Assembly-Language
Relational Dambase Management
System

VOL. [I REFRENCE MANUAL

fmu%c‘anhed ,_b y..ﬂ,gc vxme ‘ Fiusrinatie, *

g"f-n.,i* f’ ; j s
£ | A .-"' L I..‘ j.il_

et b S LT Ane = TP T2 Tt LAl S ‘*
‘?7 ety App J) E’Us E!f‘sé' HOUP S .V d n eyA pple kColle
: S Ey SRS A e Ny, e g ;- ; _

!
'P =
e ;
o

g ¥ S - v\ e S S W - -
o 11 3 ’ o
E 1 . ¥, ‘*’?;;ri“ §

i

L
ibe

&

o

I |

L
_;. =, o

flle "

3 -

http://www.cvxmelody.net/AppleUsersGroupSydneyAppleIIDiskCollection.htm

.

1.0
2.0

3.0

4.0

5.0
0.0
7.0

8.0

9.0

CONTENTS
Uadng: TBARR v vsvvwums penin s asvapesnsse s avel
System Rﬁquiramenta.m.........i..............4
dBASE Eilq;......-,a.....;...................5

Database FileS.cccvicsoessscssssssessd
Hﬂmry File-ﬂ-------o--o--.--.--.o----ﬁ
Command FileS.c.sccesccscccnsscccne T
Report Form FileéSicscescosoccoscacocss]
Text Output FileS.eeesecccscccescscesd
INAOX PL1e8.ccnssevninasonunssneivnssl
Fbrmat FilES--tn---------i;-----ocirta

L0 e W bew
-
- OV W) -

Expraaaiuna. ''''' l‘l‘l'll‘lilll.!Illil"l‘ll'.‘llig

4.1 Funntinna-.......------.--...-.;--.-10
B:2 OPEPRELIOND .o vovnwrwsasawvmesnesvoassh

mcm Sﬂbﬂtitutiﬂn.- ------- TR R ...'-..¢19

Interfacing with Non-dBASE Processors......20
Classes of CommandS.ccesevscones vesvesseninell
Full Soreen Operations...ccseeccecscovescecssch
Commands..... tesserssessasesssssssssasssasanald

9"1 Symml mfinitinna‘.'l'..I'.."""'.Zﬁ
9-2 R‘lll!ﬂ Gf cm{iﬂ--tltn--.---;o--.----_zﬂ

Appendices |
A) Command File EXampi€...ccecsesssess 1l
B) List of CommandS.ceseecsesvanssvass153
C) Limitatians and ConstraintsS........156
D) Error MessageB.cscsssssosnncessoseslST

1.0 USING dBASE

To execute the dBASE program, place the dBASE distribution _
diskette (or preferably, a copy of that diskette) into any
available disk drive. Set that drive to be the default drive
(e.g+ if the disk is placed into the "B" drive, -type in "B:"
followed by a carriage return) and then type in the following

line:
DBASE

The program will tnen be loaded into memory, and will *start
‘execution with a date request:

ENTER DATE AS MM/DD/YY OR RETURN FOR NONE:

"This date will be posted-on any database that is altered during
the following run and will also be printed in REPORT headings for
any report generated in that run. The date is checked for
calendar accuracy. WARNING: The calendar check is not valid for
February 29 in the years 1900 and 2100. A slash or any special
character (except a period) may be used to delimit the numbers.

Examples of valid datps:

' 341589
02 02 82
3/17/853

Then the -sign-on message is displayed:

#%% JBASE 1I VER Z2.xxxi®#%

The period on the second 1ine is the dBASE prompt, indicating
that dBASE is ready to accept commands. Commands to dBASE are
generally imperative sentences: a verb possibly foliowed by
phrases that give further direction 'about the action to be taken.
dBASE scans each line completely before exeduting any part of it.
If dBASE detects an error.in the command then the user is
notified via error messages on the console. Generaily, the user
may correct the erroneous command and re-issue rather than re-
enter the entire command. When dBASE detects an error that it
can't describe explicitly, it assumes that the error is a syntax
error and displays the erroneous iine with a question mark at the
beginning of the phrase that caused the confusion.

Error recovery examples:

. DISPRAY MEMORY

#8% UNKNOWN COMMAND
DISPRAY MEMORY
CORRECT AND RETRY? Y
CHANGE FROM :PR
CHANGE TO :PL
DISPLAY MEMORY

MORE CORRECTIONS? {(cr)

. STORE (2+2 TO X
##% SYNTAX ERROR &&#
' ?
STORE (2+2 TO X
CORRECT AND RETRY? X
CHANGE FROM :+2
CHANGE TO :+2)
STORE (2+2) TO X .
MORE CORRECTIONS? N
L

.SMTOX
NO EXPRESSION TO SUM

SUM TO X
CORRECT AND RETRY? N

erroneous command echoed
Yes, correct
change the letters PR

to PL
after the change

‘return = no more changes

o

- -

" the string (2+2 is indicated

N(o) more changes
the result

explanation

no change, abort this command

The program can also be executed in the following manner:

DBASE <filename>

This will load dBASE into memory,
<filename>, and begin immediate execution of that command file.
This form is especially useful when using dBASE in a‘ SUBMIT file

or when using the chaining option of the dBASE QUIT command.

:GGHTRDL CHARACTERS

ctl-P - - Toggles print switch (see also SET PRINT command)

ctl-U - Deletes current line

ctl-X - Deletes current line (except in full' screén edit)

4

Rubout - Deletes last character entered

etl-H (or backapiﬁe} - Deietes the last character entered

access a command ffie

ESC

- Escapes from certain possibly 1ong-r'unning commands.
Jl.e. DISPLAY, COUNT, DELETE, INPUT, LIST, LOCATE,

RECALL, REPLACE, SKIP, and SUM. ALso ESC serves as an'
escape from ACCEPY,: INPUT, REPORT (dialogue), and
WAIT. In ali cases, ESC returns control to the.
interactive monitor and displays a dot prompt.

When in a command file execution, dBASE checks tor an
ESC character before starting every command .iine.

NOTE: This escape capability can be disabled by the
SET ESCAPE OFF command.

2.0 SYSTEM REQUIREMENTS

In order for dBASE to operate -properly, a system with the
following attributes should be made available.

~ a) 8080 or 2-80 based microprocessor system;
b) 48K bytes (or more) of memory including CP/M

(dBASE uses memory up to A400 hex). -Note: on some
machines, including Apple, Heath, and Northstar, more

than 48K is required because nf an ove ‘ized CP/M modulie;

c) CP/M operating system (version 1.4 or 2..

-

'd) One or more mass storage devices operating . ‘'er CP/M
(usually floppy or rigid disk drives);

e) A cursor addressable CRT device (preferably a . line Dy
80 column CRT) if full screen operations are to = used;

f) Optional text printer (for some commands).

5.0 dBASE FILES

Basically, a file is a collection of information residing on a’
mass storage device that contains the user's data. The
information can be stored to or retrieved from the file. Files

can be grouped into six types, each one either cnncerned with a

. particuiar operation of or craated by dBASE.

All dBASE files are standard CP/M files with a'name field of
eight characters and a file type of three characters. Listed
below are the default file types used by dBASE. For each command®
that accesses a file, the type field may be left off and dBASEL
Hiil assume the default type for that command. For . 1natance, if a
database file already has DBF as its type, then it need not be
specified in any of the fiie manipulation commands.

DATABASE FILES - JDBF
MEMORY FILES - .MEM
' COMMAND FILES - «CML

REPORT FORM FILES =~ .FRM
TEXT OUTPUT FILES =~ .IXT
INDEX FILES - NOX
FORMAT FILES - «FMT

Any legitimate CP/M filename may be used to ref'er to dBASE files.
Remember, if, during an access of any filie, the type is not
supplied by the user, dBASE wiil assume the above file types.
For further information regarding tne use of filenames and types
refer to the Digital Research pubiication "CPB/M User's Guide".

3.1 DATABASE FILES (.DBF)

vatabases are what dpASk is ail about. dbASE's database files
consist of a structure record and zero to 69535 data records. The
structure record is essential.y a map of the data record format.
The structure ¢an contain up to thirty-two different entrlaa.
Each entry in tne structure refers to a field of data in the data
records. The structure holds the Yfoliowing -data: r

. % The name of the data Tields

¥ The type of data within data fields
The size of the data fields
® The position of the data within records

DATA FLlELD NArik - The name may be up to 10 characters iong. In
all operations during a dBASE run the data fieids wilii be
referenced by this name. Field names are alphanumeric (pilus
coions) by nature. Hnwever, fieids must begin with a .etter and,
colons must be embedded in the name. Some -exampies foliowW.

Examples of data field names:

-
’ A123456769

ABC:DEF

A:B:C:D:E

ABCD: invaiid, colon not embedded

ABC,DEF | invalid, comma is illegal

At

DATA TYPE - dBASE allows three types of data to be used to

specify the contents of the data fields. They are: character
strings ('ABCD'), numeric quantities (2 or b'1$.l, and logicais

(trua!falae]

FIELD S1ZE - This is the number of character positions (width)
needed to contain the data that will be placed into this field.
Character string fields and numeric f'ields may be from 1 to 54
positions in length. The count for a numeric field should include
the decimai point. Logical fields are ailways one position in
length. Also, for numeric fields,- the number of positions to the
right of the decimal point may aiso be contained in the

structure.

Once the structure has been defined, the user can enter data
values into the fields for as many records as are desired.
Usua¢ly, there is only one atructured data file availablie to the
user at any given time (this is referred to as the USE file or
‘the file in USE). There is however, a way to use two databases at
one time. See the commands SELECT and JOIN.

3.2 MEMORY FILES (.MEM)

Memory files are static files of mewnfy which are divided into
variables similar to record variables. These variables are known
as memory variables and are limited to ol in number.

The values of memory variables are independent of the database in
use. That is, the record position of the file in USE has no
bearing on the variablies in the memory file. Memory-variables are
used to contain cconstants, results of computations, and symbolic
substitution strings (See Section 5), etc. The rules of naming,
typing, and sizing of memory variables are identical to those of
the field variables described above.

The SAVE command will write all current memory fnriablea to a
memory file; and the RESTORE command will read a saved memory
file back into the memory variables.

3.3 COMMAND FILES (.CMD)

A command file contains a sequence of dBASE command statements.
This provides the user with a method of saving a set of
frequently used command sequences which then allows one to more

~easily manipulate database files.

Command files may be created and modified by text editors and/or
word processors, although dBASE now has the capability to
create/edit command files itself with the MODIFY COMMAND. Command _
files are started by the DO command. Command files may contain
any dBASE commands, however, one should be careful since some of
the commands (CREATE, INSERT, APPEND (from the keyboard)) require .
user inputs beyond the command file contents.

Command files may be nested, i.e. command files may contain DO
commands which are "then executed. Again, care should be
exercised in that, dBASE allows, at most, 16 files to be open at
any given time. Therefore, if there is a file in USE, only 15
command files may be nested. Certain commands alsoe use work files
(e.g. SORT uses 2 additional files; REPORT, INSERT, COPY, SAVE,
RESTORE, and PACK use one additional file). For instance, if a
SORT command is issued from the lowest command file in a nest,
then only 13 levels of command file could be used (i.e. the USE
file, 2 SORT work files and 13 command files =40). Whenever a
command file issues the RETURN command or whenever the end-of-
file is encountered on a command file, the command file is closed
and its rescurces are available for other commands.

3.4 REPORT FORM FILES (.FRM)

The REPORT command either generates a form file or uses an
existing form file. The form file contains instructions to the
report generator on titles, headings, totaling, and column
contents. Form files are constructed by dBASE as part of the
REPORT dialog. They can be modified by text editors or word
processors, however, it is usually easier to define a new report
form from the start.

3.5 TEXT OQUTPUT FILE (.TXT)

The text output files are created when the "SET ALTERNATE TO
<filename>" and "SET ALTERNATE ON" commands have been specified.
See SET command for more details: Also, the COPY and APPEND
commands assume a text (.TXT) file whenever the SDF (System Data

Format) or DELIMITED options are used.

3.6 INDEX FILES (.NDX)

Index files are generated by the INDEX command of dBASE. They
contain keys and pointers to records of a database file. Indexing
is a dBASE technique that gives rapid location of data in a large
database. See the INDEX command for more information.

3.7 FORMAT FILES (.FMT)

A format file contains ofily "€" statements and "#" comments. It
is identified by the "SET FORMAT TO <filename? command and 1s
;activated by subsequent READ commands. Like command files (which
format files resemble), format files are created and modified by
any good text processor or the MODIFY COMMAND capability. Format
files are not, however, nenessary. "€"'s and "#"'s statements are
usually built into the command file that needs them.

