arithmetic, Making choices and decisSionSe.cessescsscscsnssssnsss Ol IF..ELSE. .ENDIF
rﬂlﬂtiml and Etr‘ing) can be uaEd t'o mﬂdify dBASE II R.Epeating a pr‘cﬂesﬂ..‘........-.;-----n-n-o-t----i' 66 Dﬂ' HHILE--

commands ‘to give you a’ greater degree of control over your Procedures (subsidiary command fileS)esecesccsecesses 67 DO <file>
data than 1s possible Hith other database management Entering data interactively during a ruNc.scs...... 68 WAIT, INPUT, ACCEPT
systems. : Placing data and prompts exactly where

Since data structures are the basis of database you want theM...ceeeesessesasscsscscncssassas 069 €..SAY..GET
systems, we have covered a number of different ways in which A command file that summarizes what we've learned.. 72 _
you can alter the these structures, with or without data in Working with multiple databaseS....csesesesesseesss 715 SELECT PRIMARY/SECONDARY
the database. } Cenerally useful system commands and functions..... 76 .

We have also shown you how to enter, alter and find the A few words about programming and planning ' it
. specific information you may be looking for. We have also your command fileS...ccevessssssosnsoscescssss TT
introduced new global commands that make it possible for you |
to turn-all that data into information with a single command
(COUNT, SUM, REPORT, TOTAL). >

In the next section, we will show you how to set up
dBASE II command files (programa), 80 that you can automate
your information processes.

If you understand how to write expressions, you are

very close to being able to write programs.
There are four basic programming structdres that
you can use to get a computer to do what you want jto do:

® Sequence

& Choice/Decision
Repetition

® Procedures

You've already seen that dBASE II processes your
commands sequentially in the order in which you give them.
In this section we'll explain how you make cholces
(IF...ELSE), how you can make the computer repeat a
sequence of-commands (DO WHILE..), and how to use sub-files
of commands (procedures).

Then we'll show you how to use theae simple. tnnla to
write command files (programs) that will aolve your
applications problems.

dBASE'II...ﬁZI

Setting up a command file (Hriting your first program)

The commands we've introduced so far are powerful and -
can accomplish a great deal, yet only scratch the surface of
the capabilities of dBASE II. The full power comes nto
Play when you set up command files so that the commands you
enter once can be repeated over and over.

When you create a command file you are programming the |

computer, but since dBASE IT uses English-like commands,
-it's a lot simpler than it sounds. Also, because dBASE II
ds a relational database management system, you work with

increments of data and information, rather than bits and
bytea . :

To set up a command file, you list the commands you
want performed in a CP/M file with a <.CMD> extension to
its name, using a text editor or word processor. '

dBASE II istarts at the top of the list and processes
the commands one at a time until it is done with the list.

Other computer languages operate exactly the same way.
In BASIC the sequence is very visible because each pﬁngram
line is numbered. In other languages (dBASE IT among them),
the sequence is implied and the computer will process the
first line on the page, then the second line, etc. Some
languages use separators (such as colons) between command

Statements; dBASE II simply uses the carriage return to
terminate the command line. :

The only time the sequence is not followed i= when the
computer is specifically told to go and do something else.
Usually, this is based on some other conditions and the
computer must make a decision based on expressions or
conditions that you have set up in the command file. We'll
tell you more about this later. :

For now, let's create a command file called <Test>.
You can do this using a text editor or wordprocessor,
but there's an easier way with dBASE II. Type:

“MODIFY COMMAND Test"

dBASE II now presents you with a blank screen that you can

write into using the full screen editing features described

earlier. Use them now to enter the short program at the top

of the next page (do not”type the "“" symbols). '
The end of a line indicates the end of a command

(unless you use a semicolon), so keep the list of commands
as shown on the next page. .

dBASE II...63

“USE Names” | i
“COPY Structure TO Temp FIELDS Name, ZipCode
“USE Temp” .

“"APPEND FROM Names

“COUNT FOR Name = 'G'" TO G

“DISPLAY MEMORY™

2 1je have just successfully completed our first command file.'

When you're finiéhed, use clt-W (etl-0 with Superbrain) to
get back to the dBASE II prompt. Now type:

A> “dBASE Test”

If you typed the program in exactly the way it was

‘printed, it crashed. Now type "MODIFY COMMAND Test

again and insert a semi-colon to correct the <Zip:Code>
fIEIdDE::E;ou get to writing larger ccmmand.Filea of your
own, you'll find that this built-in eleor is one of the
most convenient features of dBASE II, since you can write,
correct and change programs without ever having to go back
to the system level of the computer. Currently, this
built-in editor can back up only about 5,000 lines, so "
editing should be planned in one direction for larger files.

The command file itself is trivial_but does show.ynu
how you can perform a sequence of cnulaqd§ from atgll:a
with a single system command. This is similar to e ¥
you use .COM files in your operating system.

If you are already in dBASE II (with the dot prompt),
you type:

. "DO <filename>”

where <filename> has the <.CMD> extension.

¥ in dBASE file to
TIP: You may want to rename the main B 0
<DO.COM>, $o that you can type "DO <filename> whether
you're in your system or in dBASE II. Ep do this with

dBASE II- L] -6"

Making choices and decisions (IF..ELSE)

Choices and decisions are made in dBASE IT with
“IF..ELSE..ENDIF . This is used much as it is used in
ordinary English: IF I'm hungry, I'll eat, (OR) ELSE I
won't. With a computer, you use the identical construction,
but do have to use exactly the words that it understands.

Silpla decision: If only a single decision is to ba
nada, you can drop the ELSE and use this form:

IF condition [.AND. cond2 .0R. cond3]
do this command
[emd2]
——

ENDIF

The "condition" can be a series of expressions (up to a
maximum of 254 characters) that can be logically evaluated
to being true or false. Use the logical operators to tie

them together. Using our <MoneyOut> file, we might set up
the following decision:

IF Job:Nmbr = '730' .AND. Amount. > 99.99;
+OR. Supplier = '"MAGIC TOUCH';
+OR. Bill:Date > '791231'
do this command

[emd 2] .
Eieu 3.
ENDIF

If all the conditions are met the computer will
perform the commands listed between the IF and the ENDIF
(in sequence), then go on to the next statement following -
the ENRDIF. If the conditions are not met, the computer
skips to the first command following the EHDiF.

Two choices: If there are two alternate courses of
action that depend on the condition(s), use the IF..ELSE
statement this way:

IF condition(s).
do command(s) 1
ELSE
do command(s) 2
_ENDIF

Thc computer does either the first set of commands or the

second set of commands, then skips to the command following
the ENDIF-

£ ATASE II---65

Multiple choice: Frequently, you have to make a
choice from a list of alternatives. An example might be a
the use of a screen menu to select one of several different
procedures that you want to perform. In that case, you use

the IF:..ELSE..IF construction.
This is the same IF..ELSE that we've described, but

~ you use it in several levels (called "nesting"), as shown

below.

- IF conditions 1
de commands 1

ELSE
IF conditions 2

do commands 2
EL3E
IF conditions 3
do commands 3
ELSE

. ENDIF 3
. ENDIF 2
ENDIF 1

This structure can be nested as shown as far as it has
to be to choose the one set of commands required from the
1ist of alternatives. It is used frequently in the working
accounting system at the end of Part I.

Notice that each IF must have a corresponding ENDIF or

your program will bomb.

. |

TIP: dBASE II does not read the rest of the line after an
ENDIF, s0 you can add in any identification you want
to, as we did above. It helps keep things straight.

dBASE II...66

Repeating a process (DO WHILE..)

Repetitlion is one of the major advantages of a
computer. It can continue with the same task over and over
without getting bored or making mistakes because of the
monotony. This is handled in most computer langnages with
the DO WHILE construction:

DO HEILE.cundiﬁicns
do command(s)
ENDDO

While the conditions you specify are logically true,
the commands listed will be performed.

Tips Remember that these commands must change the
conditions eventually, or the loop will continue
forever.

When you know how many times you want the process
repeated, you use the structure like this:

Do file ProcessA.CMD
Increase counter by 1

STORE 1 TO Index # Start counter at 1
DO WHILE Index < 11 ¥ Process 10 records
IF Item = ' ' # Tf there is no data,
SKIP ® skip the record and
~ LOOP ® go back to the DO WHILE,
ENDIF blank * without doing ProcessA
n
"

DO Processi
STORE Index+1 TQC Index
ENDDO ten times

In this example, if there 1s data in the <{Item> field,
the computer performs whatever instructions are in another
command file called ProcessA.CMD, then returns to where it
was' in this command file. It increases the value of the
variable Index by 1, then tests to see if this value is less
than. 11. ‘If it is, the computer proceeds through the DO
WHILE instructions again. When the counter passes 10, the
computer skips the loop and performs the next instruction
after the ENDDO.

. The LOOP instruction is used to stop a sequence and
cause the computer to go back to the start of a DO WHILE

that contains the instruction. .
In this case, if the Item field ia blank, the record is

not processed because the LOOF command moves the computer
back to the DO WHILE Index < 31. The record with the blank
is not counted, since we bypass the command line where we
add 1 to the counter.

The problem with LOOP is that it short-circuits
program flow, gc that it's extremely difficult to follow
program logic. The best solution is to avoid the LOOP
instruction entirely.

dBASE II...67

Procedures (subsidiary command files)

The ability to create standard procedures in a

“language greatly simplifies programming of computers.

| In BASIC, these procedures are called sub-routines. In
Pascal and PL/I, they are called procedures. In dBASE II
they are command files that can be called by a prngram that
you write.

In our previous example, we called for a procedure when
we said DO ProcessA. "ProcessA" is another command file
(with a* .CMD extension to its name). The contents of this
command file might' be: :

IF Status = M
DO PayMar
ELSE
IF Status = S
DO PaySingle
ELSE
JF Status = H
DO PayHouse
ENDIF
ENDIF

ENDIF

RETURN

Once again, we can call out further procedures which
can themselves call other files. Up to 16 command files may
be open at-a time, so if a file is in USE, up to 15 other
files can be open. Some commands use additional filea
(REPORT, INSERT, COPY, SAVE, RESTORE and PACK use one
additional file; SORT uses twu additional files).

This is aeldom a limltation, however, since any number
of files can be used if they ‘are clased and no more than 16
are open at any time.

A file is closed when the end of the file is reached,
or when the “RETURN" command is issued by a command file.
The RETURN command returns control to the command file that
called it (or to the keyboard if the file was run directly).

The RETURN command is not always strictly necessary,
as control returns to the calling file when the end of a
file is encountered, but it is good programming practice to
lnsert it at the end of all your command' files.

¥Big tip®: Notice that the command lines are indented in
our examples. This is not necessary, but it increases
command file clarity tremendously, especially when you
have nested structures within other structures. Using
all uppercase for the commands, and both upper- and
lowercase for the variables helps, too.

dBASE II...68

Entering data interactively during a run (WAIT, INPUT,
ACCEPT) :

For many applications, the command files will-have to
get additional data from the operator, rather than just
using what is in the databases,

You command files can be set up so that they prompt the
operator with messages that indicate the kind of information
that is needed. One good example is a menu of functions
from which one is sélected. Another use might be to help
ensui'e that accounting data is entered correctly. The
following commands can do this. '

"WAIT [TO memory variablel”

.halts command file processing and waits for a
single character input from the keyboard with a
WAITING prompt. Processing continues after any key 1is
pressed (as with the dBASE II DISPLAY command).

If a variable is also specified, the input
character is stored in it. If the ‘nput is a
non-printable character (<enter>, control character, -
‘ete.), a blank is entered into the variable.

“INPUT ['prompt'] TO memory variable”

accepts any data type from the CRT terminal to a

named memory variable, creating that variable if it did
~ not exist.

1f the optional prompting message (in single or
double quotes, but both delimiters the same) is used,
it appears on the user terminal followed by a colon
showing where the data is to be typed in. The data
type of the variable (character, numeric or logical) is
determined by the type of data that is entered.
Character strings must be entered in quotes or square
brackets.

“lCCEPf {*prompt'] TO memory variable”
accepts character data without the need for
delimiters. Very useful for long input strings.

Tips on which to use when:

WAIT can be used for rapid entry (reacts instantly to
an input), but should not be used when a wrong
entry can do serious damage to your database.

ACCEPT ‘is useful for long strings of characters as it

does not require quote marks. It should also
be used for single character entry when the
need to hit <{enter> can improve data 1ntegr1ty.

INPUT accepts numeric and logical data as well as

characters, can be used like ACCEPT. |

dBASE II...69

Placing data and prompts exactly where you want .them

(!. -slI'- .‘Gﬂ)

~The “?", "ACCEPT" and “INPUT" commands can all be

useu to place prompts to the operator on the screen. -

Their common drawback for this purpose is that the
prompts will appear just below the last line already on the
screen. This works, but there's a better way.

If your terminal supports X-Y cursor poaitinning,
another dBASE II command lets you position your prompts and
get your data from any position you select on the screen:

~@ <coordinates> [SAY <'prompt'>]

 This will position the prompt (entered in quotes or
sghare brackets) at the screen coordinates you specify. The
coordinates are the row and column on the CRT, with 0,0
being the upper left-hand "home" position. If we specified
"9,34" as the coordinates, our prompt would start on the
10th row in the 35th column. '

Note: If you installed half intensity or reverse

video, the prompt will be at half intensity or in reverse

‘video. - To disable this, re-do the installation procedure

and use the "Modify/Change" option.

" The SAY.. is optional because this command can also be
used to erase any line (or portion of a line) on the screen.
Bring dBASE II up‘and type:

“ERASE" .

“@ 20,30 -SAY 'What?'”

“@ ,5,67 SAY ‘Here...'"

“@ 11,11 SAY "That's all.""
He 5, nh

“@ 11,16"

Instead of just showing a prompt, the command can be
used to show the value of an expression with one or more
variables. The form is:

LY

“@ <coordinates>[SAY <expression>]
Type the following in dBASE II:

“USE Names”

“@ 13,9 SAY Zip:Code

“@ 13,6 SAY State

“SKIP 3°

“@ 23, 5 SAY Name + ', ' + Address

dBASE II...TO

The command can be expanded further to show you the
values of variables being used (memory variables or field
names in a database) at whatever screen position you
specify. (The variables used by both GET and SAY must
exist before you call them out or you will get an error.)

“® <coordinates>[SAY <expression>][GET <variabled]

To see how this works, type the following (do NOT QUIT dBASE

when you're done--there's more toc come):

“ERASE”™ i

“USE Names"”

“@ 15, 5 SAY 'State' GET State

“®@ 10,17 GET Zip:Code

“@ 5, 0 SAY 'Name' GET Name
(Stay in dBASE)

This sequence has positioned the values of the
variables (with and without prompts) at various places on
the screen. With this facility, you can design your own
input forms so that the screens that your operator sees will
look just like the old paper forms that were used before.

To get data into the variables on the screen at your
chosen locations, type:

“"READ"

The cursor positions itself on the first field you
entered. You can now type in new data, or leave it the way
it was by hitting <enter>. When you leave this field, it
goes to the second variable you entered.

. Change the data jin the remaining two flelds. When you
finish with the last one, you are back in dBASE II. Now
type "DISPLAY". The record now has the new data you
entered.

As you can see, GET works somewhat like the INPUT and
ACCEPT commands. It is much more powerful than either
because it allows you to enter many variables.

A database may have a dozen or two fields (up to 32),
but for,any given data entry procedure, you may be entering-
data in only half a dozen of those. Rather than using
APPEND, which would list all the fields in the database on
the screen, you can use “APPEND BLARK™ to create a record
with empty fields, then GET only the data you want.

Our <Names> file is not a good example (the accounting
system at the end of this section is better), but we can use
it to show how to selectively get data. into a database with
a large structure, »

dBASE II...T1

. To give you more practice with command files, create a
file called <Trial.CMD> with the following commands in it:

“ERASE"

“? "This procedure allows you to add new records to
the'”

“? 'NAMES.DBF database selectively. We will bc
adding'”

“? 'only the Name and the Zip:Code now.'

-ﬂ?ﬂ -

“? *Type 3 to stup the procedure,’

“? "Center> to continue.®

“WAIT TO Continue”

-

“USE Names"” 3y

DO WHILE Continue <> 'S' .AND. Continue {> 's'
_ APPEND BLANK" '
ERASE”"
: € 10, 0 SAY "HAME" GET Name“

@ 10,30 SAY “ZIP CODE"™ GET Zip'Cnd!
- READ™

® 2" 8 to stop the procedure,'”
« 7 *<enter> to continue.'”

= WAIT TO Continue”

EIDDO

“RETURK"

When you're back to CP/M, type “"dBASE Trial” (or “DO
Trial® if you renamed the JdBASE.COM file as we suggested).
Now enter data into several records. After you've finished,
LIST the file to see what you've added. :

As you can see, data entry is simple and uncluttered.

The screen can be customized by placing prompts and
variable input fields wherever you want them.

NOTE: You -ﬁuab use the "ERASE” or “CLEAR GETS"™ command
after every 64 “GET's”. Use the latter unumand if you
do not want to change the screen.

dBASE II...72

A command file that summarizes what we've learned

Before you read on, you can run the following file to
see what it does. Type “dBASE Sample” if you're .n CP/M
or “DO Sample” if you're in dBASE II. Respond to the
prompts. After you've run it, you can come back and go
through the documentation. It summarizes most of-what
we've covered so far and includes copious commentary-

EERRENNSERERERNRNNES SAMPLE.CMD FRUSESSRRERRERESENENES

This command file prompts the user with screen
messages and accepts data into a memory variable, then
performs the procedure selected by the user. This is only
a program fragment, but it does work.

We maven't written the procedures that are called
by the menu yet, so instead, we can have the computer
perform some actions that show us what it does
and whieh paths it takes (stubbing).

Normally, dBASE II shows the results of the commands .
on the CRT. This can be confusing, so we SET TALK OFF.

T EEEEFrER R

SET TALK OFF
USE MoneyOut
- ERASE

Tt's good housekeeping to erase the screen before you
display any new data on it. '

® OQur substitute display function can be used to put

* information on the CRT screen like this:

2

?

70 OUTGOING CASH MENU®

?

?

2 0 = Exit"’

- B 1 = Accounts Payable Summary’
Ty 2 = Enter New Invoices!'

T 3 = Enter Payments Made?

2

? 0 ' Your Choice is Number'

WAIT TO Choice

ERASE

% Since we haven't developed the procedurzs to do these
three items yet we'll have the computer display

& different comments, depending on which alternative is
& seles ted from.the menu.

dBASE II...T3

IF Choice = "1°
@€ 0,20 SAY 'One?’
ELSE
IF Choice = '2' .
@€ 1,20 SAY 'Tun'
ELSE
IF Choice ;;'3'
€ 2,20 SAY 'Three®

ELSE
e 7,20
@ 8,20 SAY ' ANY OTHER CHARACTER INPUT EXCEPT 1, 2, OR 3 ¥
€ 9,20 SAY ' CAUSES THIS COMMAND FILE TO TERMINATE AFTER &'
@ 10,20 SAY ' PRINTING OUT THIS MESSAGE. NOTICE THAT THE °*
€ 11,20 SAY ' DIGITS HAD TO BE IN QUOTE MARKS IN THE "IF® ¢
@ 12,20 SAY ' STATEMENTS ABOVE BECAUSE THE WAIT COMMAND °
€ 13,20 SAY ' ACCEPTS ONLY CHARACTER INPUTS ’
€ 14,20 SAY ° ’

ENDIF 3
ENDIF 2
ENDIF 1

®# Each IF must have a corresponding ENDIF. We've also
¥ put a label after the ENDIF to indicate with IF it

®¥ belongs with, to make certain that we have closed all
® the loops.

)) e

q

INPUT 'Do you want to continue (Yes or Hn)?' TO Decision
ERASE
IF Decision

INPUT "Okay, let's have a number, quickly." TO Number

ELSE
€ 10,20 SAY " WHY NOT? *
WALT
ENDIF
ERASE |
@ 10,20 SAY " I'M NOT READY FOR THAT. GOOD-BYE. "

This next DO WHILE loop provides a delay of a few seconds
to keep the last message on the CRT long enough to be read
before the program terminates. You may find this useful
in command files that you write. To change the delay time,
either change the limit (100) or the step (+ 1).
STORE 1 TO X |
DO WHILE X < 100

STORE X + 1 TO X
ENDDO
ERASE
RETURN

o W R

dBASE TT:..TH

You may want to run the program again. Try all the
alternatives, then try entering inputs that are definitely
wrong. You'll see how the program works and how dBASE II
handles errors.

while it's only a program fragment and doesn't do any
useful work, <{Sample.CMD> does point up quite a few things:

1. Using ERASE frequently is good housekeeping that's easy
to do.

2. Using indentation helps make the operation of the
program clearer. That's also why we used upper- and
lowercase letters. The computer sees them all as
uppercase, but this way is much easier for us humans.

3. The "?" can be used to space lines on the display and to
show character strings (in quotes or brackets).

§. The WAIT command waits for a single character before
letting the program move on. The input then must be
treated as a character, the way we did in the “nested
IF's by putting quotes around the values we were looking
for.

5. The INPUT command waits for and accepts any data type,
but characters and strings must be in single or double
quotes or square brackets. When you have an apostrophe
in your message, use the double quote or square brackets
to define the string or the computer gets confused.

6. You don't have to predefine variables. Just make up
another name whenever you need one (up to a maximum of
64 active at any one time).

7. Logical values can be treated in shorthand. "IF .
Decision" in the program worked as if we had said: “IF
Decision = T".

. B..The RETURN at the end of the program isn't necessary,

but was tacked on because you would need it if this were
a sub=-procedure in another command file. That's how the

unmputar knows that it should go back where it came
from, rather than Ju=t quitting.

dBASE II...T5

Working with multiple databases (PRIMARY, SECONDARY,

'SELECT)

As we've seen, when you first start working with DBASE
II, you type “USE <filename>” to tell dBASE II which file
you're interested in, then proceed to enter data, edit, etc.

To work on a different database, you type “USE
{NewFile>". dBASE II closes the first file and opens the
second one, with no concern on your part. You can use any
number of files this way, both from your terminal and in
command files. You can also close a file without opening a
new one by typing “USE".

When you USE a file, dBASE II "rewinds" it to the
beginning and positions you on the first record in the file.
In most caﬁes,‘thia is exactly what you want. In some
applications, however, you will want to access another file
or files without "losing your place" in the first file.

dBASE II has an exceptionally advanced feature that
permits you to work in fwo separate active areas at the same
time: PRIMARY and SECONDARY. You switch between them
with the "SELECT" command

You are automatically placed in the PRIMARY area when
you first start. To work on another database without losing
your position in the first one, type in “SELECT '
SECONDARY", then "USE <newfile>”. To get. back to the
original work area, type “SELECT PRIMARY", then continue
with that database. -

. The two work areas can be used 1ndependent1y. Any
commands that move data and records operate only in the area
in OSE.

Information, however, can-be transferred fTm one area
to the other using P. and S.-as prefixes for variables. If
you are in the"PRIMARY area, use the S. prefix. for
variables you need from the SECONDARY area; if you are in -
the SECONDARY area, use the B. prefix for variables you
need from the PRIMARY area.

As an example, this commdand is used in the
{NameTest.CMD> file in the accounting system at the end of
this Part of the manual. Individual records in a file in
the PRIMARY area are checked against all the records in
another file in the SECONDARY area.

The same command, is also used in the <TimeCalc.CMD>,

. <DepTrans.CMD> and <Payroll.CMD> files.

While you may not think of an application naw keep the
command in mind: you'll fInd it useful.

dBASE II...T76

Generally useful system commands and functions

MODIFY COMMAND <filename> lets you modify the named
command file directly from dBASE II using the normal

full scré&en editing features.

BROWSE displays up to 19 records and as many fields as will
fit on the screen. To see fields off the right edge of
the screen, use ctl-B to scroll right. Use ctl-z to

scroll left.

CLEAR resets dBASE II, clearing all variables and closing
all files.

RESET is used after a disk swap to reset the operating
system bit map. Please read the detailed description
in the command dictionary (Part:II) before-using it.

a3llows comments in a command file, but the comments are
not displayed when the command file is executed. This
allows notes to the programmer without confusing' the
operator. There must be at least one space between the
word or symbol and the comment, and the note cannot be
on the same line as a command. REPEAT: commands and

comments must be on separate lines.

REMARK allows comments to be stored in a command file, then
displayed as prompts to the operator when the file is
used. There must be at least one space between the
word and the remark, and the remark cannot be on a

command line.

RENAME <oldfile> TO -<newfile)> changes file names in the
CP/M directory. Do NOT try to rename files in USE.

QUIT TO '<system .COM file list>' allows you to
terminate dBASE II and automatically start .execution of
CP/M and other .COM files. Each .COM file named must
be in single quotes, and separated from other file
names (in single quotes) by commas.

" You can also use the “?" command to call out the
following functions:

" # is the record number function. When called, it
provides the value of the current record number.

is the deleted record funcﬂiun, and returns a True .
value if the record is deleted, False if not deleted.

EOF is the end of file function. It is True if the end of
the file in USE has been reached, False if it has not

been reached.

dBASE II .a'e ?T

A few words ahnut progg ing and annigg y
command files R =

The first thing to do when you want to set up a
‘command file is to turn the computer off.

That's right: that's where many prugrammers B0 Wrong.
They immediately start "coding™ a solution, before they even
have a clear idea of what they're trying to do. |

A much better approach is covered in a number of texts

on structured programming and some of the structured

languages. One reference you might check is Chapter 2 in
"An Introduction to Programming and Problem Solving in
Pascal™ by Schneider, Weingart and Perlman. Another is
Chapters 1,.4 and the first few pages of 7 in "Pascal
Programmlng Structures” by Cherry. Then if yoﬁ really want
to get into programming, there's an excellent text on PL/I

~called "PL/I Structured Programming” by Joan Hughes.

Briefly, here's the approach:

Start bI_deflning the problem in ordinary Eng;iah.
Make it a general statement. '

Now define it further. What inputs will you have? What:
form do you want the outputs and reports in?

- Next, take a look at the exceptions. What are the

starting conditions? What happens if a record is missing?

Once you've defined what'you want to do, describe the
details in modified English. The texts call it

"pseudocode™, All this means is that you use English terms
that are somewhat similar to the instructions that the
computer understands.

You might write your prograﬁ outline like this:

Use the cost database .
Print out last month's unpaid invoices
Write a check for each unpaid invoice.

Adding a bit more detail, it looks like this:

USE CostBase

Print out last month's unpaid invoices using
the SUMMARY.FRM file

Start at the beginning of the databaae

And go through to the end:

If the invoice has not been paid
Pay the invoice
And enter it in the database

Do this for every record

dBASE IT...78

In perhaps two more steps, this could be translated into a
command file like this:

USE CostBase -
& Print a hardcopy summary for December, 1980.
REPORT FORM Summary FOR Bill:Date >= '801201' .AND.
Bill:Date <= '801231" TO PRINT
GOTO TOP * Go to the first record:
DO WHILE .NOT. EOF % Repeat for the entire file
IF Check:Nmbr=' * #* If the invoice isn't paid,
DO WriteCheck * write a check, then
#®

DO Update update the records
ENDIF :
. SKIP | ®Go to the next record
ENDDO

: The term top-down, atepawiae refinement can Le
applied to this procedure, but that's fbrty-three dollars
worth of words to say: "Start at the top, then divide and
conquer®, :

- Actually, it's just a sensible approach to solving most
kinds of problems. First state the overall problem, trying
to define what it is and what it isn't.. Then gradually get
into more and more detail, solving the details that»are easy
to solve, putting the more complicated details aside for
later solution (again, perhaps in parts).