4.0 EXPRESSIONS

An expression in dBASE is a group of simple items and operators

that can be evaluated to form a new simple value. For example . |

"2+2" is an expression that can be evaluated to the value "i".
Expressions are not pecessarily always numeric in nature. The
expression ‘'abc'+'def' can be evaluated to the value 'abcdef'
(character string concatenation), or the expression 1>2 can be
evaluated to the logical (Boolean) value of ".F." (false).

Expressions in dBASE are formed from the following components:

* Database field variables

Memory variables

® Constants within the commands (literals)
¥ Functions

® QOperations

VARIABLES -' A variable in dBASE- is any data field whose value may
change. The field names of the currently referenced record in a
dBASE file are variables. Their contents may be changed by moving
the file pointer or by editing the current record. Variablesare
also created and changed by the commands, STORE, RESTORE, COUNT,
SUM, WAIT, ACCEPT, or INPUT. These are called memory variables.

A variable may be one of three types:

* Character strings
®# Numeric quantities
Logicals

CONSTANTS - A constant (or literal) is a data item which has an
invariant, self-defined value. For instance, 1, 'abe', and .T.
are constants which have a constant value regardless of the
position of the database or any memory variable commands. They
are literals since they ARE the value they represent (as cpposed
to variables which ape names répresenting a value). The values
they represent are, respectively: a numeric one, a character
string (containing the letters "a", "b", and "c"), and a logical
(Boolean) value of TRUE (".T.").

Character string constants must be enclosed in single quotes ('),
double quotes ("), or in square brackets ({L,j). If a character
string contains one of these "delimiters", then it shouid be
enclosed in a pair of one of the other ones. For example the
atrings ’abcldefjghi' and [abe'def'ghi] are valid character
strings while 'abec'def'ghi' is not.

Logical constants (true/falise) are represented by "T", "t", "I",
or "y" for true values (denoting true or yes) and "r", "f", "N",
or "n" for false values (d¬ing false or no).

10

4. . FUNCTION3

Functions are special purpose operations that may be used in
expressions to perform things that are difficult or impossible
using regular expressions. In dBASE, there are three basic types

of functions: numeric, character, and logical. The function type
is based on the type of value that functions generate.

INTEGER FUNCTION:
INT(<numeric expression>)

This function evaluqtaa a numer.ic expression and discards the
fractional part (if any) to-yield an integer value. The value of
the INT function is the truncated value of the numeric expression
within. | i

Examples:

. 7 INT(123.456)
123

. STORE 123.456 TO X
123.456

. 7 INT(X)
123

-RECORD NUMBER FUNCTION:

#

The value of the record number funetion is. the integer
corresponding to the current record number. |

Examples: -
- 7 #
i (assuming that a database is in USE and is positioned at
record number 4) |
. SKIP
. #

7
5

11

STRING FUNCTION:

STR(<numeric expression>,<length>,(<decimals>])

This function evaluates a numeric expression and yields a

.character string. The value of the STR function is a character

string of length <length>. If <decimals> is specified, it is the
number of digits to the right of the decimal point. All
specifiers may be literals, variables, or expressions.

CAUTION:, When this function is used to generate a key for
indexing, the specifiers MUST be literals. :

Example:

? STR(123.456,9,3)
123.456

SUBSTRING FUNCTION:

$(<char expression>,<start>,<length>)

This function forms a character string from the specified part of
another string. The value of the substring function is a -
character string of length <length> filled with characters from
the character expression starting with character number <start>
for <length> characters. {start> and <length> may be literals,
variables or expressions.

"If <length> is longer than the <{char eipreaaiun):u*if between

the <length> and <start> the <char expression> "runs out" of
characters, then the result will be only those characters that
are there. See the following examples.

CAUTION: When, K the function is used to generate a key for
indexing, the specifiers MUST be literals.

Examples:

. 7 $('abedefghi®,3,3)
cde

. store 3 tom
3

. 8tore 3 ton
3

5 2 *('abchfghi',l,n)
cde

. ? $('abedefghi',6,7)
fghi

. DISPLAY FOR '8080'$TITLE

- STRING TO NUMERIC FUNCTION:
VAL(<char string>)
This function forms an integer from a character string made of

digits, signs, and up to one decimal point. The 1
t. ength of; th
integer 1s equal to the number of characters in thugst.ring{.' I;

the character string begins with numeric characters but has non

numeric characters, then the value generated by th
.is the leading numeric ﬂh&r‘actera, ¥ e VAL function

Another way tp convert character numbers into numerics is the use
the "&" (see 5.0 Macros). The "&" will convert the string into a

numeric (ineluding the decimal) wh
encountered. | |) en the substitution is

Examples:

. 7 VAL('123")
123
. ? VAL('123xxx"')
123
. 7 VAL('123.1456)
" 123
+ SIORE '123.456' TO NUM
123. 456
« 7 14 &+ &ENUM
137.456°

LENGTH FUNCTION:
LEN(<char string>)

This function yields an integer whose value is the number of
characters in the named string. '

Example:
- STORE 'abc' TO STRING

« 7 LEN(STRING)
3 .

7

13

DELETED RECORD FUNCTION:

This 13 a logical function which is .TRUE. if the current.record
has been marked for deletion, and .FALSE. otherwise. -

Example:
« T B
.T. (assuming that a database 1s in USE and that its
current record has been deleted using the DELETE
command) '

END=-QF-FILE FUNCTION:

EQF -

This 1is a lcgical function which is .TRUE. if the end of file has
been reached for the file in USE (the current record will ‘be the
laat record in the database).

Examples:

« 7 EOF : ;
.F. \assuming that a database is in USE and is not

positlioned at the last record)

. GOTO BOTTOM
- 7 EOF

F.

. SKIP

- 7 EOF

.T»

SUBSTRING SEARCH FUNCTION:

@(<char string 1>,<char string 2>)

This function yleids an integer whose value is the character
nuaber in <char string 2> which begins a substring identical to
{ehar string 1>. If string ' does not occur in string 2 tihen tne
@ function will be of value zero. Note: the @ function is similar
to the substring operacor "$" except that it tells where the
first string is found in the second satring, and can wWell De

pronounced "where 1s string 1 AT in string 2".

Example:

. 7 &('der','abedefghi’)
i

14
UPPER CASE FUNCTION

! (<char 3tring -expression))

This function yields the same string as the character string
eéxpression except that all lower case characters

V5 g are converted to

Example:

« 7 I(tabe')
ABC

NUMBER TO CHARACTER FUNCTION

CHR(<numeric expression))

:313 functiun Ylelds the ASClI character equivalent or the
r_mur;c axpre:a;un. That is, if the €xpression were the number
3y ther CHR(13) generates a carriage return ASCILI character.

This function is userful whe
I the user needs to sen '
controls b& hardware devices, most corten printers. off i = o

Example:

e 7 'nbud'¥cant13)+' !
abed

DATE FUNCTION

DATE()

This function will generate a character String that contains the
System date in the format MM/DD/YY. Tna' character
:tring liulgq has a length of ». Nothing goes between
he Parenthésis, they only indicate a funetion g -
avolid problems with variables named "DATE",) Lo

T:u dBASE system date can De entered at dBASE start-up
time or at anytime using the SET DATE TO command.

Examples:

. 7 DATE()

00/15/41

- STORE DATE() TO MEMYV
00/195/81 e
. SET DATE TO 4 1 §2

. ? DATE()

O4/01782

15

FILE FUNCTION

FILE(<string exp>)

This is a logical function which is .TRUE. if‘the <string exp>
exists and'is .FALSE. if it does not.

Example:
«? FILE('TRACE')

-Tl
+USE TRACE

TYPE FUNCTION

TYPE(<exp>)

This runatibn yields a one-character string that contains a 'C',
'N'y or 'L' if the <exp> is of type Character, Numepric, or

Logical respectively.
Example:
. STORE 1 TO X

. ? TYPE(X)
N

TRIM FUNCTION

TRIM(<estring>)

The TRIM function removes trailing blanks from a field. Usually
dBASE carries trailing blanks on all variables to avoid column
alignment problems on displays.

NOTE: This function must NOT be used in the INDEX command as the
key length must be computable for internal dBASE usage.

Examples:

. STORE 'ABC ' TO S
. 7 LEN(S)

6
. STORE TRIM(S) TO S
. 7 LEN(S)

3

16
4.2 OPERATIONS

There are four basic types of nperationa, arithmetic, ncmparianﬁ,
logical and string. The specific operators in each class are
listed below, and examples follow for the less familiar ones.

It is important to know that both "sides" of the operators must
be the same type. That is, one may only add integers to integers
or concatenate characters with chdracters, adding an integer to a
character results in dBASE seeing a syntax error.

-« STORE 3 TO A
3
- STORE '3"' TO B
3
+ 7 A+B

#%% SYNTAX ERROR ###
2 :
7?7 A+B
CORRECT AND RETRY(Y/N)?

This error occurs because numerics and characters are seen
differently at the machine level; a numeric 3 is just that--3
hex, while a character 3 has the ASCII value of 33 hex. The
program becomes confused, it does not know whether or not an
addition is taking place or a concatenation. Using the same
variables as in the previous example:

. 7 A+VAL(B)
6

The string '3' has been converted to an integer and the addition
performed. '

"ARITHMETIC OPERATORS (generate arithmetic results)

“ 4+ = addition
- = subtraction
® = multiplication
/ = division
() = parentheses for grouping
Examples:
.12 (4e2)®3 | An example of use of
arithmetic parentheses
. 7 Be(293) used for grouping

10 | in calculations

17

COMPARISON OPERATORS (generate logical results)

< = less than
> = greater than
= = equal
4 = not equal
<= = less than or equal
>= = greater than or equal _
$ = substring operator (e.g. if A.and B are .
character strings, A$B will
be TRUE if and only if
string A is equal to B, or
is contained in B
Examples:
. 7 'abe'$'abedefghi’ An example of the $
oTs substring operator
« 7 '"abed'$'ghijki®
oFe
. DISPLAY FOR '8080'$TITLE Results in al. records with

'8080' somewhere in the field
TITLE being displayed on the
screen

LOGICAL OPERATORS (generate logical results)

.OR.
. AND.
.NOT.

Examples:

. Store t to
sls

. Sstore f to
!FQ

« 72 O0r. b
ele

boolean or

boolean and
boolean not (unary operator)

wmn n-

. store .not. b to ¢ -

'.T'I

. 7a .and. ¢

IT.

18

STRING OPERATORS (generates string result)

+ = string concatenation
- = atring concatenation with blank squash

Examples:

. STORE "ABCD 'TO A In a string concatenation
ABCD g the two strings are just

« STORE 'EFGH®' TO B appended to each other.

EFGH '

L] ?hn

ABCD EFGH

- SIORE "ABCDE ' T0 A In a string concatenation
ABCDE with blank squash, the trail-
. STORE '1234 67' TO B ing blanks are moved to the
1234 67 end of the string. Leading and
U = embeded blanks are not
ABCDE1234 67 altered.

ORDER OF EXECUTION

The sets of operators for the arithmetie, string and logical have
an order in which they are satisfied. That is, what operation is
done before what other operations. The following table indicates
the order of precedence for each of the three ma jor operator

classes. In each of the "levels" (1, 2, etc.) the order of
execution is left-to-right.

Example:
. 7 Uha203
10
Arithmetic operator | String operator) Logical
precedence | precedence . |

I l
1) parenthesis, I parenthesis, | «NOT.
functions | functions |
¥ |
2) unary +,- [relations, $(substring op) | .AND.
I |
3) %7 |- +,~ (concatenation)] «ORs
| I
u) +1" I I
I i
I I

5) relations

19

5.0 MACRO SUBSTITUTION

Whenever an ampersand (&) followed by the name of a character
string memory variable is encountered in a command, dBASE
replaces the & and memory variable name with the memory
variable's character string. This allows the user to define some
parts of a command once and call it out any number of times in
various commands.

Macros are useful when complex expressions must be frequently
used. They also allow parameter passing within command file
nests. All characters between the ampersand and the next special
character (including space) are taken as the memory variable
ﬂam'ﬂc

If the user desires to append characters to the symbolic
substitution, then the memory variable name should be terminated
with a period. The period will be removed like the ampersand at
substitution time.

If an ampersand is not followed by a valid memory variable name

then no expansion is attempted and the ampersand remains in the
command line.

Examples:
. ACCEPT "Enter data disk drive letter™ to DR

USE &DR:DATAFILE (at execution time will be USE B:DATAFILE if
"B" was entered in response to the ACCEPT)

- STORE 'DELETE RECORD ' TO T
&T 5 | (at execution time will be DELETE RECORD 5)

See appendix A for further .examples.

20

0.0 INTERFACING WITH NON-dBASE PROCESSURS

dBASE can read da?a from files which were craatad by processors
other than dBASE (e.g. BASIC, FORTRAN, PASCAL) and can generate
files which can be accepted by other proces:sors.

"The APPEND command has the ability to read staadard ASCII t.e;xt

files (using the CP/M convention of a iine of text foilowed by a

carriage return and line feed) by Specifying the SDF (System pata

Format) option. Similarly, the COPY command generates standard -

ASCII format files when the SDF option is used. Unliess explMcitliy
overridden, the file types of files created with the SDF and
DELIMITED options will be .TXT.

Some processors and languages read and write files in a delimited

format. In this form all fields are separated by commas and
character strings are enclosed in quotes. dbASE can APPEND and
COPY these files wh d

€S when the DELIMITED keyword is included in the

command. If the DELIMITED feature is ‘used, SUF is assumed.

Since some processors use single quotes and some use doubie
quotes to delimit character strings, APPEND will accept either
The COPY command normally generates single quotes but will outpu£
any character as defined by the WITH phrase of the DELIMITED

¢lause. It is strongly recommended that onl -
S
quotes be used. Yy single and doubie

A special case occurs when a "," is used in the WITH phrase for a
COPY. All trailing bianks in character strings and leading
blanks in numeriecs are trimmed. Also, character strings Hill-nut
:e enclosed with quotes or any other character.

_Exanplaa:

+USE <FILENAME>.DBF :
-COPY TO <F1LFHIHE}.IIT DELIMITED WITH "

-USE <FILENAME>.DBF
+APPEND FROM CFILENAME>.DAT SDF

21

7.0 CLASSES OF COMMANDS

puring the normal use of dBASE, various commands are used in
combination to accomplish a particular task. Such groups are
shown below: Some dBASE commands are patterned after the
structured constructs that most "modern" computer languages use.
These commands are in the .COMMAND FILE class of commands. There
are some special rules that contreol the use of these commands,

which are expounded upon in section %.0.

CKEATION OF FILES - the folLlowing commands create database files
and associated files:

CREATE - create new structured database f'iles

COPY - copy existing databases to create copies
MODIFY - alters database structures

REPORT - create a report form file

"SAVE = = copy the memory variables to mass storage
INDEX =~ creates an index file _

REINDEX realigns an old index file

JOIN =~ outputs the JOIN of two databases

TOTAL - outputs a database of totalled records

® % W ¥ ¥ ¥ X ¥ =N

ADDITION OF DATA - the folliowing commands aad new data records to
databases:

® APPEND - add data at end of a file
® CREATE - allows additior of data at creation
INSEHRT - insert data into a file

EDITING OF DATA - the following commands edit the data within a
database:

CHANGE = edit coiumns of f'ielids :

BHOWSE = fuli screen window viewing and editing
VELETE - marks records for deletion

EDIT - aiter specific data fields in a database
PACK - removes records marked for deietion

RECALL - erases mark for deietion

REPLACE - replaces data fieids with vaiues

READ - replaces data {rom user defined full-screen
TONATE, - aiLlows batch updates of a database

22 23

DATA DISPLAYING COMMANDS - the following commands display

selected data from a database: : MEMORY VARIABLE COMMANDS - the following commands manipulate the

memory variables:
%@ - displays user formated data on CRT or printer

®# BROWSE - displays up to 19 records with as many fields

® ACCEPT - stores a char string into memory variables

as will fit on the screen ® COUNT - stores counts into memory variables

® COUNT - count the number of records that meet some # DISPLAY - can display memory variables

: conditional expression # INPUT - stores expressions into memory variables
* DISPLAY - displays records, fields, and expressions # RESTORE - retrieves sets of stored memory variables
* READ - displays data and prompting information in ® SAVE - - save the memory variables to a file
: full-screen mode - ® STORE - stores expressions into memory variables

¥ REPORT - format and display a report of data & SUM - stores sums into memory variables

% SUM - compute and display the sum of an expressiocn # WAIT - accepts a single keystroke into a memory
over a group of database records ' variable '

k2 - displays an expression list

COMMAND FILE COMMANDS - the following commands assist in the

POSITIONING COMMANDS - the following commands pﬁsition the control and usage of command files:

current record pointer to records as directed:

® ACCEPT =~ allows input of character strings into

®* CONTINUE- positions to next record with conditions memory varliables

specified in the LOCATE command - # CANCEL - cancels command file execution
FIND - positions to record corresponding to a key ‘on ® DO - causes commaifld files to be executed and
indexed files. allows structured loops in command files
*® GOTO - - position to a specific record ® IF - allows conditional execution of commands
¥ LOCATE =~ find a record that fits a condition ® ELSE - alternate path of command execution
® SKIP - position forwards or backwards within IF
' ; #® ENDDO - terminator for DO WHILE command
FILE MANIPULATING COMMANDS ~ the following commands affect entire # ENDIF - terminator for IF command
database files: # INPUT - allows input of expressions into memory
: ~ variables
¥ APPEND - append dBASE files or files in # LOOP - skips to beginning of DO WHILE
Systet Data Format (SDF) # MODIFY - allows editing of command files
¥ COPY - copy databases to other databases or SDF COMMAND '
, files * RETURN - ends a command file
DELETE - delete files * SET - sets dBASE control parameters
* DO - specifies a command file fromr which subsequent ® WAIT - suspends command file processing

commands are to be taken

® RENAME rename a file
® SELECT - switches between USE file

DEVICE CONTROLLING COMMANDS - the following commands control

_ peripheral devices like printers and CRT's:
SORT =~ create a copy of a database which is sort_g ¢
on one of the data fields - - * EJECT - ejects a page on the list device
& USE - specifies the database file to be used for

®# ERASE - clears the CRT
all operations until another USE is issued

24

8.0 FULL SCREEN OPERATION

The following are cursor control keys for full screen Operation:

ctl-E, A - Backs up to previous data field.
ctl-X,F = Advances to next data field.

ctl-S - Backs up one character in data field.

ctl-D - Advances one character in data field.

ctl-Y = Clears out current field to blanks.

ctl-V - Switches (toggles) between overwrite and insert
modes.

ctl-G - Deletes character under cursor.

RUBOUT - Deletes character to left of cursor.

ctl=-Q - Aborts full screen and returns to normal dBASE

- control. Changes to database variables are

abandoned. ;

wWhen in EDIT:

etl-U - Switches (toggles) the current record between
being marked for deletion and unmarked.
ctl-R =~ Writes current record back to disk and displays
previous record i.e. backs up a record.
etl=C - _Writes current record back to disk and displays
; next record i.e. advances to next record.
ctl-W or - Writes current record to disk and exits screen

etl-0 edit mode. (ctl-0 is for Superbrain)

When in MODLIFY

ctl-N - Moves all items down one to make rdom foir an
insertion of a new field. p -

ctl-T - Deletes the field where ‘the cursor is and moves
' all lower fields up.

ctl-C - Scrolls fields down.

ctl-R ' - Serolls fields up.

ctl=W or - Writes data to the disk and resumes normal

ctl-0 operations. (ctl-0 is for Superbrain).

ctl=Q - Exits without saving changes.

23

Whén in APPEND, CREATE, or INSERT:

etl-C or :
ctl=R - Write current record to disk and proceed to next
s d d or is in
' urs
arriage return when no changes have been made and c
* = initial position - terminate operation and

resume normal dBRSELgperatinna.

When in BROWSE:

etl-U - Switches (toggles) the current record between
being marked for deletion and unmarked.

Gtl-R - Writes current record back to disk and displays
previous record i.e. backs up a record. .

ctl-C - Writes current record back to disk and displays
next record i.e. advances to next record.

ctl-W or - Writes current record to disk and exits screen

ctl=0 edit mode. (ctl-0 is for Superbrain)

ctl-2 - Pans the window left one field.

ctl-B - Pans the window right one field.

26

9.0 COMMANDS

The explicit definitions of the dBASE commands are in thj
section. The user should famijiarize him/herself with the;E
fundamentals before reading the rest of the command inf‘ormatim:3

9.1 SYMBOL UEFINITIONS

Eﬁigziiiﬂgin wha; the special symbols in the general formats of
ommands really mean is vitalily im :
. . portant. Not on
ﬁzzgllt pelp in understanding just what the form of the commaig
1lly, 1;Ig§lpa to show the potential of each command. Pleas
read the folliowing table throughly.) °

Symbol Meaning
:gzzfzigs: :r - means gny valid dBASE Statements; it also
nts means whole statements. An IF Without an

ENDIF, (or a DU WHILE without an ENDDO}, is

only haif of a statement ij
»» While a REPOR
a whole statement in itself. ol

<char string> or - means any character Str®ag; charact

<estring> strings are those uharacta;é that a::
enclosed in single quotes ('), double quotes
("), or square brackets CL1Ys)

{delimiter> = Meéans any special Character; specia]
characters are those characters from the
keyboard that are punctuation marks, like
any one of the following n()¥= 6,

{exp> - leans'an expression; an expression can be
created by tacking together numbers
functions, field names or character string;
:._n any meaningful manner. "4+8", and "doc =
j'for.doc = 4™ are both expressions as
well as "$('abc'+&sumestr,n,3) = 'abcdefg'".

<exp list> = Means a list of expressions Separated by
Fummas; usually simple expressions are used.
iWwo of the examples in the” previous
paragraph are rather compiicated, the first
one could be considered as simple.

<field> - means any record field name; 1n,one'nf the
€Xamples that are in the following commands
one of the databases has field names liké
ITeEM, COUST, DATE, ete.

<rfield list> or* - means a list
‘ of record field names s
<list> by commas. -

<file> or
‘¢file name>must obey the rules for file names that were stated

27

- means any filename; these are file names that

in section 3.0.
- means the name of a report form filename; see

section 3.4 and the REPORT command for the how and

why of this type of file. '

¢index file> - means the name of the file where indexing

information is placed; see section 3.t and the

INDEX-command for the how and why of this type of

file. r

<{xey> - means the field name which will be indexed on;

keys are important. There may be several indexes for any
Zziven database, each on different (or on a combination
of).xeys. Keys may be <expressions> or.field names. See
the INDEX command for more information.

{memvar> - means any memory variable; memory variables
are those variables that are created by STOREs or by
use of a command that saves some value for later use
(ACCEPT, INPUT, etc.) There is 2 maximum of r4 memory

variaples allowed in dBASE.

{memvar list> - means a list of memory variables separated by

commas .
<n> - means a literal; literals are anumbers which

are not gotten from memory variaoles or calculations." 43"
is not a litaral, while "4" and "9876" are literals.

{scope> - means a specification of the scope of the

command; scope means now much dJdoes the command cover.
There are three values that <{scope’> may take on.

- means all the records in the file. All means
that the file is rewound and whatever the command ALL Che
records in the file are searched for compliance. ALL Is the
default for some of the commands. For other commands tae
default will be the current record (specially for the more
notentially destructive commands like DELETE). Each command
description tell what is the default scope. In the case of
using a FOR phrase in any of the commands, ALL will oe thae
default.

NEXT n -~ means the next n.records, including the
current record; NEXT also begins with the record
currently being pointed at. And n must have a literal
value, that is, it must not be a memory variable or an

expression. -

{form file>

ALL

RECORD n - means only record n; again, n must not be a
memory variable or an expression--it must be literal

before it will work.

FOR <exp> - Any record so long as some logica:
@Xpression has a true value. Unless
otherwise specified, the presence.of a FCR
clause causes ALL records to scanned (with a

_ rewind of the database).

WHILE <exp> - All sequential records as long as scme

28

logical expression (<exp>) has a true value.
The controlling command stops the first time
the expression is false. The presence of a
WHILE clause implies NEXT 05534 unless
otherwise specified and does not rewind the
database. '

There are other special symbols used in the command formats.
These are special to the command and will be explained in the
body of the command. .

9.2 RULES TO OPERATE BY

As with all command "languages" there are a set of rules which

must be followed to successfully operate the

program. The
following rules are to use in translating the general format of
the commands into the more useful specific forms.

T4

2.

o,

T

The vero of any command must ode the {irst nun-blaﬁk character
of the command line; the phrases may follow in any order. A
verd is an action word; CREATE, APPEND, REPORT, SET, DISPLAY
and ERASE are all examples of verbs--they cause a :pacifié
action. Phrases are equivalent to adverbs; they more fully
describe the action. FOR, NEXT, and WITH are examples of words
that begin pnrases. All of these example words are refered to
as "keywords". -

ARy number of blanks may be used to Separate words and
phrases. Remember though, blanks are counted in the 254 limit
described in Rule #3.

All commands must be less than 254 characters in length (even
after a macro expansion).