At this stage in our example, we haven't done the ;
{Summary.FRM> file nor the <{WriteCheck.CMD> and <Update.CMD>
files, but it doesn't matter. 1
: And in fact, we're probably better off not worrying
about these details because we can concentrate on the
overall problem solution. We can come back after we've
tested our overall solution and clean up these procedures
then.

Tip: You can still test a partial program like this by
using what programmers call stubs® Set up the command
files that you've named in the program and enter three
items: a message that let's you know the program reached
it, WAIT and RETURN. dBASE II will go to these
procedure files, give you the message, then return and
continue with the rest of the program after you hit any
key.

dBASE II-ltTg

Section IV:

Expanding your control with .functionS...vecssccesss 80
Changing dBASE II parameters and defaultS.eeceeceess 8l
Merging records from two databaseS.c.sceccseccacess 86
JOENIRG entire databases.veeevvanmenswve s iessas ST

Full screen Editiﬂg and fﬂrmattinga..i-u..-....-..; Ba.

Formatting the printed page.ssecccesrsncscsisasnssees 90

Setting up and printing a forMescecesssssosscnssaas 91
Ti—me tD regrcupifl--liil-l'ililll‘.l"']l'l.....-‘.". 93

SETH‘ L]

UPDATE

JOIN

SET FORMAT- TO SCREEN
€..5AY..GET..PICTURE,
SET FORMAT TO PRINT
€..SAY..USIKG..

By now you should be writing command files that can

perform useful work for you.

To help you further, in this section we will introduce
more functions, a few more commands and go into quite a bit
of detail on how you can print out your data in exactly the

format you want it.

dBASE IT...80

Expanding zeur control with functions

Functions are specflal purpose operations that may be
used in expressions to perform things that are difficult or
impossible using regular arithmetic, logical and string
operations. dBASE II functions fall into the same three
categories, based on the results they generate.

Fungtions are called up by typing in “?" then a space
and the function. They can be called from the teﬂminel or
within command files.

NOTE: the parentheses shown below must be used.

(Remember that "strings" are simply a collection of
characters (including spaces, digits and symbols) handled,
- manipulate and otherwise used-as data. A "substring" is a
portion of any specific string.)

Don't worry about memorizing them now, but do scan the
descriptions so that you know where to look when you neéed
one of them in a command file.

! ({variable/string>) e -
is the lower- to uppercase function. It changes all
the characters from 'a'..'z' in a string or string
variable to uppercase. Any otheér characters in the
string are unaffected. You'll see this used frequently
in the accounting system (Section VI) to convert inputs
from the keyboard into a standard form in the files.
This makes it simpler when searching for data later,
einee you will know that all of the data is etered in
uppercase, regerdleee of how it was entered.

TYPE(<expression>)
is the data type funetien and ylelds a C, Nor L,
depending on whether the~expreeeien data type is
Character, Numeric or-Logical.

INT(<{variable/expression>)

is the integer function. It "rounds off" a number
with a decimal, ‘but does it by throwing away everything

- to the right of the decimal. The term inside the
parentheses ' (you must use the parentheses) can be a
number, the name of a variable or a complex expression.
In the latter case, the expression is first evaluated,
then an integer is formed from the results.

Note that INT(123.86) yields 123, while
INT(-123.86) yields -123. A call to a variable yields
a truncated integer formed from the current value of
that variable. If we were on record 7 of ane30ut DBF
a call to INT(Amount) would produce 2333, the integer
part of $2,333.75.

dBASE IT...81

To rounded to the nearest whole number (rather -
than chop), use this form: INT(value + 0.5). The value
within parentheses is first determined, then the
integer function of that is taken.

The integer function can also be used to round a
vaiue to any number of decimal places. INT(value*10 +
0.5)/10 rourrds a value to the nearest decimal place
because of the order of precedence of operations
(parenthesés, then integer, then divide): To round
to two places, use "100" in place of the "10"s. For 3
places, use "1000", ete.)

VAL(<variable/string/substring>)

is the string to integer function. It converts a :
character string or substring made up of digits, a sign
and up to one decimal point into the equivalent numeric
quantity. ¥VAL('123') yields the number 123.

VAL(Job:Nmbr) yields the numeric value of the contents
of the job number field in our MoneyQut database, since
we stored all Job Numbers as characters. You can also

~use it with the substring operator: VAL($(<stringd>)).

STR(<expression/variable/number>, <length>,
{decimals>)
is the integer to string function. It converts a
number or the contents of a numeric variable into a
string with the specified length and the specified
number of digits to the right of the decimal point.
The specified length must be large enough to encompass
at least all the digits plus the decimal point. If the
numeric value is shorter than the specified field, the
remaining portion is filled with blanks. 1If the
decimal precision is not specified, "0" is assumed.

This function is used quite often in the

accounting system to simplify displays. Numbers are
converted to strings then concatenated with (jeined to)
ether strings of ehereetere for diepleye.

LEN(<variable/string>)

is the string length function. It tells you how
many characters there are in the string you name. This

. can be useful when the program has to decide how much
storage to allocate for information with no operator
intervention. However, if a character field variable
name is used, this function returns the size of the
field, not the length of the contents (since any. unused
positions are filled with blanks by dBASE II).

dBASE II...82

#[{expraaa1nnfvariablefstring>, {start>, <length>)

is the substring functiom. It selects characters

from a string or character variable, starting at the
~ specified position and continuing for the specified

length. ; |

As an example, if we had a variable called <Date>
whose value was '810823', the function. “$(Date,5,2)"
would give us '23'. ' To convert these numerals to a
number, we could use “VAL($(Date,5,2)).

You'll find .an example of this in the
¢DateTest.CMD> file in Section VI, where groups of two
characters are taken from a 6-character date field,
converted to integers (using the VAL(...) function),
then evaluated to see if-they are in the correct range.

Don't confuse this with the substring logical
. operator described in Section II.

@(<variablel/string1>, <variable2/string2>)

i{s the substring search function. You might think
of this as "Where is stringl AT in string2?" When
you use this function, it produces the character
position at which.the first string or character
variable starts in the second string or charactkr
variable. If the first string does not occur, a value
of "O" is returned. -

One use for this is to find out where a specific
string starts so that you can use the preceding
substring function. Another use is to find out if a
specific string occurs at all.

(If you only need to know whether one string is in
another one, you can use the relational string
operator: String1$sString2, Section II.)

You'll find these ugseful in a command file when
the computer is searching without operator
“{ntervention, and you. can't simply step in and look to
see where the data is.

CHR(<number>)

yields the ASCII character equivalent of tue number.
Depending on how your terminal uses the standard ASCII
code, 2 CHR(12) may clear your screen, CHR(14) might
produce reverse video while ? CHR(15) would cancel it.
Other functions can be used to control hardware
devices, such as a printer. Check your manual--you'll
probably find a few interesting features.

To get underlining on your printer, try joining a
character string, the carriage return and the underline
like this: ? 'string' + CHR(13) + ' - '. You could
even set up a command file that uses the LEN function
to find out how long the string is, then produces that
many underline strokes.

dBASE II...82

is the macro substitution function. When the symbol
is used in front of a memory variable name, dBASE II
replaces the name with the value of the memnry variable
(must be character data). This can be used when'a
complex expression must be used frequently, to pass
parameters between command files, or in a command file
when the value of the -parameter will be supplied when
the program is run.
In the <Reportmenu.CMD> file in Section VI, it is
used to get the name of the required database:
? '"Which file do you want Lo review?'
ACCEPT TO Database ‘
USE &Database
It could also be used as an abbreviation of a

command: “STORE 'Delete Record' TO D". The command:

“&D Sf would then delete record 5 when the program

runs.

If the macro command is not followed by a valid
string variable, it is skipped. This means that you
can use the symbol itself as part of a string without
getting an error indicatiqp.

FILE(<K"filename"/variable/expression>)
* yields a True value if the file exists on the disk,

False if it does not. If you use a specific file name,
use the quote marks. The name of a string variable
does not require the quote marks. You can also use any
valid string expression: “FILE("B:™+Database)” would
tell you whether the file name stored in the memory
variable <Database> is on drive B (see ReportMenu.CMD
in Section VI). S

eliminates the trailing blanks in the contents of a
string variable. This is done by typing:
“"STORE TRIM (<variablé>) TO <newvariable>

dBASE II...84

Changing dBASE II characteristics and defaults

dBASE II has a number of commands that control how it
‘interacts with your system setup. You can change these
parameters back and forth "on the fly", or set them up once
at the beginning of your command file and leave them. In
many applications, the defaults will be just what you need.

Parameters are changed in your command files (or
interactively) by using the SET command. In the list
below, normal default values are underlined.

Once again, there's no need to memorize these. As you
work with the established defaults, you can decide if you
want to change any of the parameters on the list.

SET TALK ON Displays results from commands on console.
OFF No display.

SET PRINT ONR Echoes all output to your 'list' device.
OFF No listing.

SET CONSOLE ON Echoes all output to your conscle.
' OFF Console off. ’

SET SCREEN ON Turns on full screen operation for APPEND,
EDIT, INSERT and CREATE commands.
OFF Turns full screen operation off.

SET FORMAT TO SCREEN sends output of @ commands to the
screen

SET FORMAT TO PRINT sends output of @ commands to the
printer

SET MARGIR TO <nnn> sets the left-hand margin on your
printer ("nnn"<=254)

SET RAW ON DISPLAYs and LISTs records without spaces
| between the fields .
OFF DISPLAYs and LISTs records with an extra space
between fields

SET HEADING TO <{string> changes the heading in the REPORT

command

SET ECHO ON All commands in a command file are displayed
_ on your console as they are executed.
OFF No echo

SET EJECT ON enables page feed with REPORT command
OFF disables page feed

dBASE II...85

SET STEP ON Halts after completing each command, for
debugging command files.
OFF Normal continuous operation.

SET DEBUG ON sends output from the ECHO and STEP commands
" to the printer only
OFF sends ECHO and STEP output to the screen

SET BELL ON enables bell when field is full
OFF disables bell

SET COLON ON uses colons to delimit igput variables on
the screen :
OFF disables the colons

SET CONFIRM ON waits for <enter> before leaving a
variable during full screen editing
OFF leaves the variable when the field is full
SET CARRY ON carries data from the previous record
forward to the new record when in APPEND
OFF shows a blank record in APPEND mode

SET INTENSITY ON enables dual intensity for full screen
operations
OFF disables dual intensity

SET LINKAGE ON permits databases to be linked for display
with up to 64 fields and up to 2000 bytes per
.displayed record. The P. or S. prefix must
be used when field names are similar in both
databases r
OFF disables linkage

SET EXACT ON requires that all characters in a comparison
between two strings match exactly :
OFF allows different length strings. E«Bey
"ABCD'="AB' would be True (Also affects
FIND command)

SET ESCAPE ON allows the <escape> key to abort command
~ file execution |
OFF disables the <{escape> key

“SET AJI.TERNATE TO <filename>” creates a file with a
.TXT extension for saving everything that goes to your CRT
screen. To start saving, type "SET ALTERNATE ON".

You can change the file that you are saving to by
typing “SET ALTERNATE TO <newfile>”.

To stop, type "SET ALTERNATE OFF". This also
terminates when your QUIT dBASE II.

dBASE II...86

Merging records from two databases (UPDATE)

Dzta can be transferred rrom one database file to
another with the following command:

UPDATE FROM <database> ON <key> [ADD <field 1list>]
[REPLACE <field list>]

Note: Both databases must be presorted on the "key"
field before this command is used.
_ Both files are "rewound" to the beginning, then key

fields are compared. If they are identical, then data from

the FROM data base is either added numerically to data in
the USE file, or is used to replace data in the use file for
the fields specified in the field list. When fields do not
match, those records are skipped. This command can be used
to keep inventory updated, for example.

ln the accounting systew in Section VI, it is used in
{Payroll.CMD> and <CheckStub.CMD>. It's useful and worth
experimenting with.

dBASE II...87

JOINing entire databases

JOIN is one of the most powerful commands in dBASE II.
It czn combine two databases (the USE files in the PRIMARY
and SECONDARY work areas) to create a third database. The
form of the command is: ‘

JOIN TO <newfile> ON “texpression> [FIELD <{list>]

In operaticn, the command positions dBASE II on the
first record of the primary USE file and evaluates each of
the records in the secondary USE file. Each time the
nexpression" yields a true result, a record is added to
"newfile”. If you are in the primary area when you issue
the JOIN command, prefix variable names from the secondary
USE file with S.. If you are in the secondary area, prefix
variables from the primary USE file with P.. (See example
below-) ‘

When each record in the secondary USE file has been

evaluated against the firat record of the primary USE file,

dBASE II advances to the second record of the primary USE
file, then evaluates all of the records from the secondary
USE file again. This is repeated until all records from the
files have been compared against each other.

_ Note: This can take a great deal of time to complete if
the two databases are very large. 1t may also not be
possible to complete at all if the constraints are too
loose. Two files with 1,000 records each would create a
JOIN database with 1,000,000 records if the JOIN expression
was always trua, while dBASE II is limited to 65,535 records
in any single database. _

Te use the command, use this sequence of instructions:

USE Inventory

SELECT SECONDARY

USE Orders -

JOIN TC NewFile FOR P.Part:Number=Part:Number;
FIELD Customer,Item,Amount,Cost

-This creates a new database called <{NewFile.DBF> with
four fields: Customer, Item, Amount and Cost. The structure
of these fields (data type, size) are the same as in the two
joined databases. (Notice that the "P." prefix is used to.
call a variable from the work area not in USE.) -

dBASE II...88

Full screen editing and formatting
(€..S5AY..GET..PICTURE)

dBASE II has a powerful series of formatting commands
‘that allow you to position information precisely where you
want it. You saw this in action in our <Sample.CMD>
program, where we used:

@ <coordinates> SAY ['prompt'] GET <variable)

This command was able to position prompts and
variables (and their values) at any location we specified on
the screen. When we listed a series of commands, then
followed them with READ, we were able to control the format
of the entire screen. You might want to create and run the
following command file fragment to refresh your memory:

STORE " " TO MDate
STORE " ¥ TO MBalance
STORE " " TO MDraw
€ 5,5 SAY "Set date MM/DD/YY " GET MDate
@ 10,5 SAY "What is the balance? ™ GET MBalance
€ 15,5 SAY "How much is requested"™ GET MDraw '
READ
- ERASE
@€ 5,5 SAY "Should we do an evaluation?™ GET MEvaluate
READ :

The command can also be used without the SAY phrase as
@ <{coordinates> GET <{variable> (with a later READ in the
command file). This displays only the colons delimiting the
field length for the variable.

Tip: In the SCREEN mode the line numbers do not have to be
in order, but it's good practice to write them this way
since they must be in order for PRINT formatting.

This command can also be expanded for speciail
formatting like this: '

@ <coordinates> SAY [expression] GET <variable> [PICTURE <format>]

The optional PICTURE phrase is filled in using the
format symbols listed below. The command:

€ 5,1 SAY "Today's date is™ GET Date PICTURE '99/99/99"'
would display:
Today's date is: / / :

assuming that the Date variable was blank. In this example,
only digits can be entered.

d ASE I1I...89

The GET function symbols are:

or # accepts only digits as entries.
accepts only alphabetie characters.
converts character input to uppercase.
accepts any characters.
shows '4$' on screen.
shows '"#' on screen.

N4 b= > O

With this command, you can format your menu and input -
screens any way you want them, quickly and easily.

Tip: The Osborne series of accounting books, besides
describing some fairly sophisticated systems, also includes
CRT Mask Layouts for menus and entry formats with
coordinates clearly marked. Well worth their price for this

alone.

dBASE II...90 | | dBASE TI...91

Formatting the printed page (SET FORMAT TO PRINT, Setting up and printing a form
@..SAY..USING) '
— To set up a form, use measurements based on your

When you SET FORMAT TO PRINT, the € command sends its printer spacing (ours prints 10 characters per inch
information to the printer instead of the screen. horizontally, with 6 lines per inch vertieally).

The GET and PICTIRE phrases are ignored, and the READ

" commanc cannot be used.- - N The "Outgoing Cash Menu" that we used in our earlier

Data to be printed on checks, purchase orders, invoices command file could very well have had another selection item
or other standard forms can first be organized on the screen ~ called "4 = Write checks", so we're going to do part of the
with this commsnd, then printed exactly as you see it: : : WriteCheck command file.

' To start with, we'll have to input the date. The
@ coordinates SAY variable/expression/'string' [USING f“"ﬁt‘h "~ following command lines accept the date to a variable called
oy MDate, and checks to; see whether it is (probably) right:

For printing, the coordinates must be in order. The : ERASE
lines must be in increasing order (print line 7 before line SET TALK OFF
9, ete.). On any given, line the columns must be in crder STORE ®™ " TO MDate
(print column 15 before column 63, etc.). STORE T TO NoDate

This command can output the current value of a variable | DO WHILE NoDate
that you name, the result of an expression, or'a literal | @ 5,5 SAY "Set date MM/DD/YY" GET MDate PICTURE %"99/99/99n
string prompt message. - : READ -

If the USING phrase is im.luded this command IF VAL($(MDate,1,2)) < 1;
specifies which characters are printed as well as where they -«OR. VAL($(MDate,1,2)) > 12;
appear on the page. the symbols used are: | | .OR. VAL($(Mpate,’,2)) < 1;

- .OR. VAL($(MDate,4,2)) > 31;
9 or # prints a digit only. .OR. VAL($(MDate,7,2)) <> B1
A prints alphabetic characters only. STORE ™ ® TO MDate
X prints any printable character. @ 7,5 SAY "#%88% BAD DATE, PLEASE RE-ENTER. #@8&&n
$ oprints a digit or a '$' in place STORE T TO NoDate

of a leading zero. i “RLSE
® prints a digit or a '#' in place STORE F TO NoDate
of a leading Zzero. ENDIF .
; ENDDO because we now -have a valid date

The command 10,50 SAY Eours®Rate USING '$$$$$3$$.99° ERASE
could be used in both the screen and the printer modes since |
it has no GET phrase. For Hours = 8 and Rate =12.73, it In English, the above first sets the value of MDate to 8
would print or display $$$$101.84, useful for printing | blanks, then the €..SAY command displays:

checks that are more difficult to alter.

-

Set date MM/DD/YY: / / :

Hhen the date is entered, it- is checked by the IF to see
‘whether the month is in the range 1-12, day is in the range
1-31, and year=81. This is done in three steps:

- the substring function $ takes the two characters
representing the month, day or year (e.g., for month
it .starts in the 4th position and takes 2 characters)

- the VAL function converts this to an integer

- this integer is then compared against the allowed
values

If the value is.out of range, MDate is set to blanks again
and an error message comes up. When a date within the
allowed range is entered, the program continues.

.The printout for the check itself could be the next

portion of the program. Using the measurements of our

dBASE II...92

checks, this is the list of commands:

@ 8,3 SAY Script * A character variable that prints the
* amount in script. This is filled in
¥ by another procedure called Chng2Scrpt.
*# We stubbed this for now like this:
®# STORE 'Script Stub' TO Script
® RETURN

11,38 SAY Vendr:Nmbr

11,50 SAY MDate

11,65 SAY Amount

13,10 SAY Vendor

14,10 SAY Address

15,10 SAY City:State

15,35 SAY ZIP

17,10 SAY Who

MO ™M

You can check this out on your screen before you print it,
then switch from SCREEN to PRINT modes with the SET command.
The values for the variables are P?GVldEd elsewhere in your
command file. '

Longer forms are no prnblen. a printer page can be up
to 255 lines long. To reset the line counter, issue and
‘EJECT” command with the printer selected. |

dBASE II...93

Time to regroup

Because dBASE II is such a powerful systen, it has a
large number of commands apd techniques for dealing with
your database needs and allowing you to get more information
more easily than any other database system or file handler
currently running on micros.

The easiest way to learn the techniques ia to go
through the examples and key them into your computer,
changing names as you go to reflect your needs rather than
our examples.

You atarﬁ by using the CREATE command to create your
databases. Besides MoneyOut.DBF, we've created a number of

.other database structures that you might find useful.

They're listed at the beginning of Section VI.

. The <Céstbase.DBF> file started life as <Maney0ut DBF>.
We've modified it a great deal,.changing field names and
sizes (with and without data in the database).

: We've also added our own spacing between the fields
(see fields 5, 7 and 10), rather than using the dBASE II
"RAW" default of a space between each field. NOTE: you can
NOT enter the hyphen as a field name when you CREATE a file.
To enter it, you have to MODIFY STRUCTURE, use ctl-N to
insert a blank line, then type in the hyphen and the field
size. Ctl-W saves the change (ctl-0 with Superbrain).

You may want to check some of the other database
structures, then see how they are used in the programs. We
tried to keep the field names and their individual |
structures the same for all our databases to allow for file
merges and other uses. Data from one database will fit into
corresponding fields in another, and with common names the
transfer is straightforward.

You might want to check through the command files in
Section VI now. Most of the dBASE II commands have been

‘used, and the files work the way they are set up.

The first command file is the main menu for the system,

 with sub-files selected by pressing a number. Some of the

files get a bit complicated (<Payroll> for example), so you
might go to some of the utility programs at the end of
Section VI before you try to unravel the rest of the .

programs.

Writing these command files, we used exactly the

procedures that we recommended earlier: first define the

problem in a general sense. Gradually keep dropping down in
levels of detail, using ordinary English at first,; then

pseudocode, putting terms that dBASE II would understand in

capitals when we finally got to that level.
When we came up with something that had to be done, but

we weren't sure how to do it, we simply made up a procedure

name for it, then went back to it later.
The indentation and mixture of upper- and lowercase

’ dBASE II...94

letters was not done just for this manual: it's the way we
work all the time. It makes writing the command files a lot
easier because you can see groupings of the structures that
you are using.

‘The identifiers were pulled out of our semi-English
pseudocode, modified a bit to fit within the 10 characters
allowed, but not enough to destroy the meaning.

Comments are sprinkled throughout the files for
documentation, although in many cases the programs are
almost self-documenting because so many of the dBASE II
commands are similar to English equivalents.

dBASE II...95

Section V:

Datab&ae &-aicallllﬂﬁllII-I.,.“".'..‘.‘II‘I‘I..‘"-.I. 95
A brief introduction to database organization...... 98
dBASE II ‘Records, Files and Data TypeS...ccevvevees 99

dBASE II OPERATION SUMMARY:e:eoeesesvessnscassvecedl02
dBA-SE II FWCTIUH SMARYOO-‘""‘1;'!!!1.1.1-|l--g.|103
dBASE IT COMMAND SUMMARY.:escessscccccasavssenanans 104

Commands grouped by what you want done.....ceuve...109
109 File structure
110 File operations
110 Organizing database
110 Combining databases _ : .
111 Editing, updating, changing data
111 Using variables
112 Interactive input
112 Searching
112 Output
113 Programming

dBASE II...96

pDatabase Basics

A database management system (DBMS) like dBASE II is
considerably different from a file handling system.

A file handling system is usually configured like
this:

PAYROLL g PAYROLL 5y PAYROLL
FILES PROGRAMS OUTPUT

TING
ACCOUNTI £ ACCOUNTING g ACCOUNTING

FILES PROGRAMS OUTPUT
INVENTORY &)‘ INVENTORY | INVENTORY
FILES PROGRAMS | OUTPUT

The payroll programs process the payroll files. The
accounting programs process the accounting files. ,And the
inventory programs process the inventory files. To get
reports that combine data from different files, a new
program would have to be written and it wouldn't necessarily
work: the data may be incompatible from file to file, or
may be buried so deeply within the otheér programs that
getting it out is mope trouble than it's worth.

A database management system integrates the data and
makes it much easier to get useful information from your
records, rather than just reams of data. Conceptually, a
DBMS looks something like this: '

PAYROLL PAYROLL
DATA 7 pROGRAMS [~ -
DATABASE

ACC'T'G ACC'T'G

| [S>| MANAGEMENT >
DATA SYSTEM 'PROGRAMS
INV. INV. Ly
DATA PROGRAMS
DATABASE

Data is monitored and manipulated by the DBMS, not the
.ndividual applications programs. All of the applications
sjystems have access to all of the data. In a file handling
system, this would require"a great deal of duplicated data.
Aside from tha potential for entry errors, data integrity is
extremely hard to maintain when the same data is supposed to
be duplicated in different files: it never is.

To generate a new processing system in a file handling
system, a new program and new fileg must be set up. Using a
DBMS, a new access program is written, but -the data does not

dBASE II...OT

_ha?e to be restructured: the DBMS takes care of it.

If a new kind of data is added to a record (salary
history in a personnel file, for example), file handling
programs have to be modified. With a DBMS, additions and

changes have no effect on the programs that don't need to
use the new information: they don't see it and don't know

‘that it's there.

Database management systems come in two flavors:
hierarchal and relational. These terms refer to how the
DBMS keeps track of data.

A hierarchal system tends to get extremely complex
and difficult to maintain because the relationships between
the data elements are maintained with sets, linked lists,
and pointers telling the system where to go next. Very
quickly, you can end up with lists of lists of lists and
pointers to pointers to pointers.

A relational database management system like dBASE
II is a great deal simpler. Data is represented as it is,

and the relation between data elements can be considered a
two-dimensional table like this one:

Col.l1 ~ Col.2 Col.3 Col.4 Col.5
Invoice . '
Number Supplier Description Amount P{mber
2386 Graphic Process Prints 23.00 BBQ-747
78622 8rown Engraving | 'Litho plates 397.42 | TFS-901
M1883 Air Feeight Inc. Shipping 97.00 SPT-233

Each row going across the table is called a record.
Each column is called a field of the record. Each entry in

‘the table must be a single value (no arrays, no sets, etc.)
‘All the entries in a column must be of the same type. Each

record (row) is unique, and the order of records (rows)

doesn't matter.
When we show you more realistic examples later, you'll
see that records don't get any more complicated, just

larger.

dBASE II...98

A brief introduction to database organization

Once you've gpt your database set up, vou'll want to
access, your data ‘in an orderly, ordered manner.

With some databases, the order in which you.enter the
data will be the order in which you want to get your
inf tion out. In most cases, however, you'll ulnt it~

organized differently.

| With dBASE II you can organize data using the SORT
command or the INDEX command. (Both of these are described
}n BOT'@ ﬂutail in Section II: Organizing your databases.)

The SORT command moves entire records around to set up
your database in ascending or descending order on any field
that you specify (naqu‘ZIP code, etc.). This field is
called the key.

One drawback of sorting is that you may want to access
the datgbase on one field for one application, on another °

field for a different application. Another drawback is that.

any new records added are not in order, and would require a
sort every time you entered data if you wanted to maintain
the order.

Finding data is also relatively slow, aince the sorted
database must be searched sequentially.

INDEXING is a way around these problems.