Commands and keywords can be abbreviated to the first four (or
more) characters. E.3. DISPLAY STRUCTURE couid be input as
DiﬁP STRU or DISPL STRUCT or ete. Just remember that the
abbreviation must also be spelled correctl; i

where it ends. ekl L

Either upper or lower case latters may be used to enter
commands, keywords, rieid names, memory variable names. or
file names. ,

Parts of the commands are optional, tnat is, some parts of the
commands may be left off when the command is .used. Square
brackets (L]) are used in the command formats to show whica

- phrases are the optional constructs taat may be left off.

These are the phrases which are used to modify the action or
commands. The upper case words are the Keywords and they must
be entered whenever the phrase that contains them is used.

A reserved word is a kevword that Will zenerate an error if i

el

Rev. A 25

29

T. ‘A reserved word is a keyword that will generate an error if is

used for something other that what it is supposed to be. There
are no reserved words in dBASE. However, certain fieid names
and file iniames can cause difficulty, e.g., a command file
named WHILE will be incorrectly interpreted as a DO WHILE
statement by the DU command proccessor, ALL as a field name
cannot be used in a number of commands. In general, it is a
good practice to avoid the use of dBASE keywords as field

names or file names.

dBASE statements in a command file must nest correctly. To
nest something means that one statement must fit inside
another statement. This is especially important to proper
execution of the IF-ELSE-ENDIF and the DO WHILE-ENDDO groups.
Indenting a command file will show if the statements are
correctly nested. dBASE does not catch nesting errors, it wiil
however execute the command file in an unknown manner. Below
are examples of how to correctly nest these two statements.

This is the correct

way to nest.

.The IF-ELSE-ENDIF
statement is totally
within the DO WHILE-ENDDO
statement. Just as the
second DO WHILE-ENDDO

. statement is totally
ELSE ' within the ELSE part of
the IF-ELSE-ENDIF.

DO WHILE .NOT: EOF

statements

IF A .AND. B

more ;tatementa

DO WHILE A <= 57

some more statements

ENDDQ

even more statements

ENDIF

-

infinitely'mnre statements

ENDDO

DO WHILE .NOT. EOF

statements

L]

IF something changes values

ENDDO

more atﬁtementa

ENDIF o4

It would be just as easy
to show more levels

of nesting, since dBASE
alLlows many more lievels
to exist.

This is an example of a
NO NO. The ENDDO crossed
over the boundary of the
IF-ENDIF group, that is,
the two statements do not
nestproperly. The
command file that 'holds
these-statements wiil not
work as expected AND |
dBASE will noti explain
why .

?

? [<exp list>]
77 [<exp list>]

This command is a specialized form of the DISPLAY command; it is
equivalent to DISPLAY- OFF <exp>. It can be used to show the value
an expression or list of expressions. The question mark command
(possibly pronounced "what is" can use memory variables, database
fields, constants, or functions., A "?" with no expression spaces
dowri a line on the output. This feature is particularly useful in
command files to "opén up" the displays.

The second form of this command "??" behaves like a single "7»
except that no line feed or carriage return is done before the

expression is printed. This can be used in command files to
output more than one expression to the same output line.

Examples:

. USE EXAMPLE
-ll
. 7 #
4
« 7 NAME
CHANG, LEE -
« 7 59
14

Following is a sample command file that uses the 7 to space out
the display. The command ' file is set up to be executed with the
command: "DBASE H:FILE". The dBASE response to the command file
follows the command file.

set default to g

use trace index trace
disp stru

>

accept "Enter today's date." to dte
set date to &dte

release dte
Teturn

STRUCTURE FOR FILE:

'RUC TRACE. DBF
NUMBER OF RECORDS: * 02359
DATE OF LAST UPDATE: 10/08/81
PRIMARY .USE DATABASE .

FLD NAME TYPE WIDTH
001 UP c 024
002 TRFLD C- 005
003 DOC C 024
004 DESCR - C 080

- 005 NATURE C 010
006 STATUS C 006
007 TESTED C 004
% TOTAL 00154

Enter today's date.:10 14 81

31

DEC

32

@ <{coordinates> [Sﬂ' {exp> [USING <format>]]
;s [GET <variable> [PICTURE <format>]]"

This command works with the SET FORMAT TO, ERASE, EJECT, CLEAR
CETS and READ commands and is a most powerful way to display
specific, formatted information on the screen or the printer. The
way an "@" is interpreted changes according to how the SET FORMAT
TO command is used. Also whether or not one of the other commands
has an effect also depends on the SET command. All combinations
are discussed below.

The <coordinates> are an "x,y" pair and may take on one of two
meanings, either they are screen coordinates or they are printer
coordinates. The "x,y" denotes line (x) and column (y). On most
CRTs, the screen oriented coordinates have an "x" range of 0-23,
and a "y" range of 0-79,. that is 24 lines by 80 columns. dBASE
uses the Oth line for messages to the user and the user should
avoid using it. The printer oriented coordinates have both an "x"
and a "y" range of 0-254., For either of these two meanings the
coordinates can be any litéral, numeric memory variable, or
numeric expression. The SET FORMAT command is used to choose
between either of these two meanings.

When a SET FORMAT TO SCREEN command has been issued (which is the
default), the "€" command causes data to be displayed on the
screen. A coordinate pair of 0,0 means the first character
location on the upper left corner of the display. (This
frequently referred to as the home position.) The pair 10,15
means the 11th line and the 16th column of the display. Again the
Oth line on the screen should not be used. "8" commands may be
issued in any order to the screen. That is, one may SAY something
to line 15 before one SAYs something to line 10. Likewise columns

~may be filled in any order.

When a SET FORMAT TO PRINT command had been issued, the "@'
command will cause data td be printéd on the printer. The
coordinate pair 0,0 refers to the upper left hand corner of the
paper. "@" commands to the printer must be output in order. Much
paper will be wasted if this is not done. The user may like to
pretend that a typewriter is being use (indeed, it is). All
commands to line 5 must preceed commands to line 6, also, all
commands to column 10 must preceed commands to column 20, ete. 1L
‘this is not done a page eject will occur before the new line is

printed.

=

When the SET FORMAT TO SCREEN has been issued, an ERASE will
clear the screen of all information that was previously on it,
will release all the GETs (see below), and will reset the
coordinates to 0,0. When the SET FORMAT TO PRINT has been issued
an EJECT will do a page feed and reset the coordinates to 0,0.

The SAY phrase is used to display an expression that will not be
altered by subsequent editing via the READ command. The USING
subphrase is used to format the expression emitted by the SAY

phrase. Formatting directives are explained below. It is a good
thing te always use the USING subphrase. dBASE will take

liberties with the expression if there is no USING. -

SAY phrases may be used on eithér the screen or the printer.

‘GETs however, will only be recognized when the SET FORMAT TO
SCREEN command has been issued. |

The GET phrése displays the current value of a field variable or
memory variable. The variable must exist prior to issuing of the
GET and is subject to later editing by the READ command. The
PICTURE phrase may be used with a GET phrase to allow special
formatting and validation of the data as it is entered (see the
READ command for firther information). If no PICTURE clause is
given, then the data type (character, numeric or logical) forms
an implicit PICTURE. '

If the data type of the field variable or mehory variable in the
GET 1is logical then the data validation allows only the
characters 'T', 'F', JY', 'N' and their lower case equivalents to
be entered.

A maximum of 64 GETs can be active at any given time. Either the

ERASE command or the CLEAR GETS command may be used to ralease
the existing GETs.

When SET FORMAT TO SCREEN is in effect and if neither a SAY or a
GET phrase is given, then the remainder of the line indicated by
the coordinates is cleared to spaces. Thus @ 10,0 will clear the
entire 11th line. :

When the SET FORMAT TO SCREEN is in effect, a READ must be issued

in order to "fill" the GETs. (See the READ command). However when
SET FORMAT ‘TO PRINT is in effect, "€" commands require no
subsequent READ commands to complete their action.

Not needing a READ to print allows the user to direeﬁly format
the output for any pre-printed material (such as checks, purchase

- »ders, etc.) in a most convenient manner. The user need only to.

remember that '"€" commands must be issued as if bne were typing
on a typewriter.

34

In using the SET FORMAT TO PRINT capability, it is often
necessary to print out more than one item. The ability to
subsitute memory variables for the coordinate values 1is
important. The following example is from a command fiie that
generates a special report form for a special task.

SET FORMAT TO PRINT
GOTO TOP
STORE 7 TO CNTR
DO WHILE .NOT. EOF
IF 'CNTR >= 50
- EJECT
STORE 7 TO CNTR

ENDIF -
@ CNTR,12 SAY P USING 'XXXXXXAXXXXXXXXXXX Aa.. XXXXXX'.

@ CNTR,48 SAY D USING 'XXXXXXXXXX'
@ CNTR,64 SAY P1 USING 'XXXXXXXXXXXXXXXXXX
@ CNTR;88 SAY U USING 'XXXXXXXXXX' |
@ CNTR,104 SAY P2 USING 'XXXXXXXXXXXXXXXX) °
IF RCD <> 0
€ CNTR,130 SAY RCD USING '9999°
ENDIF
STORE CNTR + 1 TO CNTR
 SKIP
ENDDO
RETURN

In this command file, a maximum of 57 lines will be printed on
the printer before a page eject is done. The purpose here was to
print out most of the fields of a database (and ‘selectively print
out one of the fields). Care must be taken to make sure enough
room ‘is given to the SAY phrase to emit the variable. If the
USING 1is shorter than the variable or the field, the variable or
field is truncated. The <format> for the USING (the 'XXX...X'
strings are explained in the table below. /

"Alsao, in the SET FORMAT TO PRINT mode, if the coordinates of the

next "@" allow information to be printed on the same line but
start it in a column that has already been printed, the printer
may not output the proper information. In fact, the printer may
g0 to the extreme right and print (in one square) all the
information in the rest of the line. In the SET FORMAT TO SCREEN
mode, the old information will be written over by the new
information. '

The last form of the SET FORMAT command is: SET FORMAT TO
{format file>. When this command is in effect and when a READ
command has been issued, the "@" commands are READ from the pcre-

~designed <format file>. In this manner the user may design the

screen into a format for more specialized purposes. It 1is
important to note here that the use of format files is not
necessary for use of "c"s, since "€"s may reside in command
files. See READ for more information.

35

Formats:

Both the USING and PICTURE clauses have as their object, a
format. The format is a series of characters that indicaﬁe.uhach
characters appear on the screen or page. The following table
defines the characters and their functions: '

Format character SAY function GET function
causes the next allows only a digit,
number to be output (1,2,+..,8,9,0) and

the characters ".",
H,..,H’ H‘_l‘l’ and » » [a
space) to be entered

9 same as # same as #

X nutgpta the next allows any character
character to be entered

A. | outputs the next allows only alpha.
character to be entered

$or ® " outputs either output as is

a digit or a $ or *
instead of leading
zeros

no effect converts lowercase
alpha characters
to uppercase

Example:
+ @ 5,1 SAY 'ENTER PHONE NUMBER' GET PNO PICTURE *(999)999-9999"

The message 'ENTER PHONE NUMBER' would be .

'(bbb)bbbb-bbbb' (b indicates a blank) aasuiiiﬂliiii’tﬁiliiiﬁﬂ 2?
PNO was all blanks prior to issuance. When (and if) the READ
command is issued, only digits can be entered. The value of PNO
after the READ command might well be '(213)555-5555" after
-editing. All of the non-functional characters in the PICTURE
format are inserted into the variable. In this example, the
parentheses, minus sign and the blank are non-functional. :

36

. @ 10,50 SAY HOURS®RATE USING °'$$$$$$$.99"

This "€" command could be used with either the screen or the
printer since it has no GET phrase. It might well be used to
print payroll checks. The dollar signs will be printed as long as
there are leading zeros in the item to be printed. If hoprs=40
and rate = 12,50 then '$$$$500.00" will be displayed. This
feature is known as floating dollar and is valuable for printing

checks that cannot be easily altered in value.

When commas are used in the integer part of a picture, they are
replaced by the picture charactfr-in front of them if there are
no significant digits in the item to the left of where the comma

would otherwise be placed.
. @ 10,50 SAY HOURS ® RATE USING '$$%,3$$$.99°
Would output $$$$500.00 and specifically not output $$$,500.00.

Normally, a number of "€" commands are issued then, if any GET
phrases were included, a READ command is issued to allow editing
or data entry into the GET variables. In the following example
the screen is formatted with several "€"s and a database 1s
filled with information according to these "@"s. The last record
in the database will have a "0" in the field "name", this is the
record that will be deletéd, since it is not neceasary.

SET FORMAT TO SCREEN
USE' F:EXAMPLE
ERASE
DO WHILE NAME # '0'
~ APPEND BLANK
€ 5,0 SAY "ENTER NEXT NAME" ;
- GET NAME PICTURE *XXXXXXXXXXXXXXXXXXXX'
€ 6,0 SAY "ENTER TELEPHONE NUMBER";
GET TELE:EXTSN PICTURE 'XXXXX'
€ 6,40 SAY "ENTER MAIL STOP" ;
 GET MAIL:STOP PICTURE 'XXXXXXXXXX'
READ
ENDDO .
GOTO BOTTOM
DELETE
PACK
LIST
RETURN

- 77

The following commands affect the operation of thé "6" command:

SET INTENSITY ON/OFF (default is ON) affects the screen
.intensity of GET's and SAY's.

® SET BELL ON/OFF (default is ON) affects the bell alarm
when invalid characters are entered or a data boundary is
crossed.

-® SET COLON ON/OFF (default is ON) affects whether GET
variables are bounded by colons.

® SET DEBUG ON/OFF (default is OFF) allows easier debugging

of "@" commands by shifting ECHO and STEP messages to the
printer. : 5

® SET SCREEN ON/OFF (default is ON) allows use of full
screen operations. : '

~® SET FORMAT TO SCREEN/PRINT/<format file> determines device
destination of output (SCREEN or PRINTer). SET FORMAT TO
<{format file> establishes a format file as the source of
"€" commands for the READ command. SCREEN is the default
value.

® READ enters the editing mode so that GET variables can be

altered.

38 © ACCEPT

ACCEPT

ACCEPT ["<cstring>"] TO <memvar)

This construct permits the entry of character strings into memory

variables just as the INPUT command, but without the necessity of

enclosing them in the quote marks required by the INPUT command.
ACCEPT makes a memory variable of the type 'character' out of
whatever is entered; INPUT determines the data type from the
syntax of the entry and makes a memory variable of that type.

Thé <memvar> is created ,if necessary, and the input character
string is stored into <memvar>. If "<ecstring>" is present, it is
displayed on the screen, followed by a colon, as a prompt message
before the input is accepted. If a carriage return is entered in
response to an ACCEPT request, <memvar> will receive a single
space character. Either single quotes, double quotes, or square
brackets may be used to delimit the prompt string, however, both
the beginning and ending marks must correspond.

Examples:

. ‘ACCEPT "ENTER PERSONS NAME™ TO MAM
ENTER PERSONS NAME:dJohn Jones

« ACCEPT "EKTER PERSON®S NAME"™ TO MNAMZ2
ENTER PERSON'S NAME:Dave Smith

. DISP MEMO
NAM (C) John Jones :
NAM2 (C) Dave Smith

&% TOTAL *# - 02 VARIABLES USED 00020 BYTES USED

. ACCEPT TO ANY
:ANY CHARACTERS

. DISP MEMO
NAM Johnn Jones
NAMZ Dave Smith
ANY ANY CHARACTERS

% TOTAL u# 03 VARIABLES USED 00034 BYTES IISED

39 APPEND

APPEND

‘aJ APPEND FROM <file> [FOR <exp>] [SDF] [DELIMITED WITH <delimiter>]

~ be. APPEND BLANK

¢. AFPEND
In all three forms, records are appended onto the database in
USE. APPEND, CREATE, and INSERT are the only commands that allow
the addition of records to a database. APPEND and CREATE allow
multiple additions at one time, INSERT allows only one. :

In the first form, the records to be appended are taken from
another file, i.e. <file>. If the SDF clause is present, the
records are assumed to be in System Data Format (see section
6.0). If the new records are smaller than the old records in the
USE file, then the new record is padded on the right side with
blanks; if the new records are longer then the USE file records,
then the newly appended records are truncated. Records are added

to the USE file until end-of-file is detected upon the FROM file. .

If the DELIMITED keyword is in the APPEND command, then the
records taken from the FROM file are assumed to be delimited and
appended accordingly. Many computer languages generate files
where character strings are enclosed in single or double quotes

and fields are separated by commas. In the delimited mode, dBASE

removes the quotes and commas from delimited files and stores the
data into a dBASE-structured database, according to the
database's structure.

If the SDF and DELIMITED clauses are not present, then the FROM
file is assumed to be a dBASE-structured database file. The
structures of the USE and FROM file are compared. Fields which
occur in the records of both files are taken from the FROM file
- and appended onto the USE file. Padding and truncation are
performed as appropriate to force the FROM data items into the
USE file's structure.

If the FOR phrase is used, then dBASE appends the records in the
FROM <file> one by one, each time checking to see if the
condition in the FOR is true. That is, the first-record is.
appended. If the expression is true then the record is kept and
dBASE will skip on to the next record. If the expression then the
record is discarded and dBASE will again skip on to the next
record. This procedure will continue until the end-of-file is
reached for the FROM <file>. The implications of this is that the
fields used in the expression must reside in the file receiving
the new records. -

40 APPEND

If the BLANK clause (form b) is specified, a single, space filled
record 1s appended to the USE file. This record can then be

filled by the EDIT or REPLACE statements.

If no clauses follow the APPEND command (form c¢.), the user is

- prompted with the field names from the USE file's structure. Any

number of new records may be created from the Keyboard. The

~append mode is terminated when a carriage return is entered as

the first character of the first field.

If the database in USE is an indexed database then the index file
specified in the USE command is automatically updated when the
new records are appended (except for APPEND BLANKs). Any other
index file associated with that database must be re-indexed.

When APPENDing in the full-screen mode, the SET CARRY ON command
will cause all of the data from the previous record to be carried

‘over to the next record. Changes can then be made. This is

especially useful if sucessive records have a lot of common data.

The APPEND command'is especially useful when it is necessary to
expand/contract fields or add/delete fields from an existing
database. Using the CREATE command, set up a new database
2ciitaining the desired structure and then APPEND the old database
-0 the new. Fields which appear only in the new database will be

>lank filled.
txamples:
. USE EXAMPLE

«» DISPLAY STRUCTURE
STRUCTURE FOR FILE: EXAMPLE
NUMBER OF RECORDS: 00005
DATE OF LAST UPDATE: 12/31/80
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME ¢ 020

002 TELE:EXTSN C 005

003 MAIL:STOP C 010

TOTAL %# 00036

. DISPLAY ALL

00001 NEUMAN, ALFRED E. 1357 123/456
00002 RODGERS, ROY 2468 1807103
00003 CASSIDY, BUTCH 3344 264/401
00004 CHANG, LEE 6743 190/901
00005 POST, WILEY 1011 B84/13B

.- | 42 APPEND

41
. APPEND . DISPLAY _
00015 RINEHART, RALPH
RECORD 00006
. DISPLAY ALL NAME,' ex =',TELE:EXTSN
NAME: LANCASTER, WILLIAM J 00001 NEUMAN, ALFRED E. ex = 1357
TELE:EXTSN: 6623 | . 00002 RODGERS, ROY ex = 24068
MAIL:STOP: 170/430 00003 CASSIDY, BUTCH ex = 3344
00004 CHANG, LEE ex = 6743
RECORD 00007 00005 POST, WILEY ex = 1011
. 00006 LANCASTER, WILLIAM J ex = 6623
NAME: NORRIS, R. "BOB" 00007 NORRIS, R. "BOB" ex = 8093
TELE:EXTSN: 8093 00008 NEUMAN, ALFRED E. ex = 1357
MAIL:STOP: 427/396 00009 ~ RODGERS, ROY ex = 2468
| 00010 CASSIDY, BUTCH ex = 3344
RECORD 00008 00011 CHANG, LEE ex = 6743
e 00012 POST, WILEY ex = 1011
NAME : (er) A 00013 LANCASTER, WILLIAM J ex = 6623
00014 NORRIS, R. "BOB" ex = 8093
00015 RINEHART, RALPH ex =
. DISPLAY ALL OFF MNAME,TELE:EXTSN
NEUMAN, ALFRED E. 1357
RODGERS, ROY 2468 ; . USE B:SHOPLIST
CASSIDY, BUTCH 3344
CHANG, LEE 6743 .« DISP STRU
POST, WILEY 1011 STRUCTURE FOR FILE: B:SHOPLIST.DBF
LANCASTER, WILLIAM J 6623 NUMBER- OF RECORDS: 00009
NORRIS, R. "BOB" 8093 _ DATE OF LAST UPDATE: 06/22/79
| PRIMARY USE DATABASE
. APPEND FROM DUPE3 FLD NAME TYPE WIDTH DEC
00007 RECORDS ADDED 001 1TEM C 020
' 002 NO N 005
. DISPLAY ALL 003 COST N 010 002
00001 NEUMAN, ALFRED E. 1357 123/456 % TOTAL *# 00036
00002 RODGERS, ROY 2468 1807103
00003 CASSIDY, BUTCH 3344 2647401
00004 CTHANG, LEE 6743 190/901 . CREATE
00005 POST, WILEY 1011 B84/13B FILENAME: NEWSHOP -
00006 LANCASTER, WILLIAM J 6623 170/430 | ENTER RECORD STRUCTURE AS FOLLOWS:
00007 NORRIS, R. "BOB" 8093 427/396 ; FIELD NAME,TYPE,WIDTH,DECIMAL PLACES
00008 NEUMAN, ALFRED E. 1357 001 ITEM,C,25
00009 RODGERS, ROY' 2468 | 002 NO,N,5
00010 CASSIDY, BUTCH 3344 003 COST,N,10,2
00011 CHANG, LEE 6743 004 NEED:DATE,C,8
00012 POST, WILEY 1011 | 005 (er)
00013 LANCASTER, WILLIAM J 6623 INPUT NOW? N
00014 NORRIS, R. “BOB" 8093
_ . USE NEWSHOP
. APPEND BLANK ,
. DISPLAY
00015

. REPLACE NAME WITH 'RINEHART, RALPH®
00001 REPLACEMENT(S)

44 APPEND

43 . APPEND
. APPEND FROM B:SHOPLIST 00002 SWARTZ, JOE 76767 13
00009 RECORDS ADDED 00003 HARRIS, ARNOLD 11528 Uy
- | 00004 ADAMS, JEAN 89793 12
. LIST | 00005 MACK, JAY 31415 '3
00001 BEANS 5 - 0.75 C0006 TERRY, HANS 76767 5
00002 BREAD LOAVES 2 0.97 00007 JUAN, DON 21828 5
00003 T-BONE Y 3.94 00008 SALT, CLARA . T0296 9
.00004 PAPER PLATES 1 0.86 ' . 9 :
00006 LETTUCE 2 0.53 00005 RECORDS ADDED
00007 BLEU CHEESE 1 1.96 :
00008 MILK 2 1.30 - LIST
00009 CHARCOAL 2 0.75 . 00001 SWARTZ, JOE 31415 13
_ _ 00002 SWARTZ, JOE 76767 13
. REPLACE ALL NEED:DATE WITH ' 7/ /76" 00003 HARRIS, ARNOLD - 11528 ~ 44
00009 REPLACEMENT(S) : . 00004 ADAMS, JEAN 89793 12 -
00005 MACK, JAY 31415 3
. LIST ' ' ; 00006 TERRY, HANS 76767 5
00001 BEANS _ 5 0.75 7/ W/76 00007 JUAN, DON - 21828 5
00002 BREAD LOAVES 2 0.97 17/ u/s76 00008 SALT, CLARA 70296 9
00003 T-BONE iy 3.94 7/ /76 00009 BARNETT, WALT . 31415, 6
00004 PAPER PLATES 1 0.86 7/ 4/76 : 00010 NICHOLS, BILL 76767 - 17
00005 PLASTIC FORKS 5 0.42 7/ 4/76 00011 MURRAY, CARQL 89793 4
00006 LETTUCE 2 0.53 T/ W16 00012 WARD, CHARLES A. 92653 15
00007 BLEU CHEESE 1 1.96 7/ 4/76 00013 ANDERSON, JAMES REGI 11528 16
00008 MILK 2 1.30 7/ W/76 ; | . ' ')
00009 CHARCOAL 2 0.75 T/ W/ 76 ' (The following examples demonstrates an APREND FROM <file> FOR
' - " <exp>. Note that the field3 in the .FOR are in the USE file also.)
(The following example demonstrates the DELIMITED file append. ' ' ;
This file could have been c¢reated by a number of different | - USE CHECIS_ :
versions of BASIC) - ' - DISP STRU .
STRUCTURE FOR FILE: CHECKS.DBF
'BARNETT, WALT',31415,6 . : NUMBER OF RECORDS: = 00013
'MURRAY, CAROL',89793,4 ﬁEﬁ”ﬂRr USE DATABASE
'WARD, CHARLES A.',92653,15 ' ; 001 'Hugggg T:FE "ﬁﬁg“ e
| L] 1
ANDERSON, JAMES REGINALD III','11528', 16 | 002 wwoza - A - s
L _ . 003 AMOUNT N 010 002
(Append the f_ile_. into a dBASE atrulctur'ed database) _ o0k i : 5
| 005 OUTGOING L 001
. USE ORDERS #% TOTAL *# 00038

- DISP STRU
STRUCTURE FOR FILE: ORDERS.DEF

NUMBER OF RECORDS: 00008
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME - TYPE WIDTH DEC
001 CUSTOMER C 020

602 PART:NO C 005

003 AMOUNT N 005

#% TOTAL *# 00031

 LIST

00001, SWARTZ, JOE 31415 13

45 APPEND

. LIST

00001 1 Phone Company 104.89 .F. .T.