Indexing is a method of setting up a file using only
the keys that you are interested in, rather than the entire
databases. A key is a database field (or combination of
fields) that make up the "subject" of the record. In an
inventory system, the part number might be the subject, and
the amount-on-hand, cost, location, etc. the descriptive
fields. In a personnel databaae, names or employee numbers
would probably make the best keys.

With an indexed database, the keys alone are organized,
with pointers to the record to which they belong. dBASE II
uses a structure called B¥-trees for indexes. This is
similar to a binary tree, but uses storage much more
efficiently and is a great deal faster. A FIND command
(described in Section II) typically takes 2 seconds with a
meditm to large database.

If you need your data organized on several different
fields for different applications, you can set up several
index files (one for each of the fields) and use the
appropriate -index file whenever required. You could have
‘index files ordered by supplier name, by customer number, by
ZIP code or any other key, all for a single database.

New entries to a database are automatically added to
the .index file be used.

Another advantage of indexed databases is the rapid
location of data ‘that you are interested in.

dBASE II...99

dBASE II Records, Miles and Data Types

dBASE II was designed to run on your micro so its scope
stops short of infinity, but you'll find yhat yau'll have to
work at figuring out how to get to its maximums.

dBASE II limits you to 65,535 records per file, but
with the memory and even "mass ator;ge" limitations nf a
micro, this is really no limitation at all.

A dBASE II record can be as large as 32 fields and 1000
characters long (Hhiuhaver comes first):

12 43 48 PR) < O 1000
You might want to think of this as a 1000 character

long strip that.you can segment any way ynu want to up to
the maximums, or shorten if you don't need to use it all.

_T"You can have four fields that use the full 1000 characters

(254 characters per field maximum). Or a record one
character (and field) long. Or anything in between.

In our previous example, each record had five fields
and the total record length was 58 characters:

Invoice | : | Job
Number Supplier Description Amount Number

E 9°10 8 43 44 81 52. 58.
Data Types

As we said earlier, each field must contain a ainglu
type of data, and in dBASE II these are:

Chnrlutnr- all the printahle ASCII charautura, including .
the integers,.symbols and spaces.

Humeric: positive and negative numbers as large as 1.8 x
10<63> down to numbers as small as 1.0 x 10<-63>.
Accuracy is to ten digits, or down to the penny for
dollar amounts as high as $99,999,999.99.

Logical: these are true/false (yeufno} values that apeupy
a field one character long. dBASE II recognizes T.
t, Y and y as TRUE, while F, £, N and n are
recognized as FALSE.

dBASE II...100 dBASE II...101
dBASE II File Types

Field Names

File names are limited to 8 characters and a 3
character extension after a period. You can use the colomn
in the file name, but then you'll only be able to manipulate
the files through dBASE II: CP/M will store the files and
get the names right, but won't recognize them if you ask it

Each field has a name so that dBASE II can recognize it
when you want to find it. Field names can be up to 10
characters (no spaces) long, and must start with a letter,
but can include digits and an embedded colon:

" fvalid) to perform a function like PIP. Ten character long
Sisskeoris fes1ta) . . fileriames aren't a problem: CP/M simply chops them down to
2 2 d roase okay) eight. If you use upper and lower case letters to name
i?;é";igzr u EI?{::;I zg:::]an Aone y your files, CP/M will change them to capitals, but they'll

Head;.ng' (11legal: colon not embedded) still show up better in your command files.

A dBASE II file is simply a collection of information

. rs as it takes to make of a similar type under a single name, something like a
::{: .m{]: am::ﬁ:::guf har'a;::‘;mbr' is a lot better giant file folder. dBASE IT operates with the six different

than 'No.' and infinitely better than 'J'. Using file types described below.
a maximum of nine characters will make handling

memory variables much easier (discussed later). -DBF Database files: This is where all your data is Kept’

and the extension is automatically assigned by dBASE II

Anuﬁhar tip: Once you get into setting up when you CREATE a new file. Each .DBF file can store
Command files, you'll find it useful to use up to 65,535 records. Do not use a word processor on
capital letters for words that dBASE II these files.

understands and upper and lowercase for fields, -FRM Report form files: These files are automatically
variables and other items that you confrol. creayed by dBASE II when you go through the REPORT
You'll appreciate this the first time you go back ~dialog. They contain headings, totals, column

contents, ete. They can be modified using a word :
processor or text editor, but we definitely recommend

~ against this practice: make your changes using dBASE
II.

-CMD Command files: These files contain a sequence of
dBASE II statements to perform functions that you use
frequently, and can be a complex as a compléte payroll
system. These are created using a text editor or word
processor. - .

-NDX Index files: These are automatically created by the
INDEX command. Indexing provides very rapid location

_ of data in larger databases. _

-MEM Memory files: These are automatically created when
you SAVE the results of ¢omputations, constants or
variables that you will want later. You can SAVE up
to 6l items, each up to 254 characters long, then
RESTORE them the next time you need them.

+-TXT Text output files: - This file is created when you
use the SET ALTERNATE command to store everything
'that goes to the CRT on your disk, too. This feature
can be used as a system logging fUnctinn, and the
infcrmatian can later be edited, printed, and/or saved.

' They are also created when you COPY...SDF.

into a command file to make changes.

dBASE II...102 dBASE II...103

dBASE II OPERATIONS SUMMARY | ' dBASE II FUNCTION SUMMARY
Arithmetic operators (generate arithmetic results: p.37) _ -
record number (p.- 76)
() : parentheses for grouping .
® : multiplication B deleted record (_p. 76)
/ : division | :
+ : addition g EOF end of file (p.76)
- § subtraction _
{(<variable/string>) convert to uppercase (p. 80)
Relational Operators (generate logical results: p. 37) ‘
. TYPE(<expression>) data type (p. 80)
€ : less than :
> : greater than INT(<variable/expression>) integer function (p. 80)
= ¢ equal :
<> : not equal VAL(<variable/string/substring>) string to integer (p.81)
<+ : less than or equal
>= : greater than or equal STR(<expression/variable/number>, <length>, <{decimals>)
_ ' integer to string (p.81)
Logical Operators (generate T/F logical results: p. 38) '
LEN(<variable/string>) string length (p. 81)
() : parentheses for grouping
.NOT. : Boolean not (unary operator) $(<expression/variable/string>, <{start>, <lengthd>)
-.AND. : boolean and substring select (p. 82)
«OR. : boolean or , _
$: substring logical operator (p. 40) €(<variable1/string1>, <{variable2/string2>)
(is string! in string2?) : substring search (p. 82)
String eperators (generate string results: p. 41) | CHR(<number?>) number to ASCII (p. 82)
+ : string concatenation (joining) S 1 macro substitution (p. 83)
- t string concatenation with blank squash '
FILE(<"filename®/var/exp>) file exists? (p. 83)

TRIM .railing blanks (p: 83)

dBASE II...104
dBASE II COMMAND SUMMARY

The following abbreviations are used in this summary:

{exp> = expression
{var> = variable
<str> = string
{ecoord> = coordinates
The symbols <..> bracket items that are to be
specified by the user. ‘Square brackets [..] enclose .

optional items. In some cases, options are nested
(themselves have other options).

7 (exp*[,liat])ﬁ =
Display an exprzsssion (or list separated by commas) (p. 25)

@ <{coord> [SAY <exp> [USING "picture’]] [GET <var> [PICTURE *picture’]]

Format console screen or printer output (p. 88)

ACCEPT ['prompt'] TO <var) - _
Input a character string from the console, no ouotes (p. 68)

APPEND [BLANK]
APPEND FROM <filename> [SDF] [FOR <exp>]

LDELIMITED [WITH delimiter]]
Add data to a database (pp. 26, 47, 70) ‘

CARCEL !
Abort a command file execution

CHANGE [scope] FIELD <list> [FOR <exp>]
Make multiple changes to a database (p. 51)

CLEAR
Reset dBASE file and memory vgkiable environment (p. 76)

ICDITIIUE :
| Continue a LOCATE command (p. 55)

[SDF]
QDP¥ [scope] TO <filename> [STRUCTURE] [FIELD <list>] [FOR <exp>]

|) +DELIMITED [WITH delimiter]]
Lopy data from a database to another file (pp. 43, 47, 49)

‘00?! TO <{filename> STRUCTURE EXTENDED ,
Creates a new file whose records define the structure of
the old file. (see also CREATE <newfile> FROM <oldfile>)

COUNT [scope] [FOR <exp>] [TO <var>]
Ceunts records that satisfy some conditien (p. 58)

dBASE II...105

CREATE :

Make a new database (p. 14)

CREATE <newfile> FROM <oldfile>
Creates <newfile> with structure determined by the data in the

- records of <oldfile>. (see also CUPY STRUCTURE EXTENDED)

DELETE [scope] [FOR <exp>]
Mark specified records for deletion (p. 28)

DELETE FILE <filename>
Erase a file from the system (p. 28)

DISPLAY- [scope] [FOR <exp>] [OFF]

Show data based upon request (pp. 20, 23)

DISPLAY [scope] [<field> [,list]]
Shows only the selected field(s)

DISPLAY STRUCTURE
Show structure of the database in USE (p. 23)

DISPLAY MEMORY "y
Show the contents of the memory variables (p. 35)

DISPLAY FILES [ON disk drive]
Show a disk: directory (p. 23)

DO <filename>
Execute a command file (p. 63)

DO WHILE <exp> .
Perform a group of commands repeatedly (p. 66)

EDIT .
Alter the-data in a database (p. 18)

EDIT [number] .
‘Presents a spécific record for editing (p. 18)

EJECT |
Do a form feed on the printer

ELSE
Alternate execution path in an IF command (p. 64)

ENDDO
Terminator for DO WHILE command

ENDIF
Terminator for an IF command

dBASE II...106,

ERASE
Clear console screen

FIND <key>

Locate a record in an indexed database based upon key
value (no quotes needed for character keys) (p. 54)

GO or GOTO [RECORD], or [TOP], or [BOTTOM], n
Position to a given plaea in a database (p. Eﬂ)

IF <exp>
Conditional execution command (p. 64)

INDEX ON <key> TO <filename)>
Create.an index file for the database in USE (p. 52)

INPUT ['prompt'] TO <vard

Accept user inputs into memory variables. User prompt
string is optional (p. 68)

INSERT [BEFORE]
[BLANK]
Add a new record to a database among other records (p. 26)

JOIN TO <{filename> ON <exp> [FIELDS <list>]

Create a database composed of matching raunrda from two
other databases (p. 87)

LIST .
Show data records (pp. 20, 21)

LOCATE [scope] [FOR <exp>]
Find the record that matches a unnditinn (p. 54)

LOOP
Escape mechanism for DO WHILE groups (p. 66)

MOTE or &

A command file comment that is not displayed when the
command file is run

MODIFY COMMAND <filename>

Permits modification of a file directly from dBASE II (p. 76)

MODIFY STRUCTURE

Alter the structure of a database. Destroys all data in
the database (p. 42)

PACK
Eliminates records marked for deletion (p. 28)

dBASE II-..1OT

- QUIT [TO list of CP/M level commands or .CDH files]

Terminate dBASE and execute a program chain. Each
command must be in quote marks, and commands must be
separated by commas (p. 76)

READ
Enter full screen editing of a formatted screen.

Accepts data into GET commands (p. 70)

RECALL [scope] [FOR <uzp>]
Unmark records that have been marked for dulntion (p. 28)

RELEASE [<var> [,1ist]] or [lLL]
Eliminate unwanted memory variables (p. 36)

REMARK
A comment that is shown on the screen Hhen t‘.hi ocommand

file is run

RENAME <oldfile> TO <newfile>
Give a file.a new name (p. 76)

REPLACE [scope] <field> WITH <exp> [,<field> WITH <exXp...)
Alter data in a database. Make sure that you have a backup,
because dBASE II will do precisely what you ask it to do,
even if it's not exactly what you had in mind (p. 50)

REPORT [scope] [FORM <r11aﬁala)] LT0 PRINT] [FOR <exp>]
Generate a report (p. 56)

RESET
Tell CP/M that a diskette swap may have occurred

RESTORE FROM <filename>
Remember SAVEd memory variablaa. Destroys all existing
memory variables

RETURN
Terminate a command file and return to calling file

SAVE T0O <{filename>
Write memory variables to a file for future use

SELECT [PRIMARY] or [SECONDARY]
Switch working areas (p. 75)

SET parameter [ON], or [OFF]
Dynamically reconfigure dBASE operation (p. 84)

SKIP +<{exp/number>
Move forward or backwards in the database (p. 24)

dBASE II...108

SORT ON <key> TO <filename> [ASCENDING]
IDESCENDING]
Generate a database that is sorted on a field (p. 52)

STORE <exp> TO <var> | N
Place a value into a memory variable “p+33)

SUM [scope] <field [,1ist]> [TO <var [,1ist]> [FOR <exp>]
Total fields in a database (p. 58)

TOTAL TO <filename> ON <key> [FIELDS <field [,1ist]>
Generate a database with sub-totals for records (p. 59)

UPDATE FROM <filename> ON <key> [ADD <field [,1ist]>]
" [REPLACE <field [,1ist]>]

Modify a database with data from another database. (p. 86)

USE <filename> [INDEX <filename>]
Open a database file for future operations (p. 20)

USE |
Close a previously opened database file

WAIT [TO <var>]
Pause in program operation [for input] (p. 68)

dBASE II...109

",

dBASE II commands grouped functionally

FILE STRUCTURE:

- CREATE 'defines an entirely new file structure

CREATE <newfile)> FROM <oldfile> creates a new file whose
structure is described in the records of the old file.

USE <oldfile>
COPY TO <newfile> STRUCTURE | :
- These two commands combined create a new file with
the same structure as an old File

USE <cldfile>

COPY TO <newfile> STRUCTURE EXTENDED
Create a new file that contains the structure n@
the old file as data

CREATE <newfile> FROM <oldfile>
Creates a new file whose structure 13 defined by thﬂ
reuords in the old file.

DISPLAY STRDCTURE
LIST STRUCTURE
Both show the structure'of the file in USE

'HDDIF! STRUCTORE changes file names, sizes, and ovdrall

structure, but destroys data in the database

To change structure with data in the database:

USE <oldfile>

COPY TO <newfile>

USE <newfile>

MODIFY STRUCTURE
APPEND FROM <oldfile>
COPY TO <oldfile>
USE <oldfile>
DELETE FILE <newfile>

To rename fields with data in the détabase:

USE <oldfile>

COPY TO <newfile> SDF

MODIFY STRUCTURE

APPEND FROM <newfile>.TXT SDF
DELETE FILE <newfile)’

dBASE II...110
FILE OPERATIONS:

USE <filename> opens a file
USE <newfile> closes the old file
USE closes all fileg

RENAME. <oldname> TO <newname>
Must NOT rename an open file

~COPY TO <filename> creates a backup copy
GLEln.q;oseu all files and erase all memory variables

SELECT [PRIMARY][SECONDARY]
allows two files to be independently open at the same
time. Data can be transferred with P. and S. prefixes

DISPLAY FILES [ON <d>] lists databases on logged-in drive
(or drive specified), can use LIST instead

DISPLAY FILES LIKE <wildcard> [ﬂl <d>] shuwa other types
of files on drives

QUIT closes both active areas, all files, terminates
dBASE II operation

ORGANIZING DATABASES:
SORT ON <key> TO <newfile}

INDEX ON <key> TO <newfile)>
Can use multiple keys for both commands

COMBINING DATABASES

COPY TO (nnufila)_createa a duplicate of the file in USE

APPEND FROM <otherfile> adds records to the file in USE

UPDATE FROM <otherfile> ON <key> adds to totals or .
replaces data in the file in USE. Both files must be
sorted on the <key>. :

JOIN creates a third file from two other fileé

dBASE II...111

EDITING, UPDATING, CHANGING DATA:

DISPLAY, LIST, BROWSE let you examine the records
DELETE marks record so it is not used

RECALL unmarks record

PACK erases deleted records

EDIT lets you make changes to specific records

REPLACE <field WITH data> global replacement of data

in fields, can be conditional as with most dBASE II
commands

CHANGE. .FIELD edit based on field, rather than record

@ <{coord> GET <var>
READ displays the variable, lets you change it

INSERT [BEFORE][BLANK] inserts a record in a database

UPDATE FROM <otherfile> ON <key> adds to totals or
replaces data in file in USE from another file

MODIFY COMMAND <filename> allows changes to your command
files without having to go through your text editor

USING VARIABLES:

(Allowed up to 64 memory variables plus any number of
field names.)

LIST MEMORY, DISPLAY MEMORY both show the variables,
their
data types and their contents

& returns the contents of a character memory variable
(i. e., provides .a literal character string)

STORE <value) TO <var> sets up or changes variables
RELEASE <var) cancels the named variable

SAVE MEMORY TO {filename) stores memory variables to
the named file (with .MEM extension)

RESTORE FROM <filename> reads memory variables back into
memory ' {destroys any other existing memory variables)

dBASE II...112

INTERACTIVE INPUT:
WAIT stops screen scrolling, continues with any key
WAIT TO <var> accepts character to memory variable

IRPUT ['prompt®'] TO <var> accepts any data type to a
memory variable (creates it if it did not exist),
character input must be in quotes '

ACCEPT ['prompt'] TO <var)> same as INPUT, but no quotes
around character input

@ <coord> SAY ['prompt'] GET <var> [PICTURE]

READ . 4 .
displays memury_variable, replaces it with new input

SEARCHING:

SKIP [+<exp>] moves forward or backward a specific
number of records

GO[T0] <number>, GO TOP, GO BOTTOM
~move you to a specific record, the first record, or
the last record in the database '

FIND <{str> works with indexed file in USE, very fast

LOCATE FOR <exp>

CONTINUE
Searches entire database

OUTPUT :

‘7, DISPLAY, LIST show expressions, records, variables,
structures

REPORT [FORM <formname>] creates a sustom format -for
for output, then presents data in that form when
called g

@ <coord> SAY <var/exp/str) formats ocutput to screen
or to printer ([USING <format>] can be added to
provide PICTURE format for the printer)

dBASE IIl-h113

PROGRAMMING::

(Programs stored in COMMAND FILES with .CMD extension.)
DO <filename? starts the program-

IF <conditions> Makes choices, single or

perform commands multiple (when nested)
ELSE 1y
' perform other commands
ENDIF
DO WHILE <conditions> {Conditions> must be
_ perform commands changed by something
ENDDO in the loop eventually

(This page intentionally left blank.)

"dBASE II...114

dBASE II‘I l115

Section VI

A working accounting system

The following pages are command files written by a
customer using almost all of the dBASE II commands,
following the instructions in this manual.

The system may be fairly elementary from an
accountant's viewpoint, but includes some programming

"techniques that you might find useful.

Besides illustrating individual commands, it shows you
how to set up menus, how to find data and merge files,
different ways of setting up the inputs to the system, and a
number of interesting solutions to some of the problems
involved in keeping a cash journal, doing payrolls, and
managing databases so that information 1s avallable and data
integrity is not compromised.

The programs are self-documented, with comments
sprinkled liberally throughout.

CONTERTS

STRUCTURES:cccscsscssacsascsnsses
REPORT FILES.:ccceccvccnae ceves
SYSTEM CONSTANTS...c.ccccescceas
ACCOUNTS.:ccccovesssscisnssccscns

'msmulc-iltiln--tn---i--in‘iiin

UsnuiI-l-ll.‘...l’l..l."iil'll'l_

msmILLSIﬂll'lltiiii;ili‘ltiliil
WSTTIMIir'iiail;iilililtllllll
mmpn‘“it\l---'tn--ltttt-t-nt-

P.I.MIU-“.“..u.-.“.._........
PAYBILLS:.:ceacvccccncsassssnsese
PAYPIND .csersssscscacocccssnsnne
PAYEMPS .cssssssscsssccassssssane
an'olLLIIiiltliiii -------- sesnace

Dgpm'u-tiiciclitlii-cttcacn:-io
DEPOSITSttci-i-iiii-a.---a---:-.
DBPPRI“--------.”.“--.---”--
DEFTR“S.'----------,-.-.--.--....

Iomn....FI.-.-..I."-l'll-.'l.-li

dBASE II...116

Page

117
122

124

127
130
133
135
138

139
140
144
146
148

155
156
158
159

16C

Io'msrl-I.III'I.-I..'I-..-IIOOI&Il.' 1162

IIQ!B‘I“----:-E--;a--nq_----ogn-n

I.mu'l--!iitt!iic!-oliiilb\li-
I.FOIm.i'lt!'!ll!lll'ilillllll
Rgmnmu;:-------.-.--..---n.-.
JOBCOSTSsesogecsvssvnesionsncnne
JOBSINDX isccsacecssssssssssecrns
FI.DBILLS-.--n--n.".----....-
Hgﬂminnii-i!t!iittinnl---'--ott

s Rgmni.II"....’..‘III'II.I"...

Rmlll-'l.-'II'II-_.I'lli_II-'II-tIIll
SILBSTH"C".."lll..l.li’llll’l.i

TImmc--a--i--itlttl'ltiuritic
PRIITOUTu-nt-n'tui-llt---i-.-r-a-_--
GETDATE.:ccccecccccsssvcscncnsnss
D.ITETEST..“.““”“.._.“.....-
!msTl.--'-.-".--'I.'I-‘..'.‘"
CHECKSTUB:.ccccoosccccccscnssnsens

165

167
169

AT72

174
178
179
182
188
189
190

193
195
196
197
198

199.

_125 '

.009 DESCRIP

STRUCTURE FOR FILE: B:COSTBASE.DBF
FLD NAME TYPE WIDTH DEC
001 CHECK:DATE C 007
002 CHECK:NMBR C 005
003 CLIENT C 003
004 JOB:NMBR N 003
005 AMOUNT N 009 002
006 - c 001 :
007 NAME C 020
008 c 001
C 020
C 001
C 007
c 007
N
N

010 -
011 BILL:DATE
012 BILL :NMBR
013 HOURS 006 002
014 EMP :NMBR 003
#8% TOTAL *# 00094

(Indexed on NAME to B:$SUPP.NDX)

STRUCTURE FOR FILE: B:POSTFILE.DBF -

FLD . NAME TYPE WIDTH DEC
001 CHECK:DATE 007
002 CHECK :NMBR 005
003 CLIENT 003
004 JOB:NMBR 003
005 - 001
006 NAME 020
007 - 001
‘008 DESCRIP 020
009 AMOUNT 009 002
010 - 003
011 BILL:DATE 0Qy
012 BILL:NMBR 007
013 HOURS 006 002
014 EMP:NMBR 003
#8 TOTAL #*# 00096

ZZoaoao=Zoaoaao0o0=Zzaonoa

dBASE II...117

STRUCTURE FOR FILE: B:BILLINGS.DBF

FLD NAME TYPE WIDTH DEC
001 INV:NMBR C 006
002 CLIENT C 003
003 JOB:NMBR N 003
004 - C 001
005 INV:DATE C 006
006 TAXABLE N 009 - 002
007 SALES:TAX N 009 002
008 TAXFREE N 009 002
009 - C 001
010 PO:NMBR c 008
011 DESCRIP C 027
012 MORE L 001
=E TOTAL %% 00084 ;

(Indexed on INV:NMBR to B:BILLINGS.NDX)

STRUCTURE FOR FILE: B:INVOICES.DBF

FLD NAME TYPE WIDTH DEC
001 INV:NMBR C 006
002 CLIENT C 004
003 INV:DATE C 007
004 TAXABLE N 009 002
005 SACES:TAX N 009 002
006 TAXFREE N 009 002
007 - C 001
008 AMOUNT N 009 002
009 AMT :RCD N 009 002
010 - C 001
011 DATE:RCD C 007
"% TOTAL *% 00072

(Indexed on INV:NMBR to B:INVOICES.NDX)

STRUCTURE FOR FILE: B:DEPOSITS.DBF

FLD NAME TYPE WIDTH DEC
001 DEP:DATE c 007
002 PAYER C 020
003 - C 001
004 PAY:NMBR c 007
005 DEPOSIT N 009 002
006 - c 001
007 INV:NMBR C 006
. 008 COMMENTS c 021

#% TOTAL #% 00073

dBASE II...118

STRUCTURE FOR FILE: B:CHECKFIL.DBF

FLD NAME TYPE WIDTH DEC :
001 CHECK:DATE C 007

002 CHECK:NMBR C 005

003 AMOUNT N 009 002
00N - c 001

005 BILL :NMBR C 007

006 NAME C 020

007 EMP : NMBR N 003

008 - | c 001

009 CLIENT c 003

010 JOB:NMBR N 003

011 DESCRIP C 020

012 BALANCE N 009 002
% TOTAL %* 00089

STRUCTURE FOR FILE: B:INSERTS.DBF

FLD NAME TYPE WIDTH DEC
001 IO:NMBR C 005
002 MAGAZINE C .. 014
003 - C 001
004 ISSUE C 006
005 - C 001
006 CLIENT C 003
007 JOB:NMBR N 003
008 - C 001
009 AD C 015
010 SPACE c 013
011 GROSS:COST N 009 002
012 NET : COST N 009 002
013 - C 001
014 TIMES C 003
015 I0:DATE C 006
%% TOTAL W& . 00091

(Indexed on TO:NMBR to B:INSERTS.NDX)

dBASE II...119

dBA.SE II--4120 "" dBASE III-I-I121

STRUCTURE FOR FILE: B:HOLDS1.DBF

FLD NAME TYPE WIDTH DEC STROUCTURE FOR FILE: B:SUPPLIER.DBF -
001 CHECK:DATE ' C 004 r FLD NAME TYPE WIDTH DEC

002 = C 001 001 SUPPLIER C 030 | =
003 MARKER C 001 002 ADDRESS o 024

004 PAYROLL N 009 - 00z 003 CITY c 016

005 FICA N 008 002 004 STATE o 002

006 FICASAL N 009 002 . 005 ZIP C 005

007 FIT N 009 002 006 PHONE:NMBR C 008

008 SDI N 007 002 007 AREA : CODE C 023

009 SDISAL N 009 002 #% TOTAL #* 00089

010 STy N 009 002 - (Indexed on SUPPLIER to B:SUPPLIER.NDX)
011 UISAL N 009 002

$* TOTAL *# 00076

STRUCTURE FOR FILE: B:PERSONNE.DBF

FLD NAME TYPE WIDTH DEC
001 EMP: NMBR N 003
002 NAME C 020
003 ADDRESS C 024y
004 CITY:ST4TE C 020
005 ZIP C 005
006 PH:NMBR c 013
007 SS+NMBR C 009
008 M:S:H l ev 001
009 DEDUCTS N 002
010 PAY:RATE N 007 002
011 FICA N 008 002
012 YTDFICA N 008 002
013 FIT N 009 002
014 YTDFIT N 009 002
015 SDI N 007 002
016 YTDSDI N 00T 002
017 SIT N 009 - 002
018 YTDSIT N 009 002
019 NET:PAY N 009 002
020 QTDSAL N 009 002
021 YTDSAL N 009 002
022 PAID . L 001
023 START:DATE C 006
024 RATIO N 005 003

#% TOTAL *# 00209

dBASE II...122

The agency accounting system uses three standard report
forms. The first one is for media and is filled out °
completely. The remaining two are skeletons, showing only
the answers to the questions asked by dBASE II.