00002 2 Gas Company 4,14 .F. .T.

00003 3 Eleptricity - 250.31 F. .T..
00004 4 Grocery Store 1034.45 .F. .T.

00005 34 Me 561.TT «Ts oFs

00006 6 Bank, service charge . 4,00 «Ts +Ts

00007 7 Doctor Doolittle ~100.00 .T. .T.
00003 8 Pirates 101.01 .F. 'ITi

00009 9 Car Repair Man 500.01 F. .T.

00010 10 Me 561.01 .T. .F.

00012 12 Me 561.77 «T. .F.

00013 -13 Me 750.03 .T. .F.

. USE MONTH

. DISP STRU

STRUCTURE FOR FILE: MONTH.DBF
NUMBER OF RECORDS: 00003
DATE OF LAST UPDATE: 10/18/81
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NUMBER N 005

002 AMOUNT N 010 002
003 HOME L 001

8% TOTAL % 00017

- LIST

00003 78 97.96 .T.

. APPEND FROM CHECKS FOR HOME
00006 RECORDS ADDED

. APPEND FROM CHECKS FOR OUTGOING
SYNTAX ERROR ##@

_ ?
APPEND FROM CHECKS FOR OUTGOING
CORRECT AND RETRY(Y/N)? N

That last append was to show what would happen if the FOR field
was not in the USE file.

46 BROWSE

BROWSE

BROWSE

The BROWSE command is one of the most powerful dBASE commands for
data editing and viewing. The data from up to 19 records is
displayed onto the screen (fewer if fields are gresatsr than 80
characters). As many fields as will fit are put on each line. Tre
screen should be considered as a window into a database. You can
scroll backwards and forwards through the records and you can pan
lart and right through the fields of the database. Any data can
be edited with the standard full-screen editing method (see
section ¥ for additional information).

This is a summary of the full-scrunn'cuntrul keys that will work
in BROWSE: '

ctl-E,A =~ backs up to the previous data field;

Ctl=X,F = advances to the next data fleld;

ctl-D - advances to the next character;

etl-S - backs up to the last character;

ctl-G - deletes the character under the uurabr;

RUBOUT - deletes the character before the cursor;

ctl-Q .- exits without saving the changes;

ctl-W - exits and saves thechanges (ctl-0 for Superbrain);
ctl-=B - pans the window lLeft one field;

ctl-2 - pans the window right one field;

ctl=C - writes the current record and advances one record;
ctl=R - writes the current record and backs up one record;
atl=U '« SsSwitches (toggles) the current record. between

being marked for deletion and not being marked.

Example:

a7 ' CANCEL

- CANCEL

D T O T

CANCEL

Cancel a cow aiad file n:;antinn a.nd‘rut.urn to the
interpretive mode. : RIS

Example:

INPUT 'IS JOB DONE (Y/N)' TO X

IF X '
CANCEL

ENDIF

This is a fragment from a command file. The INPU

: \ _ . T command ask
for a yes/no answer. If the answer 14;;:: ('y*, 2 ot L L 'i'?
.t.nnn the IF X l_i.nu of the command file will be satisfied (since X
:;Ji t:: logically' .TRUE.) and the CANCEL command will be

See Appendix A for more examples.

48 CHANGE

CHANGE

CHANGE [&pnope)] FIELD <list> [FOR <exp>]

CHANGE is a command that allows the user to make a number of
alterations to a database with minimum effort. All database
fields that are referenced in the list are presented to the user
in the order given by <list>. The user has the opportunity of
entering new data, modifing the data or -skipping to the next
field. When the <1ist> has been exhausted, CHANGE will proceed to
the next record as specified in the <scope>. The. defdult scope . is

the current record.

A field can be dele 2d in its entirety by typing a control=Y
(followed by a retur. in reaponse to the CHANGE? message. The
CHANGE command' can be orted by typing an ESCAPE character.

Example:

. USE CARDS
. CHANGE FIELD DATE

RECORD: 00001

DATE: 08/19/81
CHANGE? 81

TO 82

DATE: 08/19/82
CHANGE? (er)

49 CLEAR

CLEAR

CLEAR [GETS]

If the GETS (or GET) keyword iIs used then all of the GETs that
are pending (i.e. a GET set up by the @ command) are cleared and
the screen is left intact. This is opposed to the ERASE command
which also clears pending GETs and also erases the screen.

If there is no GETS keyword, then this command resets dBASE II.

All databases in USE are closed and un-used, all memory variables
are released, and the PRIMARY work anrea is re-selected.

This command gives dBASE II a "clean slate". For instance: if a
command file finished executing and left dBASE in the SECONDARY
state, then executing a new command file that assumes that the
PRIMARY state was selected} will cause unknown things to happen.

CLEAR should be used at the beginning of a command file to give
the command file a known state.

Example:

50 CONTINUE

CONTINUE

This sommand is used with the LOCATE command. LOCATE and
CONTINUE may be separated by other commands, however there are
limitations. See the LOCATE command for more information.

51 COPY

COPY

COPY TO <file> [<scope>] [FIELD <list>] [(FOR <exp>]
{SDF] {STRUCTURE] [DELIMITED [WITH <delimiter>]]

This command copies the database in USE to another file. The
<file> may be in dBASE format or in the System Data Format (if
the SDF option is specified).

If the STRUCTURE clause is specified, then only the structure of
a dBASE file in "USE is copied to the "TO" file.

If a 1list of fields is supplied following a FIELD clause, then
only those data fields are copied TO the file. For the COPY
STRUCTURE FIELD <l1ist>, only the structure of the listed flelds
is copied TO the file. In either case, the new structure will be
made up of only those fields spécified by the FIELD clause. No
FIELD clause bpecifies that all fields will be copied.

If the SDF clause is specified, then the file in USE is copied to
another file without the structure. This new file will be in
. ASCII standard format. “Fhis allows the generation of files which
can be input to processors other than dBASE. The STRUCTURE and

SDF clauses are mutually exclusive.

If the DELIMITED keyword is also in the command, then the output
file will have all of its character string type fields enclosed
in quotes and the fields will be separated by commas. This is the
converse of a delimited APPEND. By default, the DELIMITED type of
COPY uses simgle quotes as delimiters to mark character string
fields. The WITH sub-phrase of the DELIMITED phrase allows any
character to be the delimiter. If a "," is used as the dellmiter
then the character fields will have trailing blanks trimmed. the
numeric fields will have the leading blanks trimmed, and the
character strings will not be enclosed in quotes. The APPEND
command will only respond to single and double quotes.

If either the DELIMITED or SDF option is used then the output
{file> name will default to a .TXT extension, otherwise the
output file will default to a .DBF extension.

‘The "TO" file is created if it does not exist.

52

Examples:

. DISPLAY ALL OFF NAME,TELE:EXTSH

NEUMAN, ALFRED E. 1357

RODGERS, ROY 2468
CASSIDY, BUTCH - - 3344
CHANG, LEE 6743
POST, WILEY 1011
LANCASTER, WILLIAM J 6623
NORRIS, R. "BOB" 8093

« DISPLAY STRUCTURE _
STRUCTURE FOR FILE: EXAMPLE
NUMBER OF RECORDS: '~ 00007
DATE -OF LAST UPDATE: 00/00/00

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH
001 NAME c 020
002 TELE:EXTSN C 005
003 MAIL:STOP C 010
#% TOTAL %% 00036

. COPY TO DUPE |
00007 RECORDS COPIED

" DEC

. COPY TO DUPE2 FOR TELE:EXTSN<'8000'
00006 RECORDS COPIED

L] mmm

. DISPLAY ALL

00001 NEUMAN, ALFRED E. 1357
00002 RODGERS, ROY 2468
00003 CASSIDY, BUTCH 334k
00004 CHANG, LEE 6743
00005 POST, WILEY 1011
00006 LANCASTER, WILLIAM J 6623

. USE EXAMPLE

1237456
1807103
264/401
190/901
84/13B

1707430

. COPY FIELD NAME,TELE:EXTSN TO DUPE3
00007 RECORDS COPIED

. USE DUPE3

COPY

. COPY MEXT 4 TO DUPES
00004 RECORDS COPIED

53
STRUCTURE FOR FILE: DUPE3

NUMBER OF RECORDS: 00007

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME c 020

002 TELE:EXTSN C 005

#8 TOTAL ## 00036

. DISPLAY ALL

00001 NEUMAN, ALFRED E. 1357
00002 KODGERS, ROY 2468
00003 CASSIDY, BUTCH 3344
00004 CHANG, LEE 6TU3
00005. POST, WILEY 1011
00006 .LANCASTER, WILLIAM J 6623
00007 NORRIS, R. "BOB". 8093

. USE EXAMPLE

. USE DUPE5

. DISPLAY ALL

00001 NEUMAN, ALFRED E. 1357 123/456
00002 RODGERS, ROY 2468 1807103
00003 CASSIDY, BUTCH 3344 264/401

00004 CHANG, LEE
(The delimited COPY)
. USE ORDERS

.. DISP STRUCTURE

6743 190/901

STRUCTURE FOR FILE: ORDERS.DBF

NUMBER OF RECORDS: 00012
DATE OF LAST UPDATE: 0T/C1/80
PRIMARY USE DATABASE

“FLD NAME TYPE WIDTH
001 CUSTOMER -C 020
.002 PART:NO c 005
003 AMOUNT - N 005

#8 TOTAL %% - 00031

DEC

cOP’

54
. LIST :
00001 SWARTZ, JOE 31415
00002 SWARTZ, JOE 76767
00003 HARRIS, ARNOLD 11528
00004 ADAMS, JEAN 89793
0C205 MACK, JAY 31415
00006 TERRY, HANS 76767
00007 JUAN, DON 21828
00008 SALT, CLARA 70296
00009 BARNETT, WALT 31415
00010 NICHOLS, BILL T6767
00011 MURRAY, CAROL 89793
00012 WARD, CHARLES A. 92653 -

. COPY TO DELIM.DAT DELIMITED

00012 RECORDS COPIED

' SWARTZ, JOE
"*SWARTZ, JOE
"HARRIS, ARNOLD
' ADAMS, JEAN
'MACK, JAY
"TERRY, HANS
"JUAN, DON
'SALT, CLARA
"BARNETT, WALT
'NICHOLS, BILL
"MURRAY, CAROL
'"WARD, CHARLES A. -

','31“15', 13
', AT6T67Y; 13
',111528', 44
',189793', 12
', 131415,
', 176767,
',121828",
', 170296",
'l l31q15|]
'l ITE?&T' §
', 189793,
',192653",

el M
U =] OO WU U W

m—t

COPY

55 ' COUNT

COUNT

COUNT [<scope>] [FOR <exp>] (TO <memvar>]

Count the number of records in the USE file. If the, FOR clause is
invoked, then only the number of records which satisfy the
expression are counted. If the TO clause is included, the integer
count is places into a memory variable. The memory variable will
be created if it did not exist prior to this command.

dBASE responds with the message:
COUNT = xxxxx '

Examples:

. USE INVNTRY

» DISPLAY STRUCTURE

STRUCTURE FOR FILE: INVNTRY
NUMBER OF RECORDS: 00010
DATE OF LAST -UPDATE: 10/23/78
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 ITEM:NO N 006

002 CLASS:NO N 003

003 VENDOR : NO N 005

004 DESCR c 013

005 UNIT:COST N 007 002

006 LOCATION c 005

007 ON:HAND N 004

008 SOLD N 004

009 PRICE N 007 002

#% TOTAL *% 00055

. DISPLAY ALL

00001 136928 13 1673 ADJ. WRENCH 7.13 18 g 0
00002 221679 9 1673 SM. AAND SAW 5.17 17 4 1
00003 234561 O 96 PLASTIC ROD 2.18 27 112 53
00004 556178 2 873 ADJ. PULLEY 22.19 117 3 0
00005 723756 173 27 ELECT.BOX 19.56 354 6 1
00006 Tu45336 13 27 FUSE BLOCK 12.65 63 7 2
00007 812763 2 1673 GLOBE 5.88 112 5 2
00008 876512 2 873 WIRE MESH 3.18 45 7 3
00009 915332 2 1673 FILE 1.32 97 7 3
00010 973328 O 27 CAN COVER 0.73 21 17 5
. COUNT

COUNT = 00010

- COUNT FOR ITEM:NO>500000

COUNT = 00007

9.98
7.98
4.75
28.50
29.66
15.95
7.49
4.25
1.98
0.99

. COUNT FOR 'ADJ'$DESCR
COUNT = 00002

. COUNT FOR PRICE<10 NEXT 6
COUNT = 00003

. GOTO TOP

. COUNT NEXT 6 FOR PRICE<10
COUNT = 00003

. USE B3SHOPLIST

« LIST
00001 BEANS

56

00002
00003
00004
00005
00006
00007
00008
00009

BREAD LOAVES
T-BONE

PAPER PLATES
PLASTIC FORKS
LETTUCE

BLEU CHEESE
MILK

CHARCOAL

M=V = FMWwu

» DISPLAY STRUCTURE
STRUCTURE FOR FILE:
NUMBER OF RECORDS: 00009
DATE OF LAST UPDATE: 12/10/76
PRIMARY USE DATABASE

B:SHOPLIST.DBF

FLD NAME TYPE WIDTH DEC
001 ITEM c 020
002 NO N 005
003 COST N 010 002
#8% TOTAL %% 00036

. COUNT TO XX FOR COST>1
COUNT = 00003

- 7 XX
3

L] L] L]
~NWOUWub&SEOooWwo
O OohwhoOynE~W,m

O = DOO0OWOO

COUN"

57 CREATE

CREATE

CREATE [<filename>]

A new dBASE structured file is CREATEd. The user provides the
structure, field names, and file name for the database file.

If not supplied in the command, the user is first prompted for
the {filename> to be used by the message:

FILENAME:

,The user cnters a valid filename with the following added
restriction: the filename may contain no special characters other
than those normally used.by CP/M for special purposes (such as
B: to denote disk drive "B").

If the file existed before the create command was given, dBASE

asks the user:

DESTROY EXISTING FILE? To which the user must reply Y or N as
the case may be.

If the file is new to the system or if the user answered Y to the
destroy question, dBASE is now ready td accept the structure of
the data base from the user. The following message is displayed:

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME,TYPE,WIDTH,DECIMAL PLACES
001

The user now enters field names and -associated structure
information. A field name 1is a character string up to 10
characters long which consists of alphabetic letters, numeric
digits, and colons. Field names must begin with an alphabetic
character. Fields may be any of three types: character string,
numeric, or logical. The type field is specified by one
character, as:

C = character string
N - numeric
L - logical

58 -CREATE

The width refers to the length of the field, for instance, a
character string may be 20, characters long l.e. it's width is 20.
Numeric data may be either integer or decimal. The width of
integers is the maximum number of digits that they may be
expected to contain. For decimal numbers, two widths are
required; the first is the maximum number of digits that the
decimal number is expected to contain (including the decimal
point), the second width is the number of digits which are to by
allowed on the right side of the decimal point. Lugical data may
only be of length 1. -

Examples:

. CREATE
FILENAME : EXAMPLE
ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME,TYPE,WIDTH,DECIMAL PLACES

001 NAME,C, 20 |
002 TELE:EXTSN,C,5
003 MAIL:STOP,C,10
004 (er)

INPUT NOW?Y

RECORD 00001

NAME: NEUMAN, ALFRED E.
TELE:EXTSN: 1357
MAIL:STOP: 123/456

RECORD 00002

NAME: RODGERS, ROY
TELE:EXTSN: 2468
MAIL:STOP: 180/103

RECORD 00003

NAME CASSIDY, BUTCH
TELE:EXTSN: 3344
MAIL:STOP: 264/401

RECORD 00004

NAME: CHANG, LEE

TELE:EXTSN: 6743
MAIL:STOP: 190/901

59

RECORD 00005

NAME: POST, WILEY
TELE:EXTSN: 1011
MAIL:STOP: B84/13B

RECORD 00006
NAME ¢ (er)

- . DISPLAY STRUCTURE
NO FILE IN USE, FILENAME: EXAMPLE

STRUCTURE FOR FILE: EXAMPLE

NUMBER OF RECORDS: 00005

DATE OF LAST UPDATE: 00/00/00

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 NAME c 020

002 TELE:EXTSN C 005

003 MAIL:STOP C 010

&% TOTAL *# 00036

. DISPLAY ALL

00001 NEUMAN, ALFRED E. 1357 123/456
00002 RODGERS, ROY 2466 180/103
00003 CASSIDY, BUTCH 3344 2647401
00004 CHANG, LEE 6743 190/901
00005 POST, WILEY 1011 B4/13B

CREATE

60 'DELETE

DELETE

DELETE (<scope>! [FOR <exp>]
DELETE FILE <filename>

All records which are within <scope> (and which satisfy the FOR
expression if present) are ‘marked for deletion. The default scope
is the current record only. Records are not physically deleted
until a PACK operation, however records marked for deletion will
not be copied, appended, or sorted. The RECALL operation may be

‘'used to. revive records marked as deleted. Records which are

marked for deletion can be displayed. The mark of deletion

appears as an asterisk between the record number and the first
field.

In the second rorm, the file named <filename> will be removed
from the disk drive where it resides (if possible) and the space
it was occupying will be released to the operating system for

reassignment. If, however, the <filename) is currently in use,
the file will not be deleted. '

. DELETE RECORD 2
00001 DELETION(S)

« 5

. DELETE NEXT 3
00003 DELETION(S)

Examples:
. LIST -
00001 136928 13 1673 ADJ. WRENCH 7-13 189 9 0 9.98
00002 221679 9 1673 SM. HAND SAW 5.17 173 Y 1 7.98
00003 234561 0O 96 PLASTIC ROD 2.18 27 112 53 4,75
00004 556178 2 873 ADJ. PULLEY 22.19 117 3 0 28.50
00005 1723756 73 27 ELECT.BOX 19.56 354 6 1 29.66
00006 745336 13 !27 FUSE BLOCK 12.65 63 7T 2 15.95
00007 812763 2 1673 GLOBE '5.88 112 5 2 7.49
00008 876512 2 873 WIRE MESH 3.18 45 y,25
00009 915332 2 1673 FILE 1.32 97 7 3 1.98

« LIST

00001
00002
00003
00004
00005
00006
00007
00008
00009

136928

#221679
234561

556178

#723756
#745336 -
#812763

876512
915332

- RECALL ALL

00004 RECALL(S)

« LIST

00001
00002
00003
00004
00005
‘00006
00007
00008
00009

. DISP FILES ON B
DATABASE FILES

136928

221679
234561
556178
723756
T45336
812763
876512
915332

SHOPLIST
SHOPSAVE

—

- =3
MR RNWWNOW W

—

- =3
MNRONWWNOWVW

RCDS
00007
00007

61

1673 ADJ. WRENCH

1673 SM. HAND SAW

96 PLASTIC ROD
873 ADJ. PULLEY
27 ELECT.BOX
27 FUSE BLOCK

1673 GLOBE
873 WIRE MESH
1673 FILE

1673 ADJ. WRENCH
1673 SM. HAND SAW
96 PLASTIC ROD
873 ADJ. PULLEY
27 ELECT.BOX
27 FUSE BLOCK

1673 GLOBE
873 WIRE MESH
1673 FILE

06/06/76
06/05/76

. DELETE FILE B:SHOPSAVE \
FILE DELETED

. DISPLAY FILES ON B

DATABASE FILES

SHOPLIST

RCDS
00007

06/06/76

LAST UPDATE

LAST UPDATE

7113
5.17
2-15
22.19
19.56
12.65
5.88
3.18
1.32

7T.13
5.17
2.18
22-19
19.56
12.65
5.88

1.32

189
173
27
117
354
63
12
45
97

189

173
27

nT

354
63
112

3,187 45

97

—
—

NN~ oOWw N W

—
d

~N =V o0wM =W

DELETE

wn

mwn;m-'-cm-n-n

Ui
WWN—0W =0

9.98
7.98
.75
28.50
29.66
15.95
7.49
4,25
1.98

9.98
7.98
4.75
28.50

29.66 -

15.95
T.49
4.25
1.98

62 DIE

L3
=
[--l

DISPLAY

a. DISPLAY {<scope>] LFOR <exp>] i<exp list>] [OFF]
b. DISPLAY STRUCTURE

c. DISPLAY MEMORY

d. DISPLAY FILES [ON <disk drive>] [LIKE <skeleton>]

Display is the foundation of dEASE. The end goal cf all database
operation is to display the data in the database (or ¢ross

sections and abstractions of the data) upcen demand. DISPLAY
satisfies that goal by allowing a wide variety of forms that
select the wanted data.

In case a. all or part of the database in USE is displayed. If
{scope> is not specified and the FOR <exp> is not in the command,
only the current record can contribute information for display.

~ If <scope> is not specified and there is a FOR <exp>, then all

reccords in the database may contribute to the display. All flelds
are displayed unless the <exp list> clause is specified. Valid
expreasions may consist of data fields, memory variables, or any
valid literal number, character or logical. The current record
number is prefixed to each line displayed unless the OFF option
is selected. If the FOR clause is specified, then only those
records that satisfy the FOR's cnnditinnal expression can
contribute information for display.

After groups of 15 records have been displayed, DISPLAY waits for
any keystroke to continue., This allows the user to "page" through
a long display. The LIST command is identical to the DISPLAY
command except that LIST deces not wait after record groups and

i’.'s default scope is ALL records. An ESCape character terminates
the DISPLAY or LIST commands.

In case - only the structure of the database in USE is
displayed. .

In case c¢. all currently defined memory va#iablea are displayed
as memory variable name and associated value.

Caae d. 18 a way to display .DBF files that are residing on the
default unit (or on <disk drive>) along w.th some of the
database's statistigs. The LIKE phrase allows other types of
files to be displayed. The <skeleton> is usually of the form
%#.type, where type is TXT, FRM, MEM, or any other three letter
string. These files are displayed just as in the CP/M DIR
command . '

63 DISPLAY

Examples:
. USE B:INVENTRY

. DISPLAY STRUCTURE |
STRUCTURE FOR FILE: B:INVENTRY.DBF
NUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 ITEM c. 020
002 COST N 010 002

' 003 PART :NO cC 005
004 . ON:HAND N 005

&% TOTAL - 00041 BYTES (note: total includes
| 1 overhead byte)

. DISPLAY ALL ITEM, PART:MO, COST®OM:HAND ,$(PART:NO,1,2) FOR ;
COST > 100 .AND. ON:HAND > 2 OFF

TANK, SHERMAN 89793 404997.00 89
TROMBONES - 76767 15076.12 76
RINGS, GOLDEN 70296 1000.00 70

. DISPLAY MEMORY

CLIENT:NAM (C) DANGLEMEYER, PRENTICE

BUDGET (N) 123456.70

EF:STATUS (L) .T.

€% TOTAL ®% 03 VARIABLES USED 00027 BYTES USED

. DISPLAY FPILES OM B: LIKE *.FRM
TEST FRM ADMIN FRM ORDERS FRM

. DISPLAY FILES

DATABASE FILES #RCDS LAST UPDATE
TEST DBF 00077 00/00/00
"ADRECS DBF 00073 09/23/61
HISTSTR LBF 00000 06729/81
TMPADMIN. DBF

NOT A dBASE II DATABASE

The last .DBF file in the liut. above is the file that is not t.he

dBASE database.

Only representative examples of DISPLAY are given here, refer tu
other commands for nthar examples.

64

| 8

a. DO <filed>
b. DO WHILE <exp>
{atatements>
ENDDO | .
c. DO CASE
CASE <exp>
{statements>
CASE <exp>.
<{statements> .

LOTHERWISE]
{statements>
ENDCASE

In case a, <f'ile> is opened and read. The file in this-case is
known as a COMMAND FILE. It consists. entirely of dBASE c¢-mmands.
The input is inturprutud and executad as keyboard commands are.
DO's can be stacked up to 16 deep (i.2. command files can contain
DO commands “which invoke other command files). Control is
released by a command file with an end-of-f'ile or by the RETURN
command. If the current command file was called by 2 command
file, control will be ziven back to thdé higher level command
file. If, during the execution of a command file, a CANCEL
command is encountereds all command files are closed and tna.
keyboard is made the source for future commards.

. In case b, Af the <exp> evaluates as a logical TRUE, the

statements following the DO are executed until an ENDDO statement
is encountered. If the <exp> evaluates to a logical FALSE,
control is transferred to the atatumqnt ralluwing the ENDDO

statement.

Hotes <statemeatsd> refars tq entire statements. Tha DO WHILE

‘statement ends with an ENDDO. Statements must nest properly; if
there is an IF "inside” a' DO WHILE, then an ENDDO may nbt occur
pefore the ENDIF. See section 9.2 Rule 8 for wmore information.
Examples:

DO ACCNTPAY

DO WHILE .NOT.EOF
DISPLAY NAME

SKIP
ENDDO

64 - 1 DO

CASE is an extenaion of the DO uummandfand takes the form- shown

above. There is nc limit to the number of CASE phrases that a DO
CASE may contain. The OTHERWISE phrase is opticnal.