ENTER REPORT FORM NAME: Media

ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH
M=50 <{enter>

PAGE HEADING? (Y/N) n

DOUBLE SPACE REPORT? (Y/N) n

ARE TOTALS REQUIRED? (Y/N) y

SUBTOTALS IN REPORT? (Y/N) n

COL WIDTH,CONTENTS

001 6,10:NMBR

ENTER HEADING: IO # ’
002 15,MAGAZINE

ENTER HEADING: MAGAZINE

003 7,ISSUE -

ENTER HEADING: ISSUE

004 64 CLIENT+STR(JOB:NMBR, 3)
ENTER HEADING: JOB #

005 15,AD

ENTER HEADING: AD

c06 9,GROSS: COST

ENTER HEADING: $GROSS
ARE TOTALS REQUIRED? (Y/N) Y
007 <enter> .

The above dialog generate this report form:

PAGE NO. 00001

10 # MAGAZINE ISSUE JOB # AD $GROSS
2787 EDN JAN 7~ SPIBT8 FLAT MAN ~ 3225.00
2788 MICROWAVES JAN POM772 FISHERMAN GUNNS 2500.00
2789 MICROWAVES MAR POM639 COP: GUNNS 2500.00Q
2790 ELECTRONICS JAN PSS754 NICE LITTLE PBK 5900.00
2791 BYTE FEB SFT789 BILGE PUMP 2932.00

Rl £ .

The other two report forms are

JOBCOSTS.FRM

n
n
y
n
9,BILL:DATE
DATE
22 ,NAME
SUPPLIER.ccsscsccccnes
17,DESCRIP
DESCRIPTION:«+sss
12, AMOUNT

AMOUNT
Y

BILLED.FRM

23S

8,INV:DATE

* DATE

8,INV:NMBR

INVOICE

17 ,DESCRIP

DESCRIPTION
10, TAXABLE

TAXABLE

, 4
10,SALES: TAX

SALES TAX

Y

10, TAXFREE'
TAX-FREE
Y

dBASE I1I...123

dBASE IT...124
SYSTEM CONSTANTS | |

System constants are kept in a file called B:Constant.MEM.
These are called out, used and updated where
appropriate from within a number of programs within this
accounting system. Constants are kept in a single file so
that when any of them change (new tax rates, new year,

ete.), they need only be changed in one locatio
| n
the entire system. e

NEXTCHECK (C) 3565 ”Keep checkbook curr -
ent in PAYBILLS, PAYR
MBALANCE (N) 23921.18 and DEPOSITS command files. ’ ULL
- THISYEAR (N) 81 Used by GETDATE .
DA

e o -4 y .? TECHECK and PAYROLL files..
NEXT:I0 (C) 2885 Next insertion order number (IOPOST.CMD).
NEXT:INV (C) 10623 Next invoice number (INVOICES.CMD).
:ig:g:; EH) 0.0665 Ehtipe grouping is used in the PAYROLL file.
el (gg ﬁggﬂﬂgo Easy to update every year because the values

" are not |
e S e | sprinkled throughout the programs.
SDIEND (N) 14900.00
MAXSDI (N) 89.40
UIEND (N) 6000

COMPLETED (c)
PREVDATE (c) 810814

HIIEH?L (N) 14 Highest employee number. Also used in
POSTTIME and TIMECALC programs.

dBASE II...125

NRERURNEAR ACCOUNTS COMMAND FILE - HesREER®s
THIS IS THE CONTROL MODULE FOR ALL THE PROCEDURES USED IN THE ACCOUNTING

¥

% FUNCTIONS. (MENU, DRIVEN). The operator is given a choice of major
functions. The menu selection here calls up menus of sub-functions
¥ to as many levels as necessary. A package of utility functions is
¥
%

also' provided as part of the overall system for file maintenance, etc.
FREERBENPERERRRERRE RN R RN RN RRRNRR N

SELECT PRIMARY
CLEAR

SET TALK OFF

SET EJECT OFF
SET MARGIN TO 38
SET RAW ON

llIIII*iII!lIiIIIII!IIIIIIilIiil!IIIIII!Ii!l!ll*lllllilililillllll

®# This group of commands is hardware-dependent. may be eliminated
¥ down to the next ‘row of asterisks.

SET PRINT ON | |
% Sets (8-1)=7 lines/inch and 89 lines page, Diablo 1650/sheet feeder

22 CHR(27)+CHR(30)+CHR(8)
7?2 CHR(27)+CHR(12)+CHR(89)

SET PRINT OFF

*# End printer setup commands.
NEEEREE RN R RN NRE NN E AR RS RN RN E AR RN RN RN R RN RN E RN NN N RN

STORE T TO Accounting
DO WHILE Accounting

ERASE

?

? . _

? '1> ENTER BILLS & TIME SHEETS 6> REPORTS & PRINTOUTS' .
¢ ' Job cost & billing summaries!
? t'2> PAY BILLS & SALARIES Find & Edit biils by name' -
2?2t : Review/print databases'

? '3> DEPOSITS & CHECKBOOK . Quarterly Sales Tax'

q H f

2 *4> MEDIA INSERTION ORDERS'

-

2 '5> CLIENT' BILLINGS & INVOICES'

? a =

7

q

? Pick a number (Q to QUIT)'
WAIT TO Action i

IF ((fAction) = 'Q'

¥ This sequence homes the cursor and erases the screen on the fBH 3101

STORE chr(27) + chr(76) + chr(27) + chr(89) + ehr(0) TO gq
QUIT TO '&q' : :
ELSE
IF Action = '1!
DO CostMenu
ELSE .
" IF Action = '2¢
DO PayMenu
ELSE
IF Action = '3!
DO DepMenu
ELSE *
IF Action = '4°'
DO IOMenu
ELSE '
IF Action = '5°
PO InvMenu

dBASE II...126
ELSE

IF Action = '6!
DO ReportMe
ELSE
If Action = 'T!
ERASE
€ 5,10 SAY ! HELP file not ready yet.’'
? ' <{Return> to continue."
WAIT ;
ENDIF 7
ENDIF 6
ENDIF 5
ENDIF 4
ENDIF 3
ENDIF 2
ENDIF 1
ENDIF Q

STORE T TO Accounting
ENDDO Accounting

%
 J
K
L
8
"
#
I
@
#
8

dBASE II...127

FERERBNANE (OSTMENU COMMAND FILE S##unssssss
This is one level down from the Accounts.Cmd control module.
Selections are refinements that relate to costs for client-related
jops or agency overhead. \

The main database is called CostBase.Dbf and is kept on disk B.

Costs are not entered directly into the CostBase, however, because this leads
to data contamination and all sorts of problems fixing the errors. Instead,
supplier bills and agency time sheets are posted into an interim file called
PostFile.Dbf. 1In here, they can be reviewed and edited as necessary.

When all the cost entries are confirmed as being correct, they are

transferred to the CostBase by using the update procedure (selection 5).
Y YT I T rIIr:iiiiiiirIiiiiiiryiii:ii:iiiiiii ARy INRYRERERERIIIISR SRRSO RYEYRTIL.

STORE T TO Posting
DO WHILE Posting

ERASE

@ 2,20 SAY ! 1> UNTAXED ITEMS USED BY AGENCY'

@ 4,20 SAY * -2> ENTER SUPPLIER BILLS'

€ 6,20 SAY ! 3> ENTER EMPLOYEE TIME SHEETS'

@ 8,20 SAY ! 4> EDIT the POSTFILE'

@ 10,20 SAY ' 5> REVIEW/PRINT the POSTFILE'

€ 12,20 SAY ' 6> UPDATE THE COSTBASE'

€ 14,20 SAY ° 7> WIPE OUT DELETED RECORDS IN POSTFILE'
€ 16,20 SAY ° {RETURN>'

WAIT TO Action

- ERASE

IF Action = '7!)
ERASE '
4,10 SAY 'This program accepts bills for items that the agency bought*'

e

il without paying sales tax, but will use internally, rather'

T " than for a job that will be billed to a eclient. This would’
o include equipment bought out of state and locally bought!
77 materials NOT used in client jobs and NOT taxed.'

” _

T " DO NOT ENTER ANY OTHER BILLS!'

? i

? 'Do you want to continue {Y or N)?'

WAIT TO GoAhead .
IF !1(GoAhead) = 'Y’
DO UseTax
ELSE
RELEASE All
ENDIF -
ELSE
IF Action = '2t%
ERASE
@€ 4,10 .8AY ' CHECK ALL- THE BILLS BEFORE ENTERING THEM.'
' If any of the bills are for items used by the agency'
— but sales tax was not paid, select OPTION 1 from the'
' entry menu. <Return> to continue.'’

~ DO CostBills
_ELSE .
IF Action = '3!
DO CostTime
ELSE
IF Action = '} ; |
STORE "Y" TO Changing™
DO WHILE !(Changing)="Y"
USE B:PostFile _
IF EOF ¥ -
? 'There are no entries in the POSTING file.'

dBASE II...128

7 '"{Return> to cuntinue.
HAIT
STORE "N" TO Changing

ELSE

GO BDTTOH

ERASE

@ 3,10 SAY 'EDITING BILLS ENTERED.' . ‘
€ 5,10 SAY 'There are '+STR(#,5)+' file .entries.'

@ 6 10 SAY '"Which entry do you want to EDIT?'

ACCEPT TO Number)

IF VAL(Number) <= 0 .OR. VAL(Number) > #
? =
“%
? '"Out of range: do you want tot continue (Y or N)?'
WAIT TO Changing

ELSE
. Edit &Number

«* REPLACE Name WITH ! (Name), Descrip WITH !(Descrip),;

Client WITH !(Client), Bill:Nmbr WITH !(Bill:Nmbr)

?
? 'Do you want to edit any other entries (Y or N)?'
WAIT TO Changing

ENDIF

ENDIF %
ENDDO Changing
RELEASE All

ELSE

IF Actiomn ='H?
STQRE 'Y 10 Revieuing
DO WHILE !(Reviewing)='Y"

USE B:Postfile ,

CUU'NT FOR .NOT. ® TO Any

IF Any = 0
? 'No unposted entries in the POSTING file.'
?7 "{Return> to continue.’ .
WAIT
STORE "N" TO Reviewing

ELSE
ERASE ,
? 'There are '-STR(Any,5)+' unposted entries.’
? 'Do you want to print them, too (Y or N)?!
WAIT TO Output

IF 1(Qutput)='Y"

SET PRINT ON
ENDIE.
B JOB NAME D=SCRIP! S

: 'TIOH _ AMOUNT DATE NUMBER'
STORE 'OFF' TO Condition

STORE '0' TO Number

DO Printnut

? “Thab'a all the unposted entries.”
7?7 '"Want to see them again (Y or N)?'
? "(To see deleted records, choose "Edit".)?®
HAIT TO Reviewing
ENDIE.

ENDDO ‘ReViewing

ELSE

RELEASE rall -

AF ﬂﬂfiﬂn = 16!

ELSE

DO CostUpdate

dBASE II...129

IF Action = 'T! -
- ? '"This destroys all records in the PostFile.’

? ‘Do you want to do this (Y or N)?'
WAIT TO WipeOut
IF !(WipeOut) = 'Y’
USE B:PostFile
PACK
ENDIF
RELEASE ALL
ELSE
RELEASE All
RETURN
ENDIF 7
ENDIF 6
ENDIF 5
ENDIF 4

ENDIF 3
ENDIF 2
ENDIF 1
STORE T TO Posting
ENDDO Posting

dBASE II...130

SeRsRRRERNE [USETAX COMMAND FILE #»sssssssev
This file accepts inputs for supplier bills when the agency has bought
an item without paying a use tax on it.

. The item or items are added to the Invoices file {(not Billings),
then are used by the SalesTax program so that the Quarterly Sales ‘Tax
report can be prepared by the computer.

A temporary file called GetBills is used for data entry because the operator
can decide to quit on an incomplete entry, which is marked for deletion.

When the data is APPENDed to the PostFile, these entries are eliminated (the
APPEND command does not transfer records marked for deletion). An entry must

include at least the name of a supplier and the amount of the"bill. If these

are not both supplied, the entry is flagged for correction or deletion.
iIlIIIIIIIIIIIillill‘ll!lillllllllIllllplllll

ERASE

e
7

5,20 SAY 'AGENCY USE TAX PROCEDURE'

USE B:PostFile
COPY STRUCTURE TO GetBills
i

USE GetBills
STORE 'Y' TO Bills
DO WHILE 1(Bills) < 'F?

APPEND BLARK

STORE STR(#,5) to Number
REPLACE Client WITH 'OFC!
STORE T TO Entering

DO WHILE Entering

€ 1,0 SAY 'ENTER ONLY UNTAXED ITEMS NOT USED FOR CLIENT JOBS.'
@ 3,0 SAY ' RECORD NUMBER:' + Number

@ Uu,0 SAY ! CLIENT:' + Client + ':!

€ 5,0 SAY ! - JOB NUMBER' GET Job:Nmbr

@ 6,0 SAY ! AMOUNT' GET Amount

€ 7,0 SAY BILL NUMBER' GET Bill:Nmbr

€ 8,0 SAY ! BILL DATE' GET Bill:Date

€ 9,0 SAY ! SUPPLIER NAME' GET Name :

READ

REPLACE Name WITH !(Hame),naacrip WITH 'USE TAX ENTRY';
' Bill:Nmbr WITH 1(Bill:Nmbr)

e T,17 SAY Bill:Nmbr

€ 9,17 SAY Name

€ 10,17 SAY Deserip

STORE ' ' TO Getting
IF Job:Nmbr <= 0 .OR. Job:Nmbr > 99

e 12,0
T ! The JOB NUMBER entry is wrong.'
70 ‘Agency Jjobs are from 1 through 99.°
? ! F if FINISHED,"'
Bt ACCEPT " <Return> to change.' TO Getting
"ELSE
IF Amount = O .OR. Name <= ' X
?
7 ’
T AMOUNT or NAME missing.'
g : F if FINISHED,'
ELSECCEPT ' {Return> to change.' TO Getting
€ 12,5 SAY ' ' C to CHANGE,' .
@€ 13,5 SAY F if FINISHED,' "
{Return> to cunt;nue.' TO Bills

ACCEPT ' -

Ty W W =

5 "‘.ﬁ
= X
- .

dBASE II...131

IF !(Bills)='C"'
STORE T TO Entering
ELSE
STORE F TO Entering
ENDIF
ENDIF amount or name
ENDIF client or job number

IF 1(Getting)= 'F'
DELETE RECORD &Number
STORE F TO Entering
STORE 'F' TO Bills

ENDIF
ENDDC Entering
ENDDO Bills’
COUNT FOR .HOT. ® TO Any
IF Any =
7
< No valid entries to add to the files.!
s {Return> to the menu.’
WAIT
ELSE

RESTORE FROM B:Comnstant
STORE 'Bill:Date' TO Date
DO DateTest

® Checks names against a list of suppliers to catch spelling and
& abbreviation inconsistencies.
DO NameTest

ERASE
@ 3,25 SAY ' ®%® DO NOT INTERRUPT #w##r

@ 5,25 SAY ' UPDATING THE POSTING FILE'
USE B:PnatFila _
APPEND FROM GetBills

® The following loop transfers the bills just entered into the Involces
file. The amount of the bill is entered in the "Taxable® column. The
job number is entered into the Invoice Number column. Since invoice
% have 5 digits, while job numbers are under 1000, we use this to sepa=-
pate the two types of entries later in the SalesTax.CMD file.
PRIMARY and SECONDARY work areas are used to step through the GetBills
® file .one entry at a time.
.USE GetBills
SELECT SECONDARY
USE B:Invoices
SELECT PRIMARY
- DO WHILE .NOT. EOF
iF #
SKIP
ELSE
SELECT SECONDARY
APPEND BLANK
REPLACE Inv:Nmbr HITH STR(Job:Ruhr,B), Inv:Date WITH Bill:bat-,|
Taxable WITH P.Amount, Date:Red WITH 'USE TAX'
SELECT PRIMARY
SKIP
ENDIF
ENDDO

ENDIF

dBASE II...132

USE
DELETE FILE GetBills
RELEASE All

RETURN

dBASE II...133

ERERNRRNNER (OSTBILLS COMMAND FILE SREesassans
® This file accepts inputs for supplier bills.
® A temporary file called GetBills is used for data entry because the operator
® can decide to quit on an incomplete entry, which is marked for deletion.
When the data is APPENDed to the PostFile, these entries are eliminated (the
APPEND command does not transfer records marked for deletion). An entry must
include at least the name of a supplier and the amount of the bill. If thess

are not both supplied, the entry is flagged for correction or deletion.
LI T T T

ERASE '

€ 5,20 SAY 'SUPPLIER BILLS'
USE B:PostFile

COPY STRUCTURE TO GetBills

USE GetBills

STORE 'Y' TO Bills

DO WHILE !(Bills) <> 'F'
APPEND BLANK '
STORE STR(#,5) to Number

- STORE T TO Entering
DO WHILE Entering

RECORD NUMBER: '-Number
CLIENT' GET Client
JOB NUMBER' GET Job:Nmbr
\ AMOUNT' GET Amount
BILL NUMBER' GET Bill:Nmbr
.~ BILL DATE' GET Bill:Date-
SUPPLIER NAME' GET Name
9,0 SAY DESCRIPTION' GET Descrio
READ : .
REPLACE Client WITH !(Client),Name WITH !(Name),Descrip;
WITH !(Descrip), Bill:Nmbr WITH !(Bill:Nmbr)
@ 3,17 SAY Client - ;
. @ 8,17 SAY Name
@ 9,17 SAY Descrip

STORE ' ' TO Getting : . g
IF $(Client,1,1) = ' * .OR. $(Client,2,1) = ' ' .OR. $(Client,3,1) = ' 'j
+OR. Job:Nmbr <= 0

N
-
o
¥]
>
[

e 12,0 '
T CLIENT or JOB NUMBER wrong.'
¢ B F if FINISHED,' _ ‘
EL_SECCEPT ' {Return> to change.' TO Getting
IF Amount = 0 .OR. Name <=
?
?
2 AMOUNT or NAME missing.'
T .
T " F if FINISHED,'
ACCEPT ' {Return> to change.' TO Getting
ELSE _

@ 12,5 SAY ! C to CHANGE,'
@ 13,5 SAY ' F if FINISHED,'
ACCEPT <{Return> to continue.' TO Bills

IF 1(Bills)='C’
STORE T TO Entering
ELSE

STORE F TO Entering
ENDIF

dBASE II...134

ENDIF amount or name
ENDIF client or job number

IF 1(Getting)= 'F!'
DELETE RECORD &Number
STORE F TO Entering

STORE 'F' TO Bills

ENDIF : *
ENDDO Entering

ENDDO Bills

COUNT FOR .NOT. ® TO Any

IF Any = 0
? "No entries to add to the Cost Base.'
?7 '<Return> to the menu.' :
USE
WAIT

ELSE

RESTORE FROM B:Constant
STORE 'Bill:Date' TO Date
DO DateTest '

® Checks names against a list of suppliers to catch spelling and
& :bbrnviatiup inconsistencies.
DO NameTest

ERASE -
€ 3,25 SAY ' ®88 DO NOT INTERRUPT ®e®»
@€ 9,25 SAY ' UPDATING THE POSTING FILE'
USE B:PostFile
APPEND FROM GetBills

ENDIF

USE
DELETE FILE GetBills
EILBIBI All

ETURN

%
L
L
"
L
L
i
#*
L
%
#
%
L
#
®
*

€

dBlSE IIl'I- . 135

SRERSRNEEE (OSTTIME COMMAND FILE Sessssssas
Accepts time sheet entries for employees using a temporary
file called GetTime. For data entry. _
GetTime is used because the operator can decide to quit on 22 incomplete
entry. In that case, the entry is marked for deletion, and when the data is
APPENDed to the PostFile, these entries are eliminated {thu APPEND command
does not transfer records marked for deletion).
After all entries are made, entries are checked for the
correct range of employee numbers and to see that hours have
been entered. Using GetTime, we can check the entries without
having to go through the entire PostFile.
After verifying that the dates are in the right format and
checking the names against our Suppliers file, the billing amounts
are computed. :
The records are then transferred to she CostFile and the
temporary flle GetTime is deleted.

SRR RERER R R RN RN AN RGN NC RN RN RN RS RN NN

0,25 SAY ' TIME SHEETS '

RESTORE FROM B:Constant
USE B:PostFile
COPY STRUCTURE TO GetTime

USE GetTime
STORE 'Y' TO Time
DO WHILE 1(Time) <>'F

APPEND BLANK
STORE STR(#,5) TO Number

STORE T TO Entering
DO WHILE Entering

ERASE |
STORE F TO Entering

@ 1,0 SAY * RECORD NUMBER: '-Number

@ 3,0 SAY ' DATE WORKED' GET Bill:Date
@ 4,0 SAY ' CLIENT' GET Client

e 5,0 SAY * JOB NUMBER' GET Job:Nmbr
@ 6,0 SAY * HOURS WORKED' GET Hours

@ 7,0 SAY ' EMPLOYEE NUMBER' GET Emp:Nmbr
@ 8,0 SAY * EMPLOYEE NAME' GET Name
READ

REPLACE Check:Nmbr WITH '~--', Check:Date WITH Bill:Date,;
Client WITH !(Client), Name WITH !(Name)

@ 4,17 SAY Client .

@ 8,17 SAY Name

® The rnliauing sequence of IF statments flags all entry errors, th-ﬁ.
® gives the operator the choice of fixing them or ending the procedure.

?
IF $(Client,1,1) =' '.OR. $(Client,2,1) =' ' .OR. $(Client,3,1) =' !
21 CLIENT must have three letters.'
STORE T TO Entering
ENDIF
IF Job:Nmbr < 100
[JOB # is not for a client job.!
v P Is this right.- (Y or N)?°
WAIT TO Ask :

IF 1(Ask) < 'Y’
STORE T TO Entering
ENDIF -

END
ENDDO

COUNT

IF Any
ERA
¢ '3
a1
USE

ENDIF

IF .NOT. (Hours > 0)
M HOURS must be entered.
STORE T TO Entering

ENDIF

IF .NOT.(Emp:Nmbr>0 .AND. Emp:Nmbr<=MaxEmpl)
2 3 EMPLOYEE # out of range.
STORE T TO Entering

ENDIF

IF $(Name,1,1) = '
e NAME must not start with a blank.'
STORE T TO Entering

ENDIF ‘

IF Entering

?
7 F if FINISHED,"
ACCEPT ! {Return> to change' TO Time

® If the operator decides to quit on an incomplete entry, it is
marked for deletion so that it is not transferred to the PostFile.

IF !(Time) = 'F’
DELETE RECORD &Number
3TORE F TO Entering

ENDIF
ELSE
?
¢ C to CHANGE,'
T 1 F if FINISHED,® '
ACCEPT ! {Return> to continue' TO Time

IF Y(Time) = 'C'
STORE T TO Entering
ENDIF
ENDIF
DO Entering
Time

FOR .NOT. ® TO Any
= 0
SE

{Return> to the menu. '

WAIT

ELSE

® The test for the date needs the name of the date field to to be tested.

STO
DO

¥ Checks names against a list of suppliers to catch spelling and

a
DO

¥ Verifies match between employee name and number,. then computes the amount

o
D0

RE 'Bill:Date' TO Date
DateTest

bbreviation inconsistencies.
NameTest

dBASE II...136

»0 SAY ! No entries to add to the CostFile. '

o be pilled for the employee's time based on his éhlary.

TimeCale

ERASE

€ 3,25 SAY " ¥%% DO NOT INTERRUPT ###n
@ 5,25 SAY " UPDATING THE POSTING FILE"

USE B:PostFile
APPEND FROM GetTime
ENDIF

DELETE FILE GetTime
RELEASE All
RETURN

dBASE II...137

dBASE II...138

SRERNNERRR COSTUPDATE COMMAND FILE #esmusnsas |
& Records from the COSTFILE are added to the COSTBASE.
This step is so critical to data integrity that we: use a password
to prevent accidental access; verify dates; check the names of suppliers;
and compute time charges if necessary. Notice that these are done by
&
2
3
&

simply calling the utility command files.
The PostFile has all its records marked for deletion after they

have been posted (can still be recovered).
L e e e e R R R R R AR AR R R AL T

SET TALK OFF

@ u’12 SAY I ARRRGRSRNEREENNRE R RN NN AR AR AN NN AR R TR EREER

@ 6,12 SAY "MAKE CERTAIN EVERYTHING IN THE POSTFILE IS CORRECT'

@ 8,12 SAY ' BEFORE ENTERING THE CODE TO CONTINUE'
'@ 10,12 SAY Tt e e R R A A R R A L

SET CONSOLE OFF
ACCEPT TO Lock
SET CONSOLE ON

IF t(Lock) <> 'H!
@ 12,12 SAY ! UNAUTHORIZED ACCESS ATTEMPTED.'

@ 14,12 SAY 'YOU HAVE 6 SECONDS BEFORE THE EXPLOSION.'
STORE 1 TO X
DO WHILE X < 150
STORE X + 1 TO X
ENDDO
RELEASE Lock
RETURN
ELSE
ERASE
-8 5,20 SAY 'Checking bills in the POSTING File:'
USE B:PostFile -
COUNT FOR .NOT. ® TO None

IF None = 0 . '
@ 6,20 SAY 'No new entries in the POSTING file.'

@ 7,20 SAY "<Return> tc continue.’'
WAIT :
ELSE
GO TOP
RESTORE FROM B:Constant
STORE 'Bill:Date' TO Date
DO DateTest
DO NameTest
DO TimeCalc

ERASE |
€ 5,20 SAY ' ##® DO NOT INTERRUPT ®#&¢

@ 6,20 SAY 'Posting COSTS to the Costbase.'

®# Save the number of the last record in Costbase
USE B:CostBase -

GO BOTTOM .

STORE # TO LastReco

USE B:Costbase INDEX B:$Supp
APPEND FROM B:PostFile

USE B:PostFile
DELETE ALL

+ ENDIF '

ENDIF

RELEASE All
RETURN

IdBASE II.--139

ERNRNNNRER PAYMENU COMMAND FILE #essassusss

: This is a sub-module of the Accounts.CMD file and provides choices

2 as to which checks are to be prepared for posting and printing.

$ e 1Pa{133 aaiaries ?aa another menu level to allow partial nayments
elected employees (e.g., leave of absence, when an emplove

® work a full two week stretcﬂ, etc.) " P R ek

& The checkbook balance and next check number must be co
either of the procedures can be performed. o
e R T T T T T T Ty,

RESTORE FROM B:(Constant
ERASE

.gis, O SAY 'CHECK NUMBER: '+NextChecks' BALANCE: '+STR(MBalance,9,2)

7 Do these match the checkbook?'
7 C to CONTINUE,' -

T ! {Return> to change.'

?

WAIT TO Continue

IF 1(Continue) ¢ ¢
RELEASE All
RETURN '

ENDIF

'STORE T TO Paying

DO WHILE Paying
ERASE
@ 5,20 SAY 1> PAY BILLS
@€ 7,20 SAY ' 2> PAY SALARIES
@ 10,20 SAY * <RETURN>!
WAIT TO Action ’

JF Action = '1¢
USE B:PostFile

® Can abort if any entries in the Postfile.
COUNT FOR .NOT. ®* TO Any

IF Any = 0

DO PayBills
ELSE

?

g :Ega POSTE?Elfilethia.‘-STH(Any;5)+' bills in it.
you s want to pay bills now (Y o '

WAIT TO Continue. 4 : R

IF !{Continue) = 'Y!*

DO PayBills
ELSE
RELEASE All
ENDIF
ENDIF
ELSE
- IF Aetion = '2!
DO PayEmps
ELSE.
RELEASE All
- RETURN
ENDIF 2
ENDIF 1

STORE T TO ‘Payi
ENDDO Paying =

dBASE II...140

: EEEBRER
RUBREBEREE AYBILLS COMMAND FILE L d _
Bafn:e this procegure can be accessed, the check number and balance must

ommand file. _
o vﬂ?ﬁiiegs12n2h§fP%§:E§gn§er files, but the individual portions of it are

in loop (controlled
d. Repetitive procedures in the ma .
Eﬂttﬁgov:?Tgti:aE;inisheg") could have beep put in separaiﬁiuoﬁzanitfiles
t§ make this file easier to understand anddmaintain, but s way
' es speed. : _

minimizes disk accesses and increas e 1 s pemanakey the maxt

bills to be paid in the y B
checkTEi;bgifewgizgg a check in the CreckFil and maintains the checkbook
_balangﬁé next check number and checkbook balance. are recalled Erﬂgdaigitﬁe
called Constant.MEM. The final values for Dboth of these are stor

#
ES
#
#
%
%
&
#
#
@
#
%
same file after all the bills have been paid.
i
%
%
2
%
i
i
i
i
i
b

' he procedure, then
s entered once at the start of ¢t
is auzg:agigzliy inserted into each entry. The date is cgﬁikﬁitﬁin
see that it is in the YYMMDD format, and that the va%uesear-ThisYear).
possible limits (month fromt1ito lzéhgaiagzogf1t;: ga;tg being T
Entries must include at leas b it e iy
are automatically computed_an shown
E;iziczﬁmbers are automatically Eﬂilgnﬁg b{etgﬁegzmﬁﬁgg:; i
ral entries are made against a 31ng
upara%grsﬁzg this option), these are added and shown as a single

I%iiﬁl%glﬁgﬁlgziﬂtggg;lIllllllilIIIII!Illlllilf’lil!lill!lllII*II!I

RESTORE FROM B:Constant
DO GetDate

SELECT PRIMARY -
USE B:CostBase INDEX "B: $Supp

te
; termine whether the program shoulq genera
Tnitialize. "New" is used to de Rt Hoplhger v
the old one (where several D1 |
: p naqicgegiangﬁggg E;ig?? nFinished" is the control variable thati:§§§ggiges
:Eggha: we should run through the procedure again. or are QGnq paying bi .

STORE 'N' TO New
STORE 'N' TO Finished '
DO WHILE !(Finished) <> 'F"
STORE "C" TO Entering
N0 WHILE !(Entering) = 'C'

ERQSED SAY 'CHECK NUMBER: ' tNextCheck+" BALANCE: . *+STR(MBalance,9,2)
7

? CHR(T) .

. gégT ! "MAKE CHECK TO ' TO MName

igCEFT Z INVOICE NUMBER ' TO MBill:Nmbr

ACCEPT- ' ENTER AMOUNT ' TO Temp

ame) TO MName
ggggg :Eﬂgill:ﬂmbr) TO MBill:Nmbr
STORE VAL (Temp) TO MAmount
STORE MAmount#*1.00 TO MAmount
€ 6,19 SAY MName
@ T,19 SAY ni;ll:ﬁmbr

oun
g 1?:13 gi§ ' C to CHANGE,'
2 v . <Return> to continue.'
WAIT TO Entering
ENDDO Entering

1IF LEN(MName) > 10

STORE $(MName, 1,10} TO Kev
ELSE

STORE MName TO Key

dBASE II...141

ENDIF

IF

Kay > ' !
STORE T TO Looking

@ 11, 0 SAY "I'M LOOKING, I'M LOOKING!!®
8 12,0

@ 13,0
STORE 0 TO Start
FIND &Key

IF # = 0
?

? " GEE, I- CAN'T FIND THE NAME. Please check the spelling."

Y Or maybe it hasn't been posted to the COSTBASE yet."
? '<Return> to continue.'

WAIT

ERASE
ELSE

DO PayFind

ENDIF there is an unpaid bill for the supplier

. "Start" is brought in from PayFind.CMD. If we started at the first

®* enfry for a name (had only the name), Start=0. If we had more than
®# the name, Start contains the record numerber we started on. Since this
¥ could be in the middle of the listing, we use "Counter" so that we can

®* come back to the top of the listing for the name .once.
IF Start > 0

STORE 0 TO Counter

ELSE
STORE 1 TO Counter
ENDIF
STORE ' ' TO Confirm
DO gHILE i (Confirm) <> 'P' .AND. .NOT. Looking
910 g
? '"RECORD NAME AMOUNT BILL #';
+! DATE?
2 :
DISPLAY ' '+Name, Amount, Bill:Nmbr, Bill:Date
ll) i
? CHR(T)
T ! P to PAY this bill,’
% ! Q to QUIT without paying,’®
T 1 {Return> to continue.’ :
ACCEPT ! ' TO Confirm

IF !(Confirm) = 'Q'
IF !(New) = 'S
STORE STR(VAL(NextCheck)+1,4) TO NextCheck
ENDIF
STORE ' ' TO New

STORE T TO Looking
ELSE

IF !(Confirm) = 'P'
STORE - STR(#,5) TO Found

REPLACE Check:Date WITH Date, Check:Nmbr WITH NextCheck
STORE (MBalance-Amount) TO MBalance

SELECT SECONDARY
USE B:Checkfil
APPEND BLANK

REPLACE Check:Date WITH P.Check:Date, Name WITH P.Name,;

Check:Nmbr WITH P.Check:Nmbr, Balance WITH MBalance,;

Amount WITH P.Amount, Bill:Nmbr WITH P.Bill:Nmbr,
SELECT PRIMARY

dBASE II...142

ERASE

é
?

3, 0 SAY''CHECK WRITTEN: '+NextCheck+;
' NEW BALANCE: '+STR(MBalance,9,2)

DISPLAY "“PAYMENT MADE: '+Check:Date, Name, Amount, Bill:Nmbr,;

Bill:Date OFF

?

?! S for SAME SUPPLIER (Repeats check #)'
2 CHR(T)

ACCEPT °* ¢Return> to continue.' TO New

IF ! (New) <> 'S

STORE STR(VAL(NextCheck)+1,4) TCO NextCheck

ELSE
STORE ' ' TO Confirm
ENDIF
ENDIF
IF 1(New) = 'S' .OR. !(Confirm) <> 'P'
L

If Confirm < 'P', we rejected the first unpaid bill that was
shown. Rather than going back to the beginning, the loop
below SKIPs to the next INDEXed name until we find an unpaid
bill, or go beyond the records for the name we are paying.

The same applies if we want to pay another bill to the
same supplier (New='S'). Since we are in the file on the name
we want we SKIP to the next record‘until we find an unpaid
bill or run out of records for that name.

If we had only the name and started with the first unpaid
bill we stop now since we have looked at all the unpaid bills
for that supplier.

If we could have entered the list of records for this
supplier in the middle (more than the name provided), we look
at the unpaid bills between where we are and the end of the
1ist, then go up to the first entry for that name and check
all of the unpaid bills that we had previously skipped past.
This is controlled by Counter. '

After the second FIND in the command file (below), we
stop looking when the record number we are on is greater than
or equal to the number of the record we start on Start).

SKIP | _
DO WHILE Check:Nmbr <> ' * .AND. Name=Key .AND. .NOT. EOF

SKIP

ENDDO

]
&
%
S
"
%
.
&
*
E
#
¥
L
2
I

We enter this loop when we reach the end of the records with
names that match the one we are looking for. If we started
with the first unpaid bill, the record number is greater than
Start (because Start=0) and Counter=1 (because we set it to
that value). The second IF below is True and we terminate the
search.

If Start>0, Counter=0 the first time we run out of
records with a matching name, so the program does the ELSE
dommands below.

Start is still >0 and Count is now 1, so the last term in
the first IF applies. On this second pass when we get to a
record number >=Start, we drop into the loop and do the IF to
terminate the search because we have now looked at all the
unpaid bills for the name we entered.

F EOF .OR. Name <> Key .OR. (# >= Start .AND. Start < 0j

.AND. Counter >0)
TF (# >= Start .AND. Counter > 0)
STORE T TO Looking
@ 4, 0
? c¢hr(27)+chr(74)

dBASE II...143

? ! We have now looked at all the entries for '+ MName
? ' <Return> to continue.' ’
? CHR(T)
IF 1(New)='S! .
STORE STR(VAL(NextCheck)+1,4) TO NextCheck
STORE 'N' to New
ENDIF
WAIT
ELSE {
STORE Counter + 1 TO Counter
@ 13, 0- ' _
@ 16, 0 SAY "I'M WORKING AS FAST AS I CAN -~ HANG ON! ™
FIND &Key
DO WHILE Check:Nmbr <> ' !
SKIP
ENDDO
ENDIF

ENDIF
ENDIF is it the right record

ENDIF

ENDDO Confirm the record

ENDIF

IF ! (New) < !
e 4, 0

gt

? chr(27)+chr(74)

? L
? CHR(7)
ACCEPT !

ENDIF
ENDDO Finished

F if FINISHED,

{Return> to contAnue.' TO Finished

RELEASE MName, MBill:Nmbr, Key, MAmou#t, Start, Found, Looking, New, Change,;

Entering,

Counter, Temp, Abdrt, Continue, Finished, Confirm, Date

SAVE TO B:Constant

USE B:Checkfil

COUNT FOR .NOT. ®* TO Any

ERASE
e 3,0
IF Mny=0

v No new checks in the;checkfile.’
T 1 tReturn> to continue.’

WAIT
ELSE
? #*There are '

-STR(Any,5)+' 'new checks in the CheckFile.'

? 'Do you wsnt to print the checkstubs now (Y or N)?'

?

WAIT TO Hardcopy
IF ! (Hardcopy) = 'Y

DO NameTest

DO CheckStub

ENDIF
ENDIF

RELEASE All
RETURN

#
"
4
"
L
*
"
L]
L
®
®
"
L
*
L

dBASE II...14d

EREENSRENEN PAYFIND COMMAND FILE HEREEZRSEN
This file is called by the PAYBILLS command file after we have found at least
one cost entry for the supplier that we are loocking for.

This file now looks for either the first unpaid bill for the supplier
(if only the name was specified) or looks for a complete match (if more than
the name was specified. :

If an an unpaid bill meeting the criteria is found, Looking is
set to False. Other wise it remains True. ,

If only the name was used, at this point we are at the first
unpaid bill for the supplier name.

If more than the name was specified for the search, we could be anywhere
in the indexed 1ist of records for this supplier. If we do not want to pay
this particular bill, or we want to pay more bills for this supplier, we use
a short cut in the PAYBILLS command file so that we do not have to start at
the first record for the name every time. To do this, we store the record
number that we start at to a variable called Start if we have more than the
name ‘to look for. Otherwise, Start =0

IlllIIIIII*IlI!illlllIIIIIIIIIIIIIIIillIIIIIIIIIIIIII*IIIIIIIIIII!!‘IIIIIIIIII

STORE T TO Looking
IF MBill:Nmbr > ' ' .OR. MAmount > O

Tf we have more than the name, we first check for the bill number.

* If this is not found or if the bill has already been paid,

the confirming procedure is skipped (Looking set TRUE).

® In this case, we may have entered the list of supplier bills in
middle of the indexed list. In a later procedure, we may need to go
* back to the top and look at the names we skipped. To do this, if we
find a record here, we store its number to "Start".

IF MBill:Nmbr > ' !
DO WHILE Name=Key .AND. .NOT. EOF .AND. Looking
IF Bill:Nmbr <> MBill:Nmbr
SKIP
ELSE
STORE F TO Looking
ENDIF
ENDDO

If we're on a new name or the end of the file, Looking is TRUE
because we have not found the supplier we were looking for.
® Otherwise, we have a matching bBill number to confirm.

IF Looking
2 ! This BILL NUMBER is not in the costbase.'
? '¢Return> to continue.’
WAIT

ELSE

IF Check:Nmbr <> ' !
~STORE T TO Looking :
2" This bill paid on '+Check:Date+', check '+Check:Nmbr
2 '¢{Return> to continue.'
WAIT
ENDIF
ENDIF
ELSE

®* If no bill number, look for the amount and an unpaid bill.
* If not found, skip the confirmation procedure. |
DO WHILE Name=Key .AND. .NOT. EOF .AND. Looking
IF Amount <> MAmount .OR. Check:Nmbr <> ' °
SKIP
ELSE
STORE F TO Looking
ENDIF
ENDDO

dBASE II...145

* If we're on a new name or the end of the file, Looking is TRUE
Otherwise, we have an unpaid bill to confirm.

IF Looking
2 & No unpaid bill for this amount and this supplier.’
? '"<Return> to continue.'.
-WAIT
ENDIF
ENDIF

If we found a matching record, store its number to Start

IF

. NOT . Lﬂ'ﬂki ng
STORE # TO Start

ENDIF

ELSE

® If we have only the name, find the next unpaid bill

DO WHILE Name=Key .AND. .NOT. EOF .AND. Looking
IF ChecKk:Nmbr <> ¢ !
SKIP
ELSE
STORE F TO Looking
ENDIF
ENDDO

If we're on a new name or the end of the file, Looking is TRUE
®# because we did not find the supplier we were looking for.
#® Otherwise, we have an unpaid bill to confirm.

IF Looking
T There are no unpaid bills for this supplier.’
? '<Return> to continue.'
| WAIT
ENDIF
ENDIF
RETURN

dBASE II...146

ERRRARRERARRARERERERS pﬂygﬁps COMMAND FILE #Rususssnassapisunsens

» Does normal payroll processing or exceptions.
B O 000000 00 00 00 36 00 06 06 00 000 00 06 06 30 00 00 00 00 90 0 00 0 40 00 00 00 06 00 00 00 00 00 0T 00 00 00 00 00 00 0030 00 00 00 00 0000 00 0 50 0

SET TALK OFF
STORE T TO Salaries
DO WHILE Salaries

ERASE

@ 3,20 SAY ' PAYROLL FUNCTIONS '
€ 6,20 SAY ' 1> NORMAL PAYROLL '
@ 7,20 SAY ' 2> PARTIAL PAYMENT(S) !
@ 8,20 SAY ' 3> SKIP EMPLOYEE(S) '
@€ 10,20 SAY ° <RETURN>'

WAIT TO, Action

IF Action = '1!
DO Payroll

ELSE

IF Action = '2
ERASE
!}

"
?

9 'This procedure allows you to pay less than a full salary & o
2 'for some reason an employee skipped days of work that are '
? 'not to be paid for. Do you want to continue (Y or N)?°'
WAIT TO Continue

IF !(Continue) = 'Y'

RESTORE FROM B:Constant

USE B:Personne

2 1Select the employee number for partial payment:'
? ! (Type 0 to quit.)' -

b ;

2'NO. NAME 4 OF PAY'
LIST Name, Ratio®*100 FOR .NOT. *
L]

INPUT 'Which number(0 to quit)? ' TO Wipe
STORE INT(Wipe) TO Wipe
DO WHILE Wipe <> O
GO Wipe)
? 'How many days$ wére worked'
? 'since the last regular payday?’
? 'Use decimals if needed (1 hour = 0.1333.)"
2
INPUT TO Worked
STORE Worked/11.0000 TO NewRatio
REPLACE Ratio WITH NewRatio
L]

DISP Name, Ratio®100
'?
INPUT 'Next (0 to quit)? ' TO Wipe

STORE INT(Wipe) TO Wipe
ENDDO : ;

ENDIF
RELEASE All

2

2 'Do you want to SKIP any employees (Y or N)?'
WAIT TO Skip
IF 1(Skip) <> *'Y'.

DO Payroll

ENDIF
RELEASE Skip

ELSE

IF Action = '3
ERASE
?
?
?

? 'procedure. Do you want to continue (Y or N)7!
WAIT TC Continue
IF t(Continue) = 'Y
- RESTORE FROM B:Constant
USE B:Personne '
? 'Select the number of the employee to skip:*

: A% (Type Q0 to quit.)!

T'NO. NAME T , SKIP*
? .

LIST Name, Paid FOR .NOT. ¥

T

INPUT 'Which number (0 hn-quit)? ' TO Wipe
STORE INT(Wipe) TO Wipe '
DO WHILE Wipe <> 0.
- GO Wipe
REPLACE Paid WITH T
4
?'NO. NAME SKIP'
o .
DISP Name, Paid
?
INPUT 'Next? ("0"to quit) ' TO Wipe
STORE INT(Wipe) TO Wipe
‘ENDDO
ENDIF
RELEASE All

:
? 'Do you want to pay a partial salary!
? 'to any employees (Y or N)?°'
WAIT TO Part
IF 1(Part) < 'Y
DO Payroll
ENDIF
RELEASE Part
ELSE _
IF Action = "4
? 'Something 4'
WAIT
ELSE
RELEASE All
RETURN
ENDIF 4.
ENDIF 2
ENDIF 2
ENDIF 1
STORE T TO Salaries
ENDDO Salaries

"? '"This procedure allows you to skip a paycheck in the paypﬁllu

dBASE II...148

ERRRFERARTRAERR PAYﬁOLL COMMAND FILE ###aREaeRuiusssssn

This command file generates payroll check stubs showing all deductions; gets
the nex. check number and writes a check in the CheckFile, showing the new
balance; and stores the salaries and deductions in a database called Hold81.
This file is used to store the monthly, quarterly and annual FIT, FICA, SDI
and SIT deductions. The deductions are not picked up from tax tables because
there are so few employees. Instead, they are obtained from the individual
employee records in the Personnel database.

Constants.MEM keeps track of the FICA and SDI percentages and their
maximums, as well as the the constant for ThisYear. Changes can be thus
made in a single spot and will be correct in all the programs in the
accounting system.

The file is gquite long, but breaks down into simpler modules:
I: Get the date and End of Month, Quarter and Year flags.
ITI: Compute all deductions and net pay for an individual employee, then
place this in the employee record in Personne.DBF
III: Operator verifies deductions and payroll stub is printed.
IV: Paycheck is written to the Checkfil and all amounts are placed into
the Hold81 summary file. '
V: When all individuals have been paid, the Hold81 summary file is
updated if it is the end of month, quarter or year.
VI: Print out the summary file and data so that the physical checkbook
_ can be updated (computer does not print our checks). '
VII: Delete transient constants, save others back to Constant.MEM for

system use.
EE RN RSN AN RN RN SR RN RN RN RN R RN RN AR RN RN E R AR RN RN

RERENNEENANRAR AN AN ENARR RN AR RENEER

RRERREEE T: GCet date and pay period flags ®HRERERER

RESTORE FROM B:Constant
PO GetDate

STORE 'Y' TO GetWhen
DO WHILE !(GetWhen) = "Y"

ERASE
€ 1,18 SAY "PAYROLL PROCESSINGY
STORE " " TO EOY - ;
@ 4,8 SAY 'Want to change the date?' GET Date
@ 5,8 SAY '(Press <Return> if okay.)'
READ
@ 7, 6 SAY "Is it the end of the YEAR?" GET EOY
@ 7,35 SAY "(Y or N)"
? CHR(T) :
READ
STORE !(EOY) TO EOY
IF EOY = "y" |
STORE "Y" TO EOQ
STORE "Y" TO EOM -
ELSE
STORE "N" TO EOY
STORE "™ " TO EOQ '
€ 8, 3 SAY "Is it the end of the QUARTER?" GET EOQ
@ 8,35 SAY "(Y or N)"
7 CHR(T) '
READ
STORE !(EOQ) TO EOQ
IF EOQ = WIW - '
STORE "Y" TO EOM
ELSE ;
STORE "N" TQO EOQ
STORE "™ "® TO EOM
@ 9, 5 SAY "Is it the end of the MONTH?".GET EOM
€ 9,35 SAY "(Y or N)"

dBASE II...149

? CHR(T7)
READ
STORE !(EOM) TO EOM
IF EOM <& nmYn
STORE "N" TO EOM
ENDIF -
ENDIF quarter
- ENDIF year

ERASE

@ 4,25 SAY $(Date,1,2)+'/'+$(Date,3,2)+'/'+$(Date,5,2)

€ 6,0 SAY "End of YEAR: "+EOY+" End of QUARTER: "+EOQ+;
J " End of MONTH: "+EOM -

STORE " " TO GetWhen

?

? T

@ 8,6 say '"The above information MUST be correct.
? CHR(T)

2nd chance at date and flags
ACCEPT ' Any CHANGES (Y or N)?' TO GetWhen

STORE 'B:Hold'+STR(ThisYear,2) TO Header
Computer now does a date and flag check
IF !(GetWhen) <> 'Y
IF $(Date,5,2)<'26" .AND. EOM = 'Y!
?

?

? "CHECK THE INFO AGAIN. It's the end of the month, but the"

2 'date is '+Date-'. Do you want to make changes (Y or N)?'

? CHR(T)

WAIT TO GetWhen

. ENDIF
IF EOY ='Y?
- SELECT SECONDARY

USE &Header

GO BOTTOM

IF Marker = 'Y
? CHR(T) :
? 'You blew it--the end of the year has been done!'
WAIT
RELEASE All
STORE T TO Paying
RETURN

ENDIF

ENDIF
ENDIF

ENDDO GetWhen
RELEASE GetWhen

NN RN R RN RER RN R AR ANR RN RN R RN RNR RN R RN R AR RN R RN
SRRMERRRERN TT: Calculate deductions and net pay for each individual *®RERERY

Rk B RN R N

Compute deductions. Deductions for FICA, FIT, SDI and SIT are kept in the
individual employee's Personnel record, rather than getting them from tax
tables, because there are so few employees. (You have to decide what should
and should not bé computerized.) The "YTDxxx" variables are the year-to-date
totals for these items. Limits and percentages for FICA and SDI are obtained
from a file called Constant.MEM. These are the variables FICACut, FICAMax,
FICAEnd, SpiCut, SDIMax and SDIEnd.

SELECT PRIMARY

USE B:Personne -
REPLACE All FICA WITH {Pay:Rate'FICﬁCUT+U.005);

dBASE II...150 dBASE II...151
SDI WITH (Pay:Rate®*SDICUT+0.005) ENDIF

STORE 0 TO Count ENDIF

GO TOP REPLACE Net:Pay WITH (Pay:Rate-FICA-FIT-SDI-SIT)

% ??Iﬁfia“°35 ¢ d REPLACE YTDFIT WITH (YTDFIT + FIT)

SKIP REPLACE YTDSIT WITH (YTDSIT + SIT)
ELSE REPLACE QTDSal WITH (QTDSal + Pay:Rate)
REPLACE YTDSal WITH (YTDSal + Pay:Rate)

STORE Count + 1 TO Count

##% Save the employee record in case the procedure is ended ###
STORE STR(#,5) TO Payee
COPY Record &Payee TO Bak
#8% Deductions for partial salary based on numbér of days worked #:#
#%% Ratio is computed in PayMenu.CMD
IF Ratio < 1.0000 , : :

REPLACE Pay:Rate WITH Pay:Rate®Ratio, FICA WITH FICA®Ratio, FIT;
—— WITH FIT®*Ratio, SDI WITH SDI®Ratio, SIT WITH SIT®*Ratio

Deductions and totals are computed then stored in the employee record
% FedTemp, Statemp and EmpTemp are used to.carry forward values for

* salaries subject to FICA, SDI and state uenemployment insurance to

Hold81, the summary file.

IF YTDSAL > FICAEnd
STORE 0 TO FedTemp
REPLACE FICA WITH O
ELSE
IF (YTDSal + Pay:Rate) <= FICAEnd
REPLACE YTDFICA WITH (YTDFICA + FICA)
STORE Pay:Rate TO FedTemp
ELSE .
REPLACE FICA WITH (MAXFICA - YTDFICA), YTDFICA WITH MAXFICA
STORE (FICAEnd - YTDSal) TO FedTemp
ENDIF
ENDIF

IF YTDSal > SDIEnd
STORE 0 TO StaTemp
REPLACE SDI WITH 0
ELSE
IF (YTDSAL + Pay:Rate) <= SDIEnd
REPLACE YTDSDI WITH (YTDSDI + SDI)
STORE Pay:Rate TO StaTemp
ELSE ' :
REPLACE SDI WITH (MAXSDI - YTDSDI), YTDSDI WITH MAXSDI
STORE (SDIEnd-YTDSal) TO StaTemp
ENDIF
ENDIF

In California, the employer pays an.Unemployment Insurance contribution
¥ on employee salary up to the amount of UIEnd. There is nothing
#_deducted from the employee salary for this, so we keep track only of

the employer obligation as UISal.

IF YTDSal > UIEnd

STORE 0 TO EmpTemp
ELSE

IF (YTDSal « Pay:Rate) <= UIEnd
STORE Pay:Rate TO EmpTemp
. ELSE ‘
STORE (UIEnd - YTDSal) -TO EmpTemp

3lIIIIIlllII'IIlllIIIIIIIIIlfIIIIIlIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SRENERRESHERER TTT: Print mplgyee stub AERERNERERARE

ERASE
SET PRINT ON .,
? ¢ '+$(Date,3,2)+' /' +$(Date,5,2)+"'/'+$(Date,1,2)+': '+Name;
+ ! '4+$(SS:Nmbr, 1,3)+"-'+$(SS:Nmbr,4,2)+" ="' +$(SS:Nmbr,6,4)
7 _ GROSS PAY: $'-STR(Pay:Rate,7,2)+' NET PAY: §':
-STR(Net:Pay,7,2)
?
? 1 FICA FIT SpI SIT!'
? ! THIS CHECK: '+STR(FICA,6,2)+" '+STR(FIT,7,2);
+! '4+STR(SDI,5,2)~' ' 4+STR(SIT,7,2)
7 THIS YEAR: '+STR(YTDFICA,7,2)+' '+STR(YTDFIT,8,2);
+' '+STR(YTDSDI,6,2) +' '+STR(YTDSIT,T7,2)
g TOTAL SALARY THIS QUARTER: $'-STR(QTDSal,9,2)
? TOTAL SALARY THIS YEAR: $'-STR(YTDSal,9,2)
?
?
?
#*

Pagefeed after every six employee stubs
IF Count >= 6
? CHR(12)
STORE 0 TO Count
ENDIF
SET PRINT OFF

IF EOQ = 'Y' .AND. Paid
REPLACE QTDSal WITH O

.ENDIF

SRR NSRRI RN NN RN RN NE RN R RN RN R RN R
muasER® TV: Record paycheck in Checkfil and Hold81 ¥##=¥ERuuRy

Now a check is "written™ in the CheckFil.
SELECT SECONDARY _
USE B:Checkfil
APPEND BLANK
REPLACE Check:Nmbr WITH NextCheck, Check:Date WITH Date,;
Name WITH P.Name, Amount WITH Net:Pay, Emp:Nmbrj;
WITH P.Emp:Nmbr, Client WITH 'OFC', Job:Nmbr WITH 31,;
Deserip WITH 'SALARY', Balance WITH (MBalance - Amount)
STORE (MBalance - Amount) TO MBalance ;
STORE STR(VAL (NextCheck)+1,4) TO NextCheck

ERASE

@ 3,25 SAY "#% DO NOT INTERRUPT ##n

@ 5,25 SAY "UPDATING MASTER RECORD"

? CHR(T)

We keep an aggregate record of payroll and deductions. Tne amounts

® for each employee are added to the amounts already in the last

® pecord in the file represented by "Header". (This was set up at the
start of the "GetWhen" loop earlier, arid ‘has the name "B:Hold81" or

"B:Hold82" or whatever "ThisYear™ is.) -

® This last record is either a blank (if this is the first

dBASE II...152

payroll of the month), or has data from previous salary payments

made during the current month. At the end of the month, quarter and
® year, totals and a new blank record (except at the end of the year)
are added. This is done in the next loop.

USE &Header

If this is a new year, there are no records in the file so we add a
* blank record. Otherwise, we go to the last record in the file.
IF EOF
APPEND BLANK
ELSE
GO BOTTOM
ENDIF

REPLACE Check:Date WITH Date, Payroll WITH (Payroll+Pay:Rate),;
FICA WITH (FICA+P.FICA), FICASal WITH (FICASal + FedTemp),;
FIT WITH (FIT + P.FIT), SDI WITH (SDI+P.SDI),;
SDISal WITH (SpISal + Statemp), SIT WITH (SIT + P.SIT),;
UISal WITH (UISal + EmpTemp)

SELECT PRIMARY

%% Reset the employee record if he was paid for part time. ¥###
#%% The Bak file if not deleted here, as each copy command ko dl
#¥% above wipes out tne previous contents, "ne
IF Ratio <> 1.0000

REPLACE Ratio WITH 1.0000

UPDA FROM Bak ON Emp:Nmbr REPL Pay:Rate,FICA,FIT,SDI,SIT,Neti:Pay
‘ENDIF

ENDIF

SKIP
ENDDO personnel file

(R R AR AR AR R R R R R R R R d R R ddRddd ittt R 2R]]

RENREER V: Personnel records are reset and Holdxx is updated ##&#EEss
STORE ' ' TO Completed
REPLACE All Paid WITH F

USE &Header
GO BOTTOM
[F EOM ='Y"
REPLACE Marker WITH 'M'

® If it's the end of the quarter,.we total the amounts for the
® previous three months to a new record and mark it with a 'Q'.
IF EOQ = 'Y

STORE STR(#,5) TO Number

TOTAL ON Harker TO Quarter FOR # >= (VAL(Number)-2)

APPEND FROM Quarter

DELETE FILE Quarter

IF $(Date,3,2) = '03"
REPLACE Check:Date WITH '1ST!
ELSE
IF $(Date,3,2) = '06'
REPLACE Check:Date WITH '2ND
ELSE
IF $(pate,3,2) = '09°
REPLACE Check:Date WITH '3RD!
ELSE
IF $(Date,3,2) = "12¢
" REPLACE Check:Date WTTH 'UTH'

dBASE II...153

ENDIF
ENDIF
ENDIF
ENDIF

REPLACE Marker WITH 'Q°'

® If it's the end of the year, we total all the quarterly amounts to

% 3 new record and mark it with a 'Y'.

IF EDY = 'Y
TOTAL ON Marker TO Annual FOR Marker = 'Q'
APPEND FROM Annual

- REPLACE Marker WITH 'Y', Check:Date WITH 'END'

DELETE FILE Annual

ENDIF

ENDIF

Tf it's the end of a month but not the end cf the year, we add a new
®# blank record for next month's payroll records.

1T EQY <> QY
APPEND BLANK

ENDIF

ENDIF

FRBEENEERRNE RN NN R RBN RN S 000000 000 0000 00 00 000 06 00 000 O 06 30 06 0 30 30 0 0F 90 00 00 9% 30 90 06 00 30 0000 0 R R %

ERRNNERE VI: Print payroll summary, transfer checks to costbase #¥RER¥®

USE B:CheckFil

COUNT FOR .NOT. ®* TO Any

IF Any=0
20

: No new checks written.'
7 {Return> to continue.’
WAIT

ELSE

USE &Header

ERASE

@ 12,25 SAY "CHECK THE PRINTER, THEN PRESS <RETURN>."

? CHR(T) :

WAIT

ERASE

SET PRINT ON

SET MARGIN TO ‘45

- 2 MASTER PAYROLL FILE SUMMARY: '+$(Date,3,2) +'/"}
+$(Date,5,2)+'/'+$(Date,1,2) '

)

2

?'DATE PAYROLL FICA FICASAL FIT SDI SDISAL "43
*SIT UISal' :

l?

LIST OFF

SET MARGIN -TO 38

? CHR(12)

SET PRINT OFF

ERASE
8 3,25 SAY "®##% DO NOT INTERRUPT ###n
@ 5,25 SAY_" UPDATING THE COSTBASE"

? CHR(TJ -

USE B:Costbase .INDEX B:$Supp
APPEND FROM B:Checkfil

DO CheckStub

dBASE II...154
ENDIF

HERREERNERERNEN RN EENEN REREGEREERER RN RN RN AN RN BB RERG

RENG®% VII: Dump transient variables, save necessary ones HEESR&E#

RELEASE Payee,Number,Date,Ratio,Aborted,Printed,E0Y,E0Q,EOM,Any,Header,;
Count, FedTemp, StaTamp, EmpTemp, Marker, Paying, Salar;ea

SAVE TO B.Cunatant

USE

RELEASE All
DELETE FILE Bak
RETURN

dBASE II...155

SESERSNNEE DEPMENU’ COMMAND FILE = Sesssusass

'-éeleet dagoaitu perform houakaaging on the checkbook.
TITTIIIITT Illllllllilllllllllllil SERRERRRSBEBNE :

STORE T TO Incoming
DO WHILE Inecoming
ERASE
@€ 5,20 SAY ! 1> ENTER MONEY COMING IN - °*
@ T,20 SAY * 2> CHANGE OUR CHECK NUMBER '
€ 9,20 SAY 3> CHANGE CHECKBOOK BALANCE '
?
?

: <RETURN>"'
WAIT TO Action

IF Action = '1!
DO Deposits
ELSE
IF Action = '2°
RESTORE FROM B:Constant
ERASE
@ 5,0 SAY 'This is the next check number' GET NextCheck
@ 6,0 SAY 'To leave it unchanged, use the <return>.’
@ 7,0'SAY 'To change it, just type in the new number.’
READ
SAVE TO B:Constant
RELEASE All
ELSE
IF Action = '3
RESTORE FROM B:Constant
STORE 'Y' TO Change
DO WHILE !(Change) = 'Y
ERASE
. @ 5,0 SAY' The current balance is:' GET HBalanna
? 'To leave it unchanged, use the <{return>.’'
? 'To change it, Jjust typa in the new value.'
READ
T,
? .
7! Want to change your mind (Y or N)?'
WAIT TO Change
ENDDO ‘
RELEASE Change
SAVE TO B:Constant
RELEASE All
ELSE
RELEASE All
RETURN
ENDIF 3
ENDIF 2
ENDIF 1
ERASE
STORE T TO Incoming
ENDDO Incoming

dBASE II...156

EENBERAREENE DEPOSITS COMMAND FILE ®Russssssss
This file records any money coming in in a file called Deposits. If the
the money is in payment of an invoice, the amount and date of payment are
entered against that invoice in thé Invoice file.

The checkbook balance is kept current for each entry.

At the end of the sesssion, deposits are printed ouf individually, then

the total of deposits plus the new checkbook balance are printed.

REBERERRERN SRR EER RN RN ERE RN NRE RN R REE RN R FEREPENERERERNERRRRRY

RESTORE ' FROM B:Constant
ERASE

e
?
?
7
?
?
?

5,20 SAY ' ENTERING INCOME'
Ty, 5 SAY 'The STARTING BALANCE is '+STR(MBalance,9,2)

' If this does not match the checkbook,’

. {Return> to the main menu to change.'

L C to CONTINUE.'

WAIT TO Continue
IF !(Continue) <> 'C'

RELEASE All
RETURN

ENDIF
RELEASE Continue |

DO GetDate

SELECT PRIMA
USE B:Deposit
COPY STRUCTURE TO GetDep

USE GetDep
STORE 'Y' TO Depositing
DO WHILE !(Depositing) <>'F!

APPEND BLANK,
STORE STR(#,5) TO Number
REPLACE Dep:Date WITH Date

ERASE
#® Next loop is used when there has been an error in the entry

(defined as no client or no rate). The operator is shown the

® previous entries and can make any changes reaquired.

STORE 'T' TO Incorrect

DO WHILE !(Incorrect) <> 'F' . _

3, 0 SAY ' If a check covers more than one agency invoice,®
4, 0 SAY ' enter each invoice and amount separately.’

6,0 SAY ' RECORD NUMBER: ‘'-Number
T,0 SAY * HOW MUCH' GET Dep¢sit
8,0 SAY '"CUR INVOICE NO' GET Inv:Nmbr
9,0 SAY CHECK FROM' GET Payer
10,0 SAY "THEIR CHECK NO' GET Pay:Nmbr
11,0 SAY ¢ Comments' GET Comments
? CHR(T)
READ

) (@ @ @ @ @ (D ~) D

REPLACE Payer WITH !(Payer), Comments WITH !(Comments)
€ 9,15 SAY Payer :
€ 11,15 SAY Comments

IF Payer <> ' ' ,AND. Deposit > 0
e 17,5 SAY ! C to CHANGE,'

dBASE II...157

g 18,5 SAY '<Return> to continue.'
? CHR(T)
WAIT TO Depositing
IF {{Depositing)='C'

STORE 'T' TO Incorrect®

ERASE
ELSE :
STORE (MBalance + Deposit) TO MBalance
g 17, 5 SAY ' F if FINISHED,'

a1

2 CHR(7)
WAIT TO Jepositing

STORE 'F' TO Incorrect

ENDIF
ELSE
g 15,5 SAY 'CHECK WRITER or AMOUNT missing.!®
3 : ~ F if FINISHED,' |
{Return> to correct the r wY
s CHRS ecord
WAIT TO Depositing
ERASE

IF !(Depositing)= '"F!
DELETE RECORD &Number
STORE 'F' TO Incorrect

ELSE
ERASE
STORE 'T' TO Incorrect

ENDIF

ENDIF
ENDDO Incorrect
ENDDO Depositing

RELEASE Change, Date, NoDate, Depositin ‘ :
SAVE TO B:Constant 3 Phe gy Number, Update, New, Incorrect

COUNT FOR .NOT. * TO Any
ERASE ’
IF Any = 0O
? 'No deposits to add to the file.'
? 'Press any key to continue.!
? CHR(T) |
USE
WAIT
ELSE _
DO DepPrint

¥ The next portion of this program uses the P I
rimary and Secondary work
.: areas Lo record payments received against agency invoices in tﬁe record
for that invoice in the Invoices file.” Both work areas are nécessary 80

* that we can compare each record in the GetD
e :
® pecords in the Invoices file. p file against all of the

DO DepTrans

USE B:Deposits

APPEND FROM GetDep -
ENDIF there are deposits to add to the file

DELETE FILE GetDep
RELEASE A11°
RETURN

dBASE II...158

SERNESSNES DEPPRINT COMMAND FILE ®ananussas

® Prints valid deposits in the GetDep file as part of the Degnaits file.

IllllIlllillIIIII"III'I.IIIIIIIIIIIIIIIIII‘IIIIIII!!IIII'II 00 00 040 08 00 5 0 00 0

@ 5,10 SAY 'To pfint-the deposits you just entered,’
@ 6,10 SAY 'press <{Returnd>.' 5 :

? CHR(T)
WAIT g |
SET PR :
7 ' DATE PAID BY AMOUNT INV # COMMENTS:'
? .
GO TOP _
STORE 0 TO Count
DO WHILE .WNOT. EOF :
DISPLAY OFF Dep:Date, Payer, Deposit, Inv:Nmbr, Comments FOR .NOT. *®
SKIP ‘
STORE Count+1 TO Count
IF Count=10
STORE O- TO Count
WAIT
- ENDIF
ENDDO
SUM Deposit TO Temp
T -
? ' The total deposit is ' + STR(Temp,9,2)

?
2 ' The final balance is ' + STR(Mbalance,9,2)

?
SET PRINT OFF

‘RELEASE Count, Temp
RETURN

dBASE II...159

B30 306 36 00 0 00 06 DEPTRANS COMMAND FILE ®##assus%ss

® Applies deposits from the GetDep file agai EA
gainst the mat

* Invoices file as payments are received against them. uh;ns invoices in the

. IIIIIIIII!I!III!IIIIIIIIlllilﬂllllllilllliillllIllllﬂllllliilllllllIlliilu'*

GO TOP

ERASE

DO WHILE .NOT. EOF
STORE STR(#,5) TO Number
€ 6,20 SAY 'RECORD NUMBER '+Number
? CHR(7) + CHR(27) + CHR(74)

IF Inv:Nmbr=' ! .Dﬁ. ®
SKIP :
ELSE

@ 7,20 SAY 'INVOICE NUMBER '+Inv:Nmb
STORE Inv:Nmbr TO Key d

SELECT SECONDARY

USE B:Invoices INDEX B:Invoices
FIND &Key

STORE T TO Again
STORE 'T' TO Decision’
IF # = 0 :

DO WHILE Again

€ G,15 SAY 'THIS INVOICE NUMBER IS NOT IN THE INVOICE FILE. °

@ 11,15 SAY ° E to EDIT it.
€ 12,15 saY C to CONTINUE.
? CHR(7)

WAIT TO Decision

IF !(Decision) = 'E!
SELECT PRIMARY
EDIT &Number
SELECT SECONDARY
STORE'F TO Again
ELSE F
IF !(Decision) = 'O
- STORE F TO Again
ELSE :
STORE T TO Again
ENDIF C
ENDIF E
ENDDO
ELSE :
EHD?EPEACE Amt:Red WITH (Amt:Red + Deposit), Date:Red WITH Dep:Date
SELECT PRIMARY

* We do not skip to the next record if the record was edited. This

% allows us to run the edited pe
IF !(Decision) <> 'g' . cord through the process again.

SKIP
ENDIF

ENDIF no invoice number or record d
ENDDO the transfer : s

dBASE II...160 dBASE II...161

SENNNNENNRERRNE TOMENU COMMAND FILE #HSSsssussssnessss : ENDIF 1
Selects the appropriate action to be taken with' insertion orders STORE T TO Inserting
®# (instructions from our ad agency to magazine publishers). ENDDO Inserting

 IIITEEZ IR 2222 R R QR 221 d st ittt telllss,

STORE T TO Inserting
DO WHILE Inserting

ERASE _
€ 7,20 SAY ' 1> ENTER INSERTION CRDERS’

@€ 9,20 SAY ' 2> EDIT INSERTION ORDERS®

'@ 11,20 SAY ' 3> REVIEW/PRINT INSERTION ORDERS'
@ 12,20 SAY ° BY CLIENT & MAGAZINE'

@ 14,20 SAY ! <RETURN>

WAIT TO Action

IF Action = '1!
DO IOPost
ELSE
IF Action =.'2°"
STORE "Y" TO Changing'
DO WHILE !(Changing)='Y'
'USE B:Inserts
IF EOF
? "There are no entries in the INSERTION ORDER file.!
STORE "N" TO Changing
ELSE
STORE IO:Nmbr TO First
GO BOTTOM -
STORE IO:Nmbr TO Last
ERASE '
€ 3,15 SAY 'EDITING INSERTION ORDERS '+First+'thru '+Last
€ 5,15 SAY '"W to SAVE, "Q to CANCEL changes you make.'
@ 6,15 SAY '"R for PREVIOUS, "C for NEXT record if MORE = T'
o ;
".!
ACCEPT 'Which ORDER NUMBER do you want to EDIT?" TO Order
USE B:Inserts INDEX B:Inserts
FIND &Order
IF #=0
?
5 ‘ .
? 'That insertion order is not in the file.'
? 'Do you want to continue (Y or N)?°
WAIT TO Changing
ELSE _
STORE STR(#,5) TO Number
Edit &Number
REPLACE Client WITH !(Client), Ad WITH !(Ad) yMagazine WITH;
! (Magazine)

-

7
? 'Do you want to edit any other insertion orders (Y or N)?'
WAIT TO Changing
ENDIF
ENDIF
ENDDO Changing
RELEASE All
ELSE
IF Action ='3?
DO IOReview
ELSE
RELEASE All
RETURN
- ENDIF 3
ENDIF 2

dBASE II...162

ERSNNRRS TOPOST COMMAND FILE #tsssssess
' # Gets information for insertion orders (instructions to magazine
publishers from our ad agency). Works much like Postbills and

Posttime.

GEEERERERNASRERREENENARANRAENRNNERNENRRRGNCRENNNA AR ANEACAARENN

RESTORE FROM B;Cunutant
DO GetDate

USE B:Inserts
COPY STRUCTURE TO GetInserts
USE GetInserts

STORE ' ' O New

STORE 'Y' TO Inserting

DO WHILE !(Inserting) <O'F!
APPEND BLANK
STORE STR(#,5) TO Number

REPLACE IO:Date WITH Date, IO:Nmbr WITH Next:IO

ERASE

Next loop is used when there has been an error in the entry
% (defined as no client or no rate).

STORE.'T' TO Incorrect

DO WHILE !(Incorrect) <> 'F!

ERASE

@ 4,0 SAY ' INSERTION ORDER: '+IO:Nmbr

ﬂ 3,30 SAY !

DATE: '+Date

0 SAY ' RECORD NUMBER: '=Number

- lfﬂew) = 18

@€ 7,0 SAY ° OUR CLIENT :' + MClient
ELSE
@€ 7,0 SAY ' OUR CLIENT ' GET MClient
STORE 1(MClient) TO MClient
ENDIF
€ 8,0 SAY * JOB NUMBER ' GET Job:Nmbr
@ 9,0 SAY ' AD DESCRIPTION ' GET Ad
@ 10,0 SAY * HOW MUCH SPACE ' GET Space
e 11,0 SAY ! WHICH MAGAZINE ' GET Magazine
@ 12,0 SAY ! WHICH ISSUE ' GET Issue
@ 13,0 SAY 'GROSS SPACE COST ' GET Gross:Cost
@ 14,0 SAY ' DISCOUNT RATE ' GET Times
READ

REPLACE Net:Cost WITH Gross:Cost®0.8500, Client WITH MClient,;
Ad WITH 1(Ad), Magazine WITH !(Magazine), Issue WITH -1 (Issue)

@€ 7,18 SAY Client
@ 9,18 SAY Ad

€ 11,18 SAY Magazine
g 12 18 SAY Issue

15, 0 SAY ' NET SPACE COST ' GET Net:Cost

«IF Client <> ' ' _AND. Gross:Cost > 0 .AND. Job:Nmbr > 99
@ 18,5 SAY ' C to CHANGE,'
@ 19,5 SAY '<Return> to continue.'

?
WAIT TO New
IF 1(New)='C’

STORE 'T' TO Incorrect

ELSE
@ 17, 5 SAY !
@ 18, 5 SAY

F if . FINISHED,'
S for SAME insertion order,'

dBASE II...163

€ 19, 5 SAY ’<Return> for NEXT insertion urder.
@ 21, 0 SAY !
ACCEPT TO New

IF 1(New) <> tS¢
IF VAL(Next:I0) < 9999
STORE STR(VAL(Next:IO)+1,4) TO Next:Iu
ELSE
STORE '1001" TO Next:I0
ENDIF
ENDIF
STORE 'F' TO Incorrect
ENDIF
STORE New TO Inserting
ELSE

' CLIENT, JOB or RATE missing.'

F if FINISHED,'
{Return> to correct the record.’

R R e e e T I I I |

WAIT TO Inserting

IF 1 (Inserting)= 'F!
DELETE RECORD &Number
STORE 'F' TO Incorrect

ELSE .
STORE 'T* TO Incorrect

ENDIF

ENDIF
ENDDO Incorrect

- ENDDO Inserting

RELEASE Date, NoDate, Inserting, Number, Update, New, Incurrect
SAVE TO B:Constant

COUNT FOR .NOT. ® TO Any

- ERASE

IF Any = 0
? 'No insertions to add to the file.’
? 'Press any key to continue.’
USE
WAIT
ELSE
€ 5,10 SAY 'Tn print the insertions you just entered,’
€ 6,10 SAY 'press <Return>.'
WAIT TO Number
#"Number" determines the starting record number for the printout

SET PRINT ON
? 'I0 # MAGAZINE ISSUE JOB AD '3

., +'SPACE GROSS NET X DATE' "

"Qutput" and"Condition" needed in the Printout Command file
STORE 'Y' TO Qutput

STORE 'OFF' TO Condition

DO Printout

ERASE

dBASE IT...164 dBASE IT...165

@ 5,20 SAY 'UPDATING THE INSERTION ORDER FILE®' L RERRREENNR TOREVIEW COMMAND FILE #uBessssss

USE B:Inserts INDEX B:Inserts # provides insertion order displays and printout.

APPEND FROM GetInserts 8 The operator can select all the insertions for the client,
ENDIF ! - # or can select only those for a particular magazine.

||i|nllill!iuiuiiilliiinililiiliiiuuillinlilulnlllinnilllililIlulgl
DELETE FILE GetlInserts

RELEASE All | SET TALK OFF
RETURN 'USE B:Inserts
STORE ' ' TO Again
pO WHILE !(Again) <> 'F' |
. STORE ' ' TO MClient
STORE °* - ' TO MMagazine
- STORE ' ' TO Hardcopy
STORE '*' TO Other
ERASE
€ 2,11 SAY ! MEDIA SUMMARY:'

@ 4,11 SAY 'ENTER CLIENT CODE' GET MClient -
€ 5,11 SAY ' MAGAZINE NAME?' GET MMagizine

@€ 6,11 SAY™! P to PRINT' GET Hardcopy
READ
IF MClient = ' !
e 9, O SAY ' !
g 8 CLIENT missing.'
7 2 F if Finished,!
? ' <Return> to continue.?
WAIT TO Again
ELSE

STORE !(MClient) TO MClient
STORE !(MMagazine) TO MMagazine
STORE !(Hardcopy) TO Hardcopy
@ 4,29 SAY MClient

@ 5,29 SAY MMagazine

@ 6,29 SAY Hardcopy

€ 9, 0 SAY '
l’

b
ACGEPT 'Type C to CHANGE any entries' TO Changes
IF !(Changes) = 'C!
STORE ' ' TO Again
ERASE
ELSE -
| IF MMagazine >'
STORE TRIM(MMagazine) TO MMagazine
STORE '.AND. Magazine=MMagazine' TO Condition
ELSE . ;
STORE CHR(0) TO Condition
ENDIF

IF 1(Hardcopy) = 'P!
- STORE 'TO PRINT' TO Hardcopy
ELSE |
STORE CHR(0) TO Hardcopy
ENDIF Hardcopy

-SET HEADING TO MEDIA SUMMARY FOR &MClient &MMagazine
EEPDRT FORM Hedia-&ﬁachapy FOR Client=MClient_&Condition

2 F if Finished,®

? ' <Return> to continue.’
WAIT TO Again

ERASE

ENDIF ‘okay to do the reﬁurt
ENDIF |

dBASE IT...166
ENDDO Again
ERASE

RELEASE All
RETURN

dBASE II...167

ARERARRRBRENES TNVMENU COMMAND FILE RHsussspassusnsnns .
Functions are selected by the menu. This procedure works with two da
files, BILLINGS and INVOICES. BILLINGS Keeps track of the amount
hilled to a client by individual job number, while INVOICES is 2 i
summary of the total billed on any given 'invoice. This latter file can

. be used to set up an accounts receivable system, as it has fields for

storing how much has been received in payment against an invoice and

when that amount was received (filled in by the Deposits.CMD file).
e T L st L T TR R A R L L B A P L T PP P T Y

RASE

STORE T TO Invoieing |

D

0 WHILE Invoicing
@ 5,20 SAY ! 1> BILL CLIENTS BY JOB'
@ 7,20 SAY ° 2> EDIT INVOICES amd BILLINGS'
@€ 9,20 SAY ! 3> REVIEW/PRINT INVOICES and. BILLINGS'
e 12,20 SAY * {RETURN>"* |
WAIT TO Action .

IF Action = '1?
: DO Invoices
ELSE
IF Action = '2¢
STORE 'Y'TO Changin
DO WHILE !(Changing) = 'Y

ERASE
7 J to edit individual job billings,'
$ " <Return> to edit the summary invoices.'

WAIT TO Which
IF 1(Which) = 'J°

STORE 'Billings' TO Database
ELSE
~ STORE 'Invoices' TO Database
ENDIF ;

USE B:&Database °
STORE Inv:Nmbr TO First
GO BOTTOM
- STORE Inv:Nmbr TO Last
ERASE -
€ 3,10 SAY 'EDITING *+1(Database)
€ 3,35 SAY First+'thru '+Last 2
€ 5,10 SAY '"W to SAVE, "Q to CANCEL changes you make.'
€ 6,10 SAY '"R for PREVIOUS, "C for NEXT record.'
@ 8,10 SAY 'Which INVOICE NUMBER do you want to EDIT?'
IF 1(Which) = 'J! * .
@ 9,10 SAY 'This takes you to the FIRST ENTRY for that number.
é 10,10 SAY 'Use °C to look at the rest of them.!'
ENDIF
ACCEPT TO Invoice

USE B:&Database INDEX B:&Database

FIND &Invoice

IF #=0
?
-? '
? 'That invoice number is not in the fiie.-
? 'Do you want to continue (Y or N)?'
WAIT TO Changing

ELSE :
STORE STR(#,5) TO Numbe
Edit &Number :
REPLACE Sales:Tax WITH 0.06%Taxable
REPLACE Client WITH !(Client)

dBASE II...168 dBASE II...169

IF !(Which) = 'J°

REPLACE Descrip WITH !(Descrip);PO:Hmbr'HITH ! (PO:Nmbr) RERRRRRRRE TNVOICES COMMAND FILE #ERussssss

ENDIF : # This file accepts inputs for invoices to clients. Individual projects
? # and items are stored in the Billings databfile.I An{ numbe; of ;::ma
7?7 '"Do you want to edit any other i 1 1 % may be entered using a single invoice number. nvoice numbers
EHD?#IT Tg Changing Y P SECRERE ¢ e e : agiumatically generated by the computer and stored in the Constant.Mem
_ file.
ENDDO Changing E After all the job billings have been entered, they are summarized by
RELEASE All # invoice number and the data is stored in the Invoices file.
ELSE 5 A printout of “items billed and invoice totals is provided.
IF Action ='3? .;lnniii:i!lgj!llillilnlllnlll!llillilllii!illllllpiilulllnlillniliuuunl
ERASE '
@ 4, 0 5AY ' RESTORE FROM B:Constant
il J to see individual job billings,?'
i A {Return> to see the summary invoices.' DO GetDate
WAIT TO Which :
IF 1(Which) = *'J° USE B:Billings
STORE 'Billings' TO Database COPY STRUCTURE TO GetCosts
ELSE
EHDgOHE "Invoices' TO Database g?gﬁgﬂ?(:?ﬂ%g Billing
‘ DO WHILE !(Billing) <'F!
"USE B:&Database ' APPEND BLANK

STORE 'Y¥' TO Reviewing

DO WHILE 1(Reviewing) STORE STR(#,5) TO Number -
eviewing)='Y"

REPLACE Inv:Date WITH Date. Inv:Nmbr WITH Next:Inv

GO BOTTOM

STORE STR(#,5) TO Last ERASE

ERASE ' STORE 'T' TO Entering

@ 5,10 SAY 'The '+!(Database)+' file has '-Last-' entries.® DO WHILE !(Entering) <> 'F'

@ 7,10 SAY '<Return> to see the entire file, or® ERASE -

@ 8,10 SAY ‘enter the record number to start on.' € 3, 0 SAY 'INVOICE NUMBER ‘'+Next:Inv
ACCEPT TO Number € 3,30 SAY ! . DATE ‘'+Inv:Date

~ ? "Do you want to print the file now (Y or N)?'

@ 5,0 SAY ¥ RECORD NUMBER: '-Number
IF 1(Billing) = 'S’

WAIT TO Output @ 7,0 SAY ° CLIENT:'+ MClient
REPLACE Client WITH MClient
IF !(Output)="Y" ELSE
SET PRINT ON - @ 7,0 SAY ' CLIENT ' GET Client
ENDIF - ENDIF
STORE CHR(0) TO Condition - € 8,0 SAY ' JOB NUMBER ' GET Job:Nmbr
DO Printout : @ 9,0 SAY 'TAXABLE AMOUNT ' GET Taxable
? @ 10,0 SAY 'TAXFREE AMOUNT ' GET TaxFree
SET PRINT OFF : @ 11,0 SAY * P. 0. NUMBER ' GET PO:Nmbr
? 'Do you want to see it again (Y or N)?' @ 12,0 SAY ' DESCRIPTION ' GET Descrip
WAIT TO Reviewing READ
ERASE .
ENDDO Reviewing STORE !(Client) TO MClient o :
RELEASE All REPLACE Client WITH MClient,Desérip WITH !(Descrip),,
Rhee. ~° PO:Nmbr WITH !(PO:Nmbr)
RELEASE All ~ @ 7,16 SAY Client
RETURN : @ 11,16 SAY PO:Nmbr
ENDIF 3 . @ 12,16 SAY Descrip
ENDIF 2 . IF Taxable > 0 _
ENDIF 1 | REPLACE Sales:Tax WITH 0.06%Taxable
i € 13,0 SAY SALES TAX'GET Sales:Tax
STORE T TO ‘Invoicing ENDIF

ENDDO Invoicing
IF Job:Nmbr-< 100
€ 16,0 SAY * ~JOB not 3 digits.'
ENDIF

IF MClient <> ' ' .AND. (Taxable > 0 .OR. TaxFree > 0)
€ 17,0 SAY ° C to> CHANGE this entry.'
7.% {Return> to continue.’

¢

dBASE II...170 _
! dBASE II...171%
2

'HAIT(TD ngc | ? YINV # J0O '
IF 1(New)='C"® B DATE '
STORE 'T' TO Entering ? . 1% TAXABLE TAX TAXFREE = P.0.# DESCRIPTION'

"ELSE .
§15, goat’ P 1f FINISHED, AT - ¥ "Output® is needed in the Printout Comman
e 17: 0O SAY °* S for SAME invoice number,! STORE 'Y' TO Gutput . out d file
é@ 18, 0 SAY {Return> for NEXT invoice number.’ STORE 'OFF' TO Condition
@ 19, 0 SAY * " T DO Printout
ACCEPT TO New * on ;
€ of our clients always pays promptl
IF 1(New) <> S . g * We do this after the original entries Egiﬁdpﬁiﬁiid‘aﬁﬁ-41’°°“""
STORE STR(VAL(Next:Inv)+3,5) TO Next:Inv REPLACE E};ﬁbéﬂggITﬂ 0.980%Taxable, TaxFree WITH 0.980%TaxFree, Sales:T

ENDIF ; . «900%Sales: Tax FOF = o ’ s:Tax;
STORE 'F' TO Entering | ; FOR Client = 'SPT!

ENDIF | | 'Updating the BILLINGS database now.

STORE New TO Billing USE B:Billings INDEX B:Billings h

ELSE | APPEND FROM GetCosts

@ 17,0 SAY © CLIENT or AMOUNT missing.'

? : USE Scratch

8 F if FINISHED,' ' REPLACE All Amount WITH (Taxabl : -

el o AR O G i ot COFY'TO Tamp TERLDS Tavebute avingsis fIeE Tt

WAIT TO ng : feree. b e :Tax,

IF 1(Billing)= 'F' , - REPLACE Taxable WITH 0.980%Taxable T, F 2.
DELETE RECORD &Number " WITH 0.980%Sales:T y taxiree WITH.0,980%TaxFree, Sales:Tax:
STORE 'F' TO Entering ax, Amount WITH 0.980%Amount FOR Client = 'SPT'

' ELSE v | USE Temp
STORE 'T' TO Entering STORE 'Y' TO Output

ENDIF ' SET PRINT ON |

. ENDIF T
ENDDO Entering ? :
ENDDO Billing 3 g 3 'TOTALS BY INVOICE NUMBER: *
' e ient, Task ber, Date, New 5 D
RELEASE Billing, Entering, MClient, Task, Number, , N : ATE INV# TAXABLE TAX TAXFREE TOTAL'

SAVE TO B:Constant -
DO Printout
g

‘PACK
TOP . . ? 'Updating the INVOICES databa '
ASE . USE B:Invoices INDEX B:Invdicaaae row«
IF EOF > APPEND FROM Secratch
' 2 'No invoices to add to the file.'] ENDIF
? 'Press any key to continue.'
. AIT : ' USE
ELSE - DELETE FILE Seratch
@ 5,20 SAY 'REES DO NOT INTERRUPT adadadedd DELETE FILE Temp
@ 7,20 SAY '"UPDATING BILLINGS AND INVOICES! DELETE FILE GetCosts
RELEASE All
'RETURN

® Costs entered are totalled by invoice number to Scratch because several
® job costs can be entered against each invoice number. Amounts are adusted
‘® for one client who always pays promptly and takes a 2% discount. Each

® invoice is tatalled. Temp has only summary data needed for -a printout.

USE B:Invoices ;
COPY STRUCTURE TO Scratch

USE GetCosts

ERASE ; ’ : o
@ 5,10 SAY 'When ready to print the billings you just added,'

@ 6,10 SAY 'press. <Return>' Py
TOTAL ON Inv:Nmbr TO Scratch FIELDS Taxable, Sales:Tax, TaxFree

WAIT TO Ntmber

SET PRINT ON
? 'ENTRIES BY JOB NUMBER:'

dBASE II...172

‘ EERSRNRERS REPORTMENU COMMAND FILE Sessssssss
® This command file is a sub-module of the ACCOUNTS.CMD control
module. It provides detailed choices that relate to reports
® that the user might choose to see or print from the cost
% database. The functions are set up as sub-sub-procedures

% under the control of this module.
IIIII_IIIIIIII it Il R R T R F R R R R Y YRR Y I IETIITIITIIIIIC:]

ERASE :
STORE T TO Reporting
DO WHILE Reporting

@ 3,20 SAY ' - 1> COSTS BY JOB'
- @ 5,20 SAY 2> FIND & EDIT BILLS'
@ 7,20 SAY 3> REVIEW A DATABASE'
€ 0,20 SAY ! 4> Quarterly Sales Tax Summary'
"€-'11,20 SAY ! 5> RE-INDEX THE COSTBASE ON JOB NUMBERS'
@ 12,20 SAY ™ Make sure you won't need the computer"
@ 13,20 SAY ° for a while: this takes a long time.®
@ 17,20 SAY ! 3 <RETURN>'

WAIT TO Action

IF Action = "'1°
USE B:Postfile .
COUNT FOR .NOT. ® TO Any
IF Any > 0 : :
€ 15, 0 SAY CHR(27)+CHR(T4) '
? 'There are '+STR(Any,5)+' entries in the Postfile.?
? 'Do you still want to do the Job Costs (Y or N).!
WAIT TO Continue
IF !(Continue) = 'Y'
DO JobCosts
ENDIF :
ELSE
DO JobCosts
ENDIF
- RELEASE Any
ELSE
IF Action = '2!
- DO FindBills
ELSE
IF Action = *'3'
ERASE
DISPLAY FILES ON B
!?
’ >
? "Which file do you want to review?!
ACCEPT TO Database
IF FILE("B:"+DATABASE) > O
. USE B:&Dat.abase
. DO Review
ELSE -
®# Erases IBM 3101 to end of screen
€ 17,0 SAY CHR(27)+CHR(T4) -
€ 17,0 SAY !(Database) + " isn't on the list, is 1it?
+ 'your spelling, then hit <Return>’
? 'and try again. Or not, as the case may be.'
WAIT ‘
END
ELSE]
IF Action = 'Y
DO SalesTax
ELSE |
IF Actidn = 'S¢

Check ";

DO JobsIndx
ELSE
RELEASE All
RETURN
ENDIF 5
ENDIF 4
_ ENDIF 3
ENDIF 2
ENDIF 1
ERASE
STORE T TO Reporting

SEHDDO_Reporting

dBASE IT...173

dBASE II...174

RERNRERENE JOBCOSTS COMMAND FILE ®#assussss:
Provides summaries of costs by client and job number. This can
® also be used to summarize all office categories, since they fall
into these fields. '
¥ REPORTS ARE BY JOB NUMBER. Client code is used only in the heading.
® The report is actually prepared based on the job number, so accuracy is
® eritical. ;
* This file works with a partially indexed costbase, so "Unindexed" is
% used to keep track of how many records are not in the index. If this gets
#
El

beyond .a specific number, the operator is prompted to reindex the Costbase.
lllllIlllllllIlllIlllIrl'llilllll*llllllli'.lIlillllllllilll!lllllil'

SET TALK QFF

RESTORE FROM B:Constant
DO GetDate

STORE 0 TO Unindexed
STORE * ' TO Again
DO WHILE !(Again) <> 'F*
STORE ! ' TO MClient
STORE ' ' TO MJob:Nmbr
STORE ' ' TO Hardcopy
STORE *N' TO Number
ERASE
@€ 2,11 SAY ' JOB COST SUMMARY

-

@ 14,11 SAY 'ENTER CLIENT- CODE ' GET MClient
5,11 SAY ' ENTER JOB NUMBER ' GET MJob:Nmbr
@ 6.11 SAY P to PRINT ' GET Hardcopy.
@ 7.11 SAY 'SHOW BILL. NUMBERS ' GET Number
READ
?
IF MClient = * * .OR- MJob:Nmbr= ' °?
@ 9, 0
2 +' CLIENT or JOB NUMBER missing.’
7 1 F if Finished,’

? ' <Return> to continue.'
WAIT TO Again
ELSE
€ 8,0 SAY CHR(27)+CHR(TH) _
ACCEPT ! OPTIONAL JOB DESCRIPTION ' TO Message
STORE TRIM(!(Message)) TO Message
STORE !(MClient) TO MClient
STOHE_!(Hhrdcogy) TO Hardcopy
STORE ! (Number) TO Number
@ 4,30 SAY MClient

@ 6,30 SAY Hardcopy
€ 7,30 SAY Number

@ 9,30 SAY Message
2

7

ACCEPT 'Type C to CHANGE any. entries' TO Changes
IF !(Changes) = 'C'
STORE ' ' TO Again
ERASE
ELSE
ERASE
IF !(Hardcopy) = 'P°
STORE "TO PRINT"™ TO Hardcopy
SET PRINT ON
ENDIF Hardcopy °

IF Number = 'Y' .
STORE 'Bill #' TO Other

dBASE II...175

ELSE
STORE CHR(0) TO Other
ENDIF : |
. .

7 $(Date,3,2)+'/'+$(Date,5,2)+' /' +$(Date,1,2)+': COST SUMMARY FOR '
. +'&MClient-&MJob:Nmbr' :
Y ' + Message

) wd =)

'DATE NAME DESCRIPTION AMOUNT'; .
+' &Other!
?
USE B:CostBase INDEX B:$Jobs
IF Number = 'Y!
STORE ',Bill:Nmbr* TO Othe
ELSE -
STORE CHR(0) TO Other
ENDIF

STORE 0 TO Sum
STORE 0 TO HowMany
STORE 0 TO LineCnt
STORE 0 TO Spacer
FIND &MJob:Nmbr
IF# OO0 _

DO WHILE Job:Nmbr = VAL(MJob:Nmbr) .AND.. .NOT. EOF
DISPLAY Next 1 Bill:Date,Name,Descrip+’ ' ,Amount &0ther OFF
STORE Sum + . Amount TO Sum
STORE LineCnt + 1 TO LineCnt
STORE Spacer + 1 TO Spacer

IF Spacer = 10
2

éTORE 0 TO Spacer
ENDIF

IF LineCnt = 50
? CHR(12) ;
STORE 0 TO LineCnt
STORE 0 TO Spacer :
? 'DATE NAME DESCRIPTION';

+! ' AMOUNT' .

?

ENDIF

SKIP

ENDDO
ENDIF

GO TOP

STORE VAL(Name) TO LastReco
USE B:Costbase

STORE 0 TO Unindexed

GO LastReco
SKIP
DO WHILE .NOT. EOF
DISPLAY Next 1 Bill:Date, Name, Descrip+' ', Amount;

FOR Job:Nmbr = VAL(MJob:Nmbr) OFF
IF Job:Nmbr = &MJob:Nmbr
STORE Sum + Amount TO Sum
STORE LineCnt + 1 TO LineCnt
STORE Spacer + 1 TO Spacer

IF Spacer = 10
l}
STORE 0 TO Spacer

: dBASE II...176
ENDIF

IF LineCnt = 50
? CHR(12)
STORE 0 TO LineCnt
STORE 0 TO Spacer

7 'DATE NAME DESCRIPTION'
+! AMOUNT"'
?
ENDIF.
ENDIF
' STORE Unindexed + 1 TO Unindexed
SKIP
ENDDO
» TOTAL COSTS TO DATE: ' -3
STR(Sm:'J, 2)

STORE LineCnt + 2 TO LineCnt
STORE 0 TO Spacer
IF LineCnt = 40
? CHR(12)
STORE 0 TO LineCnt
ELSE
?
?
?
ENDIF

USE B:Billings
* 'BILLED TO DATE FOR &MClient-&MJob:Nmbr®

?

? 'DATE INV# DESCRIPTION TAXABLE'+;
2 TAX TAX FREE'

?

STORE LineCnt + 4 TO LineCnt
STORE 0 TO Sum
STORE 0 TO T
STORE 0 TO S
STORE 0 TO F
DO WHILE .NOT. EOF
IF Job:Nmbr = &MJob:Nmbr

DISPLAY Next 1 Inv:Date, Inv:Nmbr, Deacrip,sfn(Taxabla,9,2)+' s
STR(Sales:Tax,9,2)+' ',TaxFree FOR Job:Nmbr = &MJob:Nmbr OFF

STORE T + Taxable TO T

STORE S + Sales:Tax TO S

STORE F + TaxFree TO F

STORE Sum + Taxable + Sales:Tax + TaxFree TO Sum
STORE LineCnt + 1 TO LineCnt

STORE Spacer + 1 TO Spacer

IF Spacer = 10
2

STORE 0 TO Spacer
ENDIF

IF LineCnt = 50
? CHR(12)
STORE 0 TO LineCnt
STURE 0 TO Spacer

7?7 'DATE INV# DESCRIPTION TAXABLE TAX TAX FREE'

?
ENDIF
ENDIF

dBASE II...177

SKIP

ENDDO

? _

? ' SUB-TOTHLS : l+ m(T,Q,E) + '
+ 31‘“(319’2]1‘. ' % STR(F,?,Z)

? ;

7 - TOTAL BILLED TO DATE: ' =

STR(Sum,9,2)

? CHR(12)

SET PRINT OFT

70 F if Finished,

?7 ' <{Return> to continue.
WAIT TO Again

ENDIF okay to do. the report

ENDIF

ENDDO Again
IF Unindexed > 50

ERASE
€ 5,0

7.
? : L
? 0

There are ' - STR(Unindexed,9) + ' unindexed records'
in the Costbase. To speed up the Job Costs procedure,’
please reindex from the next menu.’'

? '<{Return?> to continue.'

WAIT
ENDIF

RELEASE All

RETURN

dBASE II...178

HERSRNRERRARRRNRRNERSE JORSINDX COMMAND FILE SESSususussssssnsssnsy
® Indexes the costbase on job numbers to B:Jobs.NDX.
. . The method of indexing here allows us to use the index to help
find job numbers for the Job Costs command files, but allows us to
do so without having to index the Costbase every time we add a bill.
The strategy is: before we index the Costbase on job numbers,
we first store the number of the last record in a record with a job
number of zero. When the file is indexed, this record is at the top
4
3

b o that we can find it whenever we want to.
IE£IEEiI&EﬂiiﬁgliaiilgziglgzliIIIIII!IIlllIIIIllillllllllllllllllll;llllﬂ

USE B:Costbase
GO BOTTOM
STORE STR(#,5) TO Tem
GO TOP ' '
IF Job:Nmbr = O

REPLACE Name WITH Temp
ELSE- _ _

DO WHILE !(Code) <> 'H'

7?7 "Uh, Oh==trouble. Don't touch anything"
ACCEPT 'and call Hal.' TO Code
ENDDO :
ENDIF

DELETE FILE B:$Jobs.NDX

ERASE
€ 5,0 SAY '"There are ' + Temp + ' records to index.'

SET TALK ON
INDEX ON JobsNmbr TO B:$Jobs
SET TALK OFF

RELEASE Temp
RETURN

dBASE II...17S

HERERRRRRRE FINDBILLS COMMAND FILE &&asissssass
This procedure finds specific bills that we are looking for, then allows
us to edit them. ¢
] The bill can be specified by bill number and/or amount. Tf you decide
* not to pay a bill that was found specifying more than one item, you will be
]
®

presented the rest of the entries for the supplier based on name only.
bbb bbb bl b d L L g L T L T L Ll T T T I T o

SELECT PRIMARY
USE PB:CostBase INDEX B:$Supp

STORE 'N' TO Finished
DO WHILE !(Finished) <> 'F!’

® "Entering" controls, a closed lbop that allows the operator to change
®# the entry if he or she spots and error.
STORE "C" TO Entering
DO WHILE ! (Entering) = 'C!
ERASE
@ 4,0 ' :
ACCEPT ' NAME OF SUPPLIEK ' TO MName
ACCEPT INVOICE NUMBER ' TO MBill:Nmbr
ACCEPT ENTER AMOUNT ' TO Temp
STORE ! (MName) TO MName |
STORE 1(MBill:Nmbr) TO MBill:Nmbr
STORE VAL(Temp) TO MAmount
STORE MAmount®*1.00 TO MAmount
@ 6,19 SAY MName
@ 7.19 SAY MBill:Nmbr
- @ 8,19 SAY MAmount-
@ 11, 0 SAY ° - C to CHANGE,'
7! <Return> to continue.' -

¥ OneByOne-is used so that we look at the entire listing for a name-once.
If we could have started in the middle of the Iist and the bill is not
® the one we want, we go up to the first listing then go through all the
® entries for the nzme, one by one. Used in the last loop in this file.
IF Bill:Nmbr > ° ' OR. Amount <> 0

STORE 0 TO OneByOne
ELSE '

STORE 1 TO OneByOne
ENDIF ‘

WAIT TO Entering
ENDDO Entering

STORE T TO Looking '
€ 11, 0 SAY "I'M LOOKING, I'M LOOKING!:"
€ 12,0 ' :

€ 13,0

* Now look for a match on the first 10 characters of the namg. This finds
® the first entry for that supplier, then looks for bill number or amount
* if we specified them. If not specified, it skips through all the entries
% for the name. '

IF LEN{MName) > 10 :
STORE $(MName,1,10) TO Key
ELSE

STORE MName TO Key
ENDIF

FIND &Key

dBASE II...180

@ 11, 0
IF # = 0
?
? " GEE, I CAN'T FIND THE NAME. Please check the spelling.®
? " Or maybe it hasn't been posted to the COSTBASE yet."
? '{Return> to continue.’
WAIT '
ERASE
ELSE -
Found at least one entry with a matching name.
STORE T TO Looking -

IF MBill:Nmbr = ' ' .AND. MAmount = 0.
STORE F TO Looking
ELSE '

If we have more than the name, we first check for the bill number.
IF MBill:Nmbr > '
DO WHILE Name=Key .AND. .NOT. EOF .AND. Looking
"IF Bill:Nmbr <> MBill:Nmbr
SKIP
ELSE
STORE F TO Looking
ENDIF
ENDDO

®# If we're on a new name or the end of the file, Looking is TRUE
® because we have not found the supplier we were looking for.
® Otherwise, we have a matching bill number to confirm.
IF Looking _ g |
i This BILL NUMBER is not in the costbase.’
? '"{Return> to continue.'’
WAIT
ENDIF
ELSE

® If no bill number, look for the amount.
DO WHILE Name=Key .AND. .NOT. EOF .AND. Looking
IF Amount <> MAmount :
SKIP
ELSE
STORE F TO Looking
ENDIF
ENDDO

®* If we're on a new name or the end of the file, Looking is TRUE

Otherwise, we have an unpaid bill to confirm.

IF Looking _ "
? ' No bill for this amount and this supplier.’
7 '"<Return> to continue.’
WAIT

ENDIF

ENDIF we have the bill number
ENDIF we have only the name
ENDIF there is an unpaid bill for the supplier

STORE 'N' TO Changing
DO WHILE !(Changing) <> 'Y' .AND. .NOT. Looking

e 12,0

DISPLAY

? CHR(T) .

g 7 E to EDIT this record,'
A Q to QUIT this supplier,’

ACCEPT ! {Return> to continue.' TO Changing
B .

dBASE IIi--‘BT

IF 1(Changing) = 'Q'
STORE T TO Looking

ELSE
IF I(Changin%]-= 'Y
STORE STR(#,5) TO Found
EDIT &Number
ERASE
ELSE

If the first record is not the one we want, we skip through the
® rest of the entries for the name. We first go on from where we
were in the listing (if We had more than the name), then go back
to the first entry and look at those we had skipped. If we had
®# only the name, OneByOne = 1 and we go through the list only once
SKIP
IF EOF .OR. Name <> Key

IF OneByOne = 0

FIND &Key
STORE 1 TO OneByOne
ELSE

@ 11, 0 SAY CHR(27) + CHR(TM)
? "We've gone through all the entries for " 4+ MName+'.'
? "{Return> to continue.,'
STORE T TO Looking
WAIT
ENDIF
ENDIF we've gone through the list
ENDIF is it the right record
ENDIF
ENDDO Changing the record

Y 5
7! F if FINISHED finding bills,’
i A {Return> to continue.'
? CHR(T) °
"WAIT TO Finished
ENDDO Finished

dBASE II...182 dBASE II...183
REBRNRREIN REVIEW.CMD FILE ®#ESNzsunss

® This is used to list entries in any .DBF file. The database must be namea in - Eﬂgizara“tn end of screen on IBM 3101
® the command file calling the procedure. Records may be listed conditionally, @ 15,0 SAY CHR(27)+CHR(74)
® with or without the record numbers. ‘ENDDO
Records are listed in groups of 10 with a line space between each group. 5
* Processipg can be continuous, or can stop after every group of 10, 2
b The listing can start on a specified record number. o
. The files can be re-listed as many times as desired. .
Printing is optional. The "CHR(X)" commands are for a Diablo 1650 5
® printer.
llgligllllIHIIIllllilllll!lllllllllIlllllllillllillilllllli 3
i 2
STORE 'Y' TO Reviewing 5
DO WHILE I{Reviewing)='Y" 2
COPY STRUCTURE EXTENDED TO Temp ”
GO BOTTOM ' ?
STORE STR(#,5) TO Last 2
ERASE ”
? | | IF 1 (Partial)= 'Y!
? 'The '+!(Database)+' database has '-Last+' entries. They will be shown' - @ 11,0 SAY CHR(27)+CHR(TY4)
? 'in groups of 10 records, 50 records to a page if printed.’ € 11,0 SAY 'The '+!(Database)+' database consists of these FIELDS:'
? 'Enter new values for 'defaults or press <Returnd:' USE Temp :
? ' o :
? 'R&% DISPLAY [Field list] [FOR <expression>] [OFF] ### STORE ' ' TO Choices
? _
DO WHILE .NOT. EOF
STORE 1 TO First STORE Choices+TRIM(Field:Name)+', ' TO Choices
STORE 1 TO PageCnt SKIP
STORE VAL(Last) TO RecoCnt ENDDO
STORE 'N' TO Pause STORE $(Choices,2,LEN(Choices)-3) TO Choices
- STORE 'N' TO Partial STORE 'Y' TO Unfinished
STORE 'N' TO Conditions '

finished) = 'Y!
STORE 'N' TO Tally _ DO WHILE ! (Unfin)

0 SAY Choices
STORE 'Ci TO Changing €13, 0s .

DO WHILE !(Changing) = 'C* USE B:&Database

€ 8,10 SAY 'START ON RECORD NUMBER ' GET First 2 .
€ 9,10 SAY ' STOP ON RECORD NUMBER ' GET RecoCnt ? 'List FIELDS to display (<return> to show all).''
€ 10,10 SAY ' START PAGE NUMBERS ON ' GET PageCnt 2
€ 11,10 SAY 'PAUSE EVERY 10 RECORDS ' GET Pause . ACCEPT * DISPLAY ' TO Partial
€ 12,10 SAY * SHOW SELECTED FIELDS ' GET Partial 'STORE !(Partial) TO Partial |
@ 13,10 SAY 'DISPLAY FOR EXPRESSION ' GET Conditions STORE Partial TO String
@ 14,10 SAY * SHOW RECORD NUMBERS ' GET Tally . STORE LEN(String) TO Size
. TF Size =0 .OR. (Size=1 .AND. Partial='" ')
?° C to CHANGE the defaults,' STORE CHR(O) TO Partial
. {Return> to continue.’ _ STORE 'N' TO Unfinished
WAIT TO Changing ELSE
?
IF 1(Changing) = 'C! | ? 'Want to change it (Y or N)?
Clear to end of screen on IBM 3101 ‘ WAIT TO Unfinished -
€ 15,0 SAY CHR(27)+CHR(74) : IF !|(Unfinished) = 'Y' '
o @ 12, 0 SAY CHR(27) + CHR(T4)
ELSE) ELSE |
IF First > VAL(Last) .OR. First <z 0 .OR. RecoCnt > VAL(Last); @ 10,0 SAY CHR(27) + CHR(T74)
«OR. RecoCnt <= 0 7 '#%%® Checking fields ['+Partial+'] : !
€ 15,0 SAY CHR(27)+CHR(74) ?
€ 16,0 sAY 'Sorry, wrong number: '-!(Database)+' contains Y43 . "STORE 0 TO F
'records 1 through'+Last+!,! STORE 0 TO Counter
? '<Return> to correct your entry.! DO WHILE Size >0
WAIT STORE Counter + 1 to Counter
€ 15,0 SAY CHR(27)+CHR(74) ?? ' ®',.STR(Counter,?2)
STORE 'C' TO Changing 3 STORE €(',', String) TO Mark
STORE 1 TO First IF Mark = 1 .OR. Mark = Size
STORE VAL(Last) TO RecoCnt ? 'Uh, oh--trouble: comma cannot be at the ';

ENDIF +'start or end of a list of values.'

dBASE II...184

? "<Return> and try again.'
STORE 0 TO Size
STORE 'Y' TO Unfinished

WAIT
ELSE
IF Mark > 0
STORE (Mark - 1) TO Size
ENDIF

STORE T TO Biank
STORE 1 TO Start
DO WHILE Blank .AND. (.NOT. Start > Size)
IF $(String, Start, 1)=' !
STORE (Start + 1) TO Start
ELSE
STORE (.NOT. Blank) TO Blank
ENDIF
ENDDO

IF Start > Size
? 'How on earth can I find a blank field?!
? '<{Return> and-try again.'
STORE 0 TO Size
STORE 'Y' TO Unfinished
WAIT
ELSE
STORE (F + 1) TO F
IF F < 10
- STORE STR(F,1) TO Suffix
ELSE
STORE STR(F,2) TO Suffix
ENDIF
STORE 'FIELD'+Suffix TQ Field
STORE TRIM($(String,Start, (Size-Start+1))) TO &Field

IF Mark > 0
STORE TRIM($(String, (Size + 2))) TO String
STORE -LEN(String) TO Size
ELSE
STORE 'N' TO Unfinished
STORE 0 TO Size
ENDIF
ENDIF
ENDIF
: ENDDO
ENDIF
'ENDIF
ENDDO

IF LEN(Partial) > 0
DO headings
7?7 "WE'D DO THE HEADINGS HERE."
WAIT

ENDIF

ELSE

STORE CHR(0) TO Partial

ENDIF -
IF 1(Conditions) = 'Y

STORE 'Y' TO Unfinished -
DO WHILE !(Unfinished) = 'Y*
€ 11, 0 SAY CHR(2T7)+CHR("4)
€ 11, 0 SAY 'Specify the EXPRESSION or <Return) to skip.'

dBASE II...185
; ,
? 'DISPLAY &Partial FOR °
ACCEPT TO Expression
l’.

é 'Do you want to change the expression (Y or N)7°
WAIT TO Unfinished
ENDDO

IF Expression > '
STORE '"FOR '+ Expression TO Conditions
ELS
STORE CHR(0) TO Conditions
ENDIF
ELSE
STORE CHR(O) TO Conditions
ENDIF

IF!1(Tally) <> 'Y

STORE 'OFF' TO Tally
ELSE

STORE CHR(0) TO Tally
ENDIF

STORE [DISPLAY Next 1 &Partial &Conditions &Tally] TO Command

€ 11, 0 SAY CHR(27)+CHR(TY4)

@ 11, 0 SAY '##% 1, [DISPLAY &Partial &Conditions &Tally]+' #mar
2

?

'is the command that will be performed on the +I{Databaaa)+' database.’

7 C to CHANGE it,’
¢ Al Q to QUIT with no action,’ ,
7 {Return> to review the database.’

‘WAIT TO Abort

IF ‘1 (Abort) = 'Q
STORE CHR(0) TO Reviewing
ELSE
IF !(Abort) <> 'C’
ERASE.
2 : 'Enter a one-line heading or preaa <{Return> to skip.'
ACCEPT TO Message
STORE !(Message) TO Message
STORE 0 TO Count
STORE 0 TO PageMark
STORE STR(First,5) TO Number
GO &Number

ERASE
? 'Do you want to print the listing now (Y or N)?'

ACCEPT TO Hardcopy

IF 1(Hardcopy)="'Y"
SET PRINT ON
DO RevMrgn
ENDIF

ERASE
? Message
? '"Page '+ STR(PageCnt,3)

¥

IF Tally = 'OFF'
?? ' starts on Record {#' -STR(#,5)

?
IF .NOT.(Partial > ' ' .OR. Conditions > ' ')

dBASE II. L '-136

DO RevHdr
ENDIF
ENDIF
? H
DO WHILE .NOT. EOF .AND. # <= RecoCnt
&Command :

IF t(Conditions) > CHR(0)
IF &Expression
STORE (Count + 1) TO Count
ENDIF
ELSE
STORE (Count + 1) TO Count
ENDIF
SKIP =z
IF Count=10
STORE 0 TO Count
Inserts a space every ten records, then waits. The printer
; is turned off so that "WAIT" does not print on the hardcopy.
SET PRINT OFF
IF !(Pause) = 'Y!
WAIT
ENDIF

IF !(Hardcopy) = 'Y
SET PRINT ON
ENDIF

¥ The following routine prints 50 entries to a page,
% then moves to the next page and prints a heading

“STORE (PageMark + 1) TO PageMark
IF PageMark = 5 , £

? CHR(12)

STORE (PageCnt + 1) TO PageCnt

IF INT(PageCnt/7) = PageCnt/7
: |
ENDIF

7 Message
? 'Page '+STR(PageCnt,3)

IF Tally = 'OFF!
?? ' starts on Record #'-STR(#,5)
?
IF .NOT.(Partial > ' * .OR. Conditions > ' ')
DO RevHdr .
ENDIF -
ENDIF
2

STORE 0 TO PageMark
'ENDIF
ENDIF
ENDDO

Formfeed on Diablo 1650 printer

? CHR(12)

SET PRINT OFF

SET RAW ON ~

SET MARGIN TO 38 :

? 'Do you want to see the '+!(Database)+' again (Y or N)?'

WAIT TO Reviewing
ELSE .
STORE 'Y' TO Reviewing
ENDIF
ENDIF
2 _
ENDDO Reviewing

USE. -

DELETE FILE Temp
RELEKSE All
RETURN

dBASE II...187

dBASE II...188

SENERENERNBERERNENE REVHDR COMMAND FILE FRESRSSRSuessssnnsnns ey

® Used by Review.CMD to print headings for different database listings.
AR RN RSN AR RO NS R RN RN RSN SN RN N ERRR RS

IF !1(Database)="INSERTS'
? 'IO# MAGAZINE ISSUE JOB AD. SPACE "+3
— ¥ GROSS NET X DATE'

IF 1(Database)='BILLINGS'
ELSé 'INV# JOB = DATE TAXABLE TAX NO:TAX PO# DESCRIPTION'
IF 1(Database)="INVOICES'
? 'INV# CLT DATE TAXABLE TAX NO:TAX T4
Lo 'TOTAL AMT:RCD DATE'

IF 1(Database)="COSTBASE'
? 'DATE CHECK JOB = AMOUNT NAME 43
' DESCRIPTION DATE BILL# HOURS EMP!'
ELon :

IF 1(Datahase)="'DEPOSITS'

? 'DATE RECEIVED FROM CHECK AMOUNT ‘'+;
. 'INV# COMMENTS'

ENDIF '
ENDIF
ENDIF

ENDIF

ENDIF

dBASE II...189

FESEBEANRERENRREENS REVMRGN COMMAND FILE FSSSNRsssussssensissssny

Used by Review.CMD to set margins for different database listings.
LTI I T e e L L L LTI IY

IF 1(Database)="INSERTS'
. SET MARGIN TO 38
ELSE
IF !(Database)='COSTBASE'
SET MARGIN TO 36
ELSE
SET MARGIN TO 45
ENDIF
ENDIF
RETURN

dBASE I1I...190

SRANEERNRERNEERNNN SALES TAX COMMAND FILE BeSassssssusssssnsns

® This file summarizes the invoice file for a specified period.

§ It shows the invoices and the type of billing (taxable or

service) along with the totals for the two types and the total

® sales tax liability for the period. : ;

It also includes materials and equipment subject to a use tax
® that has not been paid. These are entered in the invoices database

® when they come in as well as in the Postfile.
AL L L L L T e T e T T

USE B:Invoices

-ERASE™ . '

? 'This file summarizes the #ata you need to prepare the End-of-Quarter!'
? 'report to the State Board of Equalization for SALES TAX collected by*
? 'the agency. It includes use tax on materials bought out of state or!
7?7 'bought with our resale number without paying a use tax.!

STORE 'C' TO Dating
DO WHILE 1(pating) = 'C!
- STORE 'YYMMDD' TO Start
STORE 'YYMMDD' TO Finish
@ 7, 0-SAY 'This summary is for the period FROM ' GET Start
€ 7,45 SAY ' TO ' GET Finish
READ
@ 9,0 SAY * ¢
7?7 C to CHANGE,'
7 '"<Return> to continue.?
WAIT TO Dating
@ 7,0
? CHR(27) + CHR(TH4)
ENDDO Dating

ERASE i |
€ 5,10 SAY TEERERGEERES DO NOT INTERRUPT #essssssuss:
g 7,10 SAY 'COMPUTING THE QUARTERLY SALES TAX REPORT'

COPY TO Temp FIELDS Inv:Nmbr, Inv:Date,Taxable,Sales:Tax,TaxFree,Amount:-
UEERTInv:Data >= Start 'lﬂn-,Inv=Data 2=.Finiaﬂ‘ : y] ee, nt;
emp

SORT ON Inv:Nmbr TO Temp2
USE Temp?2 - _
" REPLACE Inv:nmbr WITH ' USED' FOR VAL(Inv:Nmbr) < 1000

STORE $(Start,3,2)+'/'+$(Start,5,2)+'/1+$(Start,1,2) TO Start
STORE $(Finish,3,2)+'/'+$(Finish,5,2)+'/'+$(Finish,1,2) TO Finish

@ 5,0
SET MARGIN TO 45
SET PRINT ON
*STORE 1 TO PageCnt " -
;I'SnLES TAX SUMMARY FROM '+Start+' TO '+Finish+': Page '+STR(PageCnt,3)
-g VINV# DATE TAXABLE TAX SERVICE TOTAL®
STORE 0 TO Count
STORE 0 TO PageMark
GO+ TOP -
DO :?ILE .NOT. EOF
SPLAY Inv:Nmbr,Inv:Date,Taxable,Sales: TaxF s? '4STR
STORE (Count + 1) TO Count ¢ e Kot Bivt) oft
-SKIP : |
IF Count=10
STORE 0 TO Count

® Inserts a space every ten records, then waits. The printer.

dBASE II...191

* is turned off so that "WAIT" does not print on the hardcopy.
? .

The following routine prints 50 entries to a page,

then moves to the next page and prints a heading

STORE (PageMark + 1) TO PageMark
IF PageMark = 5

STORE 0 TO PageMark

? CHR(12) .

STORE (PageCnt + 1) TO PageCnt

Compensatés for an offset caused by the 7 lines/inch printin
IF INT(PageCnt/T) = PageCnt/T -

.?.
ENDIF
2 'SALES TAX SUMMARY FROM ' + Start + ' TO ' + Finish+': Page ' +;
STR(PageCnt,3)
?.
? 'INV# DATE TAXABLE TAX SERVICE TOTAL'
? ;
ENDIF
ENDIF
ENDDO
?
. SET PRINT OFF
T . .
2R COMPUTING TOTALS NOW.'
-

REPLACE All Inv:Nmbr WITH ' ' FOR VAL(Inv:Nmbr) > 1000
TOTAL ON Inv:Nmbr TO Other

USE Other

REPLACE All Inv:Date WITH 'TOTAL?

REPLACE All Inv:Nmbr WITH 'SALES' FOR Inv:Nmbr = '
SUM Taxable TO Used FOR Inv:Nmbr = ' USED'

SUM Amount TO Sold

STORE Sold + Used TO Gross

SUM Sales:Tax TO Collected

SUM TaxFree TO Service’

STORE Collected +,Service TO Exempt

STORE Gross - Exempt TO Subject

STORE 0.06%Subject + 0.005 TO Payable

® Print totals of all the invoices
GO TOP
SET PRINT ON
DO WHILE .NOT. EOF
DISPLAY Inv:Nmbr,Inv:Date,Taxable,Sales:Tax,TaxFree,' '+STR(Amount,9,2) OFF
STORE Count + 1 TO Count ;
SKIP
ENDDO
IF PageMark > 3
Formfeed if not enough room to print the following list
7 CHR(12) -
ENDIF -
?
? 3
? 'ENTER THE FOLLOWING DATA ON THE BOARD OF EQUALIZATION FORM:*!
?
The following segment is not the final, but the state auditor is in right now
and I've got to get the info out to him and to the state for this month.
The final version will include all lines in the form, to allow for changes
in the way we do our business. Obviously, this is also the place to

‘#% print the form-if you wani. to-do.ithat. Since thé form is used only once

every three

? LINE
iy LINE
? LINE
?

27 LINE
? LINE
P ¥ LINE
R LINE
? LINE
; ' LINE
? 0 LINE
?

g ' LINE
g LINE
? CHR(12)

SET MARGIN TO
SET PRINT OFF
RELEASE All
USE

_ dBASE II...192
months, we won't automate it entirely.

1» TOTAL GROSS SALES: ' + STR(Sold,9,2)
2> SUBJECT TO USE TAX: ' + STR(Used,9,2)

- - -

3P TOTAL TRANSACTIONS: + STR(Gross,9,2)

9> SALES TAX INCLUDED: ' + STR(Collected,9,2)

10> ADVERTISING SERVICES: ' + STR(Service,9.2}

11> . TOTAL EXEMPTIONS: ' + STR(Exempt,9,2)

12> SUBJECT TO STATE TAX: ' + STR(Subject,9,2)

13> AMOUNT OF STATE TAX: ' + STR(0.05%Subject+0.005,9,2)
14> SUBJECT TO LOCAL TAX: ' + STR(Subject,3,2)

19> AMOUNT OF LOCAL TAX: ' + STR(0.01#Sub ject+0.005,9,2)
21> TOTAL TAXES: ' + STR(Payable,9,2)

28> TOTAL DUE AND PAYABLE: '-+ STR(Payable,9,2)

38~

-

DELETE FILE Temp
DELETE FILE Temp2
DELETE FILE Other

RETURN

dBASE II...193

RERRNREENS TIMECALC OOMMAND FILE #essssssss
® Verifies that employee name and number match, then

® calculates billing charges for employee time.
WAl L L T e e T T T T T

SET TALK OFF.

ERASE

SELECT PRIMARY

RESTORE FROM B:Constant

GO TOP -

DO WHILE .NOT. EOF
ERASE
€ 4,20 SAY #% DO NOT INTERRUPT *# '
@ 5,20 SAY ' PROCESSING TIME CHARGES '

IF & ,OR. Job:Nmbr = 31 .OR. Check:Nmbr <> oot
SKIP

ELSE
REPLACE Client WITH !(Client),Name WITH ! (Name)
STORE STR(#,4) TO Number

@€ 7,20 SAY ! Record # '+Number

€ 8,20 sAY ¢ '+Name

? CHR(T) .

IF E:iégmbr<=0 «OR. Emp:Nmbr>MaxEmpl .OR. Hours = 0
E

REPLACE Hours WITH Hours%*1.00
REPLACE Emp:Nmbr WITH Emp:Nmbr#1
@ 4,0 SAY '
DISPLAY
@ 6,3 SAY 'HOURS=!
@ 6,18 SAY '=EMPLOYEE NUMBER'
?
? 'Press ANY KEY to correct the EMPLOYEE NUMBER, '
? 'or press H to correct the HOURS.'
WAIT TO Decision
IF !(Decision) <> '"H!
€ 6,14 GET Emu:Nmbr
ELSE
€ 6,8 GET Hours
ENDIF
READ
ELSE
SELECT SECONDARY
USE B:Personne
STORE T TO Looking
DO WHILE Looking .AND. .NOT. EOF
IF sfﬂme, 1] 10)=$(Prﬂ&m9, 1 9 10)
IF Emp:Nmbr=P.Emp:Nmbr
SELECT PRIMARY _
* Formula optimistically assumes 65 billable hours out
® of 75 hours possible in two weeks. Eff. mult.=3.23
'REPLACE Amount WITH Pay:Rate®2,B8%Hours/65
SELECT SECONDARY
. STORE F TO Looking
ELSE
SELECT PRIMARY
STORE T TO Fixing
DO WHILE Fixing
ERASE
@ 4,0 SAY *
DISPLAY -
€ 6,16 SAY '=EMPLOYEE NUMBER'
?

dBASE II...194

? 'The correct Employee Number is'
??7 S.Emp:Nmbr
?7 ' for "+3.Name
7 '"Press ANY KEY to change the EMPLOYEE NUHBER’
? 'press N to change the NAME.'
WAIT TO Choice
IF 1 (Choice) <> 'N'
€ 6,12 GET Emp: Hmbr
RE&D
STORE F TO Fixing

ELSE
@ 5,25 GET Name
REPLACE Hama WITH I(Hame)
READ
STORE F TO Fixing
ENDIF Employee number
ERASE :
ENDDO Fixing
SELECT SECONDARY
GO TOP
ENDIF Numbets match
ELSE |
SKIP '
ENDIF

IF EQF
ERASE
SELECT PRIMARY
@ 4,0 SAY '
DISPLAY
6,16 SAY '=EMPLOYEE NUMBER' .
a .
? 'This name 1s not listed in the Personnel file,'
? 'so time charges were not calculated.’
' 2 'Press any key to change the name, or write the'
? 'record number down and press D to DELETE.'
WAIT TO Change :
IF 1(Change)<> 1pr
€ 5,25 GET Name
REPLACE Name WITH !(Name)
READ
SK1p-1
ELSE
ERASE
DELETE
DISPLAY
i
? '"THIS RECDRD HAS BEEN DELETED.'
WAIT
ENDIF Change
SELECT SECONDARY
ENDIF nc name
ENDDO Locking
SELECT PRIMARY
SKIP
ENDIF
ENDIF deleteu
'NDDQ billing calculations

RELEASE All
RETURN

—

dBASE II...195

BEERRNEENR PRINTOUT COMMAND FILE ®emutanuss
This file is is used by several other command files. It prints out a
iisting of the records in a file without the record number. The
outut is spaced every 10 records and the printer is positioned back
~at the left margin after the printout.

specifying a value for the variable "Number®.
This does not show the record numbers. To do s0, use the

Review.Cmd file. *
Il!IllIIIIII!II!!IIIIIIIIIIIIIllIlililliillllllllilllllllllillllillli

W
]
b
@
- The calling command flle determines where the printout starts by
]
3
#
&

TF VAL (Number) > 0
GOTO RECORD &Number
ELSE
GO TOP
ENDIF

STORE 0 TO €ount
DO WHILE .NOT. EOF
IF ®
SKIP
ELSE
DISPLAY &Condition
SKIP
STORE Count+1 TO Count
IF Count=10
STORE 0 TO Count
® Spaces one line every 10 records, then waits. Turns the printer
® off so that "WAIT" does not print.
i’
SET PRINT OFF.
WAIT
IF !(Output)= 'Y
' SET PRINT ON
ENDIF
ENDIF
ENDIF
ENDDO
® The next 2 lines reposition the printer at the
® left margin.
?
SET PRINT OFFE

RELEASE Count, Output
RETURN

dBASE II...196
SHRERSARES GETDATE COMMAND FILE ARBRRERRES

Confirms that the date is entered as YYMMDD by checking to see that

®# the entries for each item are in the correct range. The year is

checked against a constant stored in the B:Constant.MEM file.
BERRERERR RN RN RN NN RS AR RA RN ORED

STORE "T" TO NoDate
DO WHILE | (NoDate) <> 'F
ERASE ;
STORE *YYMMDD' TO Date
€ 5,10 SAY "Enter TODAY'S date" GET Date
7 CHR(T)
READ

IF VAL($(Date,1,2)) <> ThisYear;
+OR. ?AL($(Date 3,2)) < 1 .OR. VAL($(Date,3,2)
.OR. antstnate,s 2)) < 1 .OR. VAL($(Date,5,2)
@ 10,25 SAY 'DATE ERROR'
STORE 0 TO X
DO WHILE X < 50
STORE X + 1 TO X
ENDDO
ELSE

) > 12
) >

?
@ 10,0 SAY ' C to CHANGE the date,!
? '"{Return> to continue.'
WAIT TO Change
IF 1(Change) <> *C*
STORE 'F' TO NoDate

ENDIF

ENDIF

ENDDO NoDate

RELEASE NoDate, Change, X
RETURN

dBASE II...197

SERERRRERS DATETEST COMMAND FILE ®essssssss
This file verifies.the Bill:Date and Check:Date to see that tngy are

® in the right format, If incorrect, the operator may edit th
illlllllllllllllilllli‘llll'llllil!lllllll'lllii!lllilli

ERASE
GO TOP

® The variable DATE brings in the NAME of the date field to be checked
® from the command files where this is used.
DO WHILE .NOT. EOF

€ 6,30 SAY ' VERIFYING '+Dates+' !

IF ®
SKIP
ELSE
IF &Date <> ' !
STORE STR(#,5) TO Found
STORE T TO NoDate
DO WHILE NoDate ;
€ 8,30 SAY ' RECORD '+Found
g cgﬁ%$)snt ' 14$(&Date, 1, 2)+'f'+$(&nate,3 2)+'/'+$(&Date,5,2)
The macrc symbol is used to get the contents of the date field
® being checked without creating a new variable.
IF VAL($(&Date,1,2)) > ThisYear .OR. VAL($(&Date,1,2)) < MinYear;
.OR. VAL5$ &Date,3,2)) < 1 .OR. vlL($(&Date,3 2)) > 123
.OR. FAL($(&Dat.a,5 2)) < 1 .OR. VAL($(&Date,5,2)) > 31
?
Y §
A DATE ERROR: Must be YYMMDD °*
ACCEPT 'Enter new Date' TO Temp .
REPLACE &Date WITH Temp
ERASE
ELSE
STORE F TO NoDate
SKIP
ENDIF
ENDDO NoDate
RELEASE Temp, NoDa: 2
ELSE
SKIP
ENDIF date is not blank

Delay to allow date being checked to be read (quickly)
STORE 0 TO X
DO WHILE X < 5
STORE (X + 1) TO X
ENDDO

ENDIF deleted or postea
ENDDO
RELEASE All
RETURN

dBASE II...198

ARERRNERRR NAMETEST COMMAND FILE H#ESERuuaRs
Checks names in the file in USE against the Suppliers file and gives
% the operator the options of editing, adding them to the Suppliers file

* or ignoring them. If a name is edited, it is presented again.
BEEEREARERERAENAFNN SRR R NN AR R ARENR AN RN RAFARAAE RN AR RN AR AR AR AN

GO TOP

DO WHILE .NOT. EOF

IF * |
SKIP
ELSE

STORE STR(#,5) TO Number

STORE.
ERASE

| (Name) TO Name

@ 4,25 SAY 'CHECKING NAMES '
€ 6,25 SAY 'RECORD '+Number
@ T,25 SAY Name

? CHR(T)

STORE

$(Name, 1,10) to Key

SELECT SECONDARY
USE B:Supplier INDEX B:Supplier
FIND &Key

STORE
STORE

IF # =

DO

T TO Again
'T* TO Decision
0

WHILE Again \
@ 9,20 SAY 'THIS SUPPLIER NAME IS NOT IN THE SUPPLIERS FILE. '
1

@ 11,20 SAY E to EDIT it. : _
€ 12,20 SAY ! A to ADD it to the -SUPPLIERS file.
@ 13,20 SAY ! C to CONTINUE.

?

WAIT TO Decision
IF !(Decision) = 'A'
APPEND
SKIP-1
REPLACE Name WITH !(Name),Address WITH !(Address),City WITH;
1(City)
STORE F TO Again
ELSE
IF 1(Decision) = 'E!
SELECT PRIMARY
EDIT &Number
REPLACE Name WITH !(Name)
SELECT SECONDARY
STORE F TO Again
ELSE
IF 1(Decision) = 'C'
STORE F TO Again
ELSE
STORE T TO Again
ENDEF C
ENDIF E
ENDIF A

ENDDO ‘

ENDIF

0

SELECT PRIMARY
IF 1(Decision) <> 'E!
SKIP

ENDIF

ENDIF deleted

ENDDO
RELEASE All

RETURN

dBASE II...199

. RERRENRAENNNSE CHECKSTUB COMMAND FILE #WSnasssunsssssss
Prints out check numbers, amounts, and balances from :
SALARIES and BILLS are paid. Hheﬁ more than one billt?: EEESRE;1: s
¥ single check, the program totals all the bills against that check if the
® are entered in consecutive order (which they are in the two command rila:)

® Records are marked for deletion, but can be
IlliilllllliillillIIIlillIi!IlllI;liillllilllliiziﬁﬁieli&glzﬁgziﬁ:ﬁeallllilll

ERASE
€ 5,10 SAY '#%» DO NOT INTERRUPT ###r
@ 6,10 SAY ' JUST GETTING ORGANIZED!

USE B:Checkfil :
TOTAL ON Check:Nmbr TO Scratch FOR .NGT. ¥
COUNT FOR .NOT. ® TO Entries

USE Seratch

UPDATE FROM B:Checkfil ON Check:Nmbr REPLACE Balance
COUNT FOR .NOT. * TO Checks

IF Entries > Checks
USE B:Checkfil
ERASE
@ 4,0 SAY ' ¢
SET PRINT ON
_ 3 ' THESE INDIVIDUAL BILLS WERE PAID:'

7! Date
2

LIST '+Check:Date, Check:Nmbr, Name,' Amount. Bi11s
FOR .NOT.® ’ ’ - | S O

Check Name Amount #°

?

?

?
ENDIF

USE Scratch
STORE 'Y' TO Doing
DO WHILE !(Doing)='Y"'
ERASE
SET PRINT ON
21

% MAKE THE FOLLOWING ENTRIES IN THE CHECK BOOK: '

,3 , Date Check Name Amount Balance'
kIST ' '+Check:Date, Check:Nmbr, Name, Amount, Balance OFF
""? F

?

SET PRINT OFF
? 'Do you want to print it again (Y or N)?'
WAIT TO Doing

ENDDO

SET PRINT ON-
? CHR(12)
SET PRINT OFF

USE BECheckFil

.DELETE All

DELETE FILE Scratch

RELEASE Doing, Checks, Entries
RETURN ' -

- o
5 4 ==
- ¥ =
-
" i -
L &
. i
L " -
L i L 3
a _ . g
" - & ' _. - 1
’ _-. Ll - .-.lpn + lik
. ' , X 5
™ E 1 &
- ' & : B LY
-
i i L
Bl
* i
b i " I
[-
) -
| 3 -
1] L
- B * = -
-
L]
. -
. - L
.
2 i .
e
- i
—~ i #
=1 n
LT
- ¥ -
' = - -
- @ . -
- . .
- H r § »
- & 1]
.
- R .
’ . .
- -
i
._._
" El L 1
i3 5 ;
E
& [
L]
PR = =7 -
L]
. * . ; :
F =
. - &
- ¢
i - w -
.
[}
L
L
-
-
1 -
9 4
& i
- i b
'} . .
= ¥
i -
=
w 5 FF
Ll 1 F
T
- .‘ﬂ -
. -
- L] - W [
—_— —— .
- - ——— R — ——— — — b
5 ’ —_ — = a