DG CAS® is a structured procedure. The individual CASEs ia the
construct could be viewed as the exceptions to the rule that
defines the QTHERWISE. If some condition needs some special
processing then the condition would be a CASE and all other
conditions would be the OTHERWISE. OTHERWISE may also be viewed
as the default condition. See the first example below.:

How dBASE handles the DO CASE construct may best be explained as

a series of IFs. That is, dBASE will execute the DO CASE as if it

were a list of IF-ENDIFs.

L0 CASE . I ITEM='0QRANGES'
CASE ITEM='QRANGES' any statements
any statements ELSE
CASE ITEM='APPLES' = IF ITEM='APPLES'
any statements any statements
QTHERWISE ELSE
any statements any ;tatementa
ENDCASE - ENDIF
ENDIF

Thus, dBASE will examine the <axp>= inethe individual CASEs and
the first one that is true will have the statements after it
| a:ucuted. When dBASE reaches the next phrase beginning with a

MCASE" it will exit to the ENDCASE. This means that if more than
~ one CASE is true, only tne first one will be executed.

If the O?HEHHISE clauae_ia prasent and none of the CASEs are
true, then the <{statements> inm the OTHERWISE clause will be
executed. If there 1ls nc. OTHERWISE clause and none of the CASEs

are true, then the DO CASE_will be axited Wwith none of the
<{statements)> executed at all.

Any statements that are placed between the "DO ChSE" and the
firat "CASE"™ will not be executed.

Examples:

DO CASE
CASE ITEM = "BROWN" |
{statements> that process BROWN
CASE ITEM = "JONE3S"
{astatements> that prucusa JONES
CASE ITEM = "SMITH"™
~ <statements> that process SMITH
'‘OTHERWISE
{statements> that process all the other names

ENDCASE

In the caséd above all the expressions were for the same field
name. This 'is not necessary. An <éxp> may contain anything and

- the series of CASEs need not nave a tight relatiunahip.

DO CASE _
CASE TODAY = "MONDAY™
{statements> for MONDAY
CASE WEATHER = "RAINT™
{statements> for RAIN
CASE CITY = "LOS ANGELES"
{statements> for LOS ANGELES
ENDCASE

Of course, if it is a rainy Monday in Los Angeles only the CAS=

‘for MONDAY will be executed.

CASEs need nct be all character strings as in these two examples.
Any expression will work.

DO CASE
CASE 3 = 2 + 1
{statements> for addition
CASE .NOT. A~
{statemcnts> for boolean Logic
CASE "A"$"™ABCDLF™.
{statements> for string logic
OTHERWISE
{statements>
ENDCASE

ENDCASE is the statement used to terminate a DO CASE structure.
When a case orQTHERWISE has {inished processing, control is
resumed at the line following the zZNDCASE.

EDIT

. EDIT [n]

The EDIT command allows the user to selectively change the
contents of the data fields in a database. Edit's usage and
 action varies, depending on whether on not dBASE is in the full-
screen mode (see the SET SCREEN command).

When dBASE i§ in thé full-screen mode, editing./can be done by
‘either "EDIT" or "EDIT n" (n represents the record to be edited).
" If n is not present then dBASE will ask for the coordinates of
the record to be edited. This is similar to the non=-full-screen

mode, however, full-screen capabilities will still used after the

record number is supplied. See section 8, full-screen operations,
for a description of control keys and curscr movement.

When the edit command is used in the nun-rull-ac sen mode, dBASE
_ru:pnnda with:

COORD:

The user then enters the coordinates of the data fleld to be
changed and (pptionally).-the new value. The coordinates of the
data field are: the record number, and the field number (or the
‘field name). If a new value is supplied, dBASE will replace the

contents ' of the specified field with the new value. If'a new -

value is not supplied, dBASE displays the current value of the
data field and prompts the user for changes. If no changes are
desired, a carriage return will cause dBASE not to alter.gne

sontents of the field. Whether changes,are made or not, dBASE .
will p?unpt the user- for tha next pair of cnurdin:ta: J*,p'

anutnar "COORD:" message.

After the first set of gaob&lnataa have been entered, the user

may omit either of the coordinate values and dBJSE will use the
previous value of that .coordinate. The ZDIT mode is exitied by
entering a carriage return as the ruapunau'tn the COORD request.

The entire data field can be erased by entering a control-Y,
RETURN whenever the CHANGE? message is displayed. This permits a
field to be completely reentered if desired. The editing of a
data field can be aborted by entering a CTL-Q character. This
discards any editing done and restores the data riild to its

.original contents.

‘If an I!n;:-h file is being EDITed and the index clause was USEd, -

then dBASE will adjust the index if the key. field is alcered. if

Iuri than one index file is associated with the databln, then

the un-USEd files will be unaffected by the edit.
E:Ilplq|-~

i
-

- DISPLAY STRUCTURE

~ STRUCTURE FOR FILE: _ SHOPLIST
. NUMBER OF RECORDS: 00006

DATE OF LAST UPDATE: 07/03/76
PRIMARY USE DATABASE .

FLD
001
002
003

---LIST

00001
00002
00003
00004
00005
00006

- EDIT

NAME TYPE WIDTH
ITEM - € " 020
NO . N 005
COST N 010

. #% TOTAL %% 00036

BEANS #303 CAN
BREAD o
T-BONE STEAKS
LETTUCE

MILK (1 GAL BOTTLES)

'CHARCOAL

COORD: S'I'Iﬂl,l'lll.l (172 GI.LJ

COORD: 2,1

ITEM: BREAD

CHANGE? D

TO

ITEM: BREAD LOAVES
CHANGE? (or)
COORD: 6,1

ITEM: CHARCOAL
CHANGE? AL

TO

AL, 5# BAGS

ITEM: cannconL. 5¢ anns
CHANGE? (er)
COORD: ,2

NO:
T0: 2

1

COORD: &

NO:
T0: 2

1

COORD: (er)

« LIST

00001
00002

- 00003

00004
00005

BEANS #303 CAN
BREAD LOAVES
T-BONE STEAKS

LETTUCE

MILK (1/2 GAL)

66

DEC

002

- - =W

NN ERWN

0.69
0.89

3459

0.49
1.19
0.69

0.69
0.8y
3.59
0.49
1.19

EDIT

&7 EDIT

00006 CHARCOAL, 5# BAGS 2 0.69

(The following portion of a command file would also allow one to
edit a database on a selective basis. The "&" is vital to meking
these commands work; it will change the string sccepted by the
ACCEPT into numbers that EDIT will recognize.)

STORE '1' TO X

DO WHILE X <> *'0O¢
ACCEPT "Enter Record Number®" TC X
EDIT &X |

ENDDO

68 EJECT

.

EJECT

This command causes the printer to do a form feed (eject the
page) if either PRINT is SET ON or FORMAT is SET TO PRINT. When
using the € command to do direct page formatting, the EJECT
command also zeros the line and column registers.

; Example: -

EJECT

ERASE

- ENDDO i &
. ENDDO ERASE,
The statement used to terminate a DO WHILE loop. When ARARE :
encnuntarud,tunﬁyru; is transferred back to the DO statement for This command clears the screen and places the cursor (if any) in
re-a : _
Stesament of the logioal value of the <expd.. : ' the upper left corner of the screen. When using the € command

See the DO command. with the SET SCREEN ON in effect, ERASE clears memory of prior &

command gets and pictures.

See Appendix A for.examples. !
Example:

71 FIND

FIND

FIND <char string> or '<char string>’

This command causes dBASE to FIND the first record in an indexed
database (in USE) whose key is the same as <char string>. FIND
allows very rapid location of records within an indexed database.
A typical FIND time is two seconds on a floppy diskette system.

FIND operates only on databases that have previously been indexed
(see the INDEX command description). If the INDEX command used a
character string expression as the key, then FIND will operate
when it is given only the first few characters of the key. The
found record will be the first one whose key has the same order
and number of characters as the <{char string>. Fcr example: a
record whose key is 'SMITH, JOHN' could be found by the statement
'FIND SMI' provided that there are no other keys starting with
'SMI' proceeding SMITH, JOHN in the index. FIND will always find
only the first record whose key is the same as <char string>.

Even if the record pointer is moved down further in the file, a-

subsequent FIND on the same key will find the FIRST record.

If the index was created with a numeric key, then the found
- record will be the first record whose key is arithmetically equal

to the object of the FIND.

Note: that for indexes keyed on both characters and numbers, the
FIND object 1s a character string with or without quote
delimiters. Quote marks only become necessary for character
strings if the original key had leading blanks. In that case, the
exact number of leading blanks should be inside the quotes.

if a memory variable is desired as a FIND object, it must be
placed after the FIND command by means of an &-macro replacement,
e.g2. FIND &NAME where NAME is a character string memory variable.
Numeric memory variables must first be converted to a string by
means of the STR function before they can be "macro-ized". See
section 5 for a discussion on macros.

Once a record in a database has been located by means- of the FIND
command, it can be processed just’as any other database record.
That is, it can be interrogated, altered, used in calculations,
etc. dBASE commands that cause movement of the database (e.g.
LIST, REPORT, COPY, etc.) will process the found record first and
proceed to the next record in sequence, based upon the key.

I1f no record exists whose key is identical to the <{char string>
then the message: "NO FIND" will be displayed on the screen and
the record number function "#" will give the value of zero.

If a second record with the same key is wanted, then a SKIP or a
LOCATE FOR <exp?> should be used. The SKIP will not know when
there is no longer a match, the LOCATE (as long as the key was

72 FIND

used in the expression) will be abie to find additional matches.
SET EXACT ON will cause FIND to get a ‘hit® only if there is a
character for character match for the ENTIRE key (except for
trailing blanks).

Examples:

- USE SHOPLIST INDEX SHOPINDX

«. LIST

00001 Beans 5 0.75

00007 Bleu cheese 1 1.96

‘00002 Bread loaves 2 1.06

00009 Charcoal 2 0.75

00006 Lettuce 2 0.53

00008 Milk 2 1.30

00004 Paper plates 1 0.94

00005 Plastic forks 5 0.42

00003 T-Bone steak Y 4,33

. FIND Bread

. DISPLAY

00002 Bread loaves e 1.06
-

. DISPLAY NEXT 3

00002 Bread loaves 2 1.06

00009 Charcoal 2. 0.75

00006 Lettuce 2 0.53

. FIND P

. DISPLAY :

00004 Paper plates 1 0.94

. FIND Plas

. DISPLAY

00005 Plastic forks 5 0.42

« FIND P

» DISPLAY

OOODH Paper plates 1 0.94

73 FIND

FIND will work in a nultiplu 1ndaxud file if the two kaya are
placed within quotes.

L] M

00001 Flying High Bird, I. M. IMB0O0O1 02/29/04
00002 Diving - Fish, U. R. URF001 12/30/23
00008 Nursing Knight and Gale KGOO1 08/04/44
00010 Vacationing in Europe Knight and Gale KG002 06/24/42
00004 101 Ways to Tie a Knot Lynch, I. ILOO1 04701700
00003 How to Survive a Crash Lynch, M. MLOO1 01/01/30
00007 Even Primes Sladek, L LS00T 12/01/73
00009 Even More Primes Sladek, L LS002 04,s24/73
00006 Thinking Big Tim, Tiny TTO001 05/07/42

. find "Bird, I. M. IMBOO2"

. disp .
00005 Nesting Procedures Bird, I. M. IMB0OQ2 09/25/06

. find "Lynch, M."

.« disp

00003 How to Survive a Crash Lynch, M. ML0OO1 01/01/30
. find "Sladek, L LS002" |
« disp

00009 Even More Primes Sladek, L L3002 O0u4/24/73

74 GOTO

| GO or

GOTO

a. GOTO RECORD <n>

-~ b GOTO TOP

c. GOTO BOTTOM

‘de <n2

e. GOTO <memvar>

This command is used to reposition the recnrd pointer of the
database.

In either case a or d, the current-record pointer is set to
record number <n>. Case d is a short-hand method for case a.

In cases b and ¢, the file in USE is rewound/unwound (TOP/BOTTOM)

and the first/last record.in the file is pointed to by the
current-record.pointer. Hhen the file in USE has been INDEXed,
then first/iast record is not necessarily the first/last physical
record in the database but rather is first/last according to the

key used to index the database.

Case e can be used to position to a record number contained in a
memory variable.

Examples:
. USE SHOPLIST

. GOTO RECORD 6
6 .

. DISPLAY
00006 LETTUCE 2 0.53

. GOTO TOP

- DISPLAY
00007 BEANS 5 0.75

. GOTO BOTTOM

00009 CHARCOAL 2 0.75

. LIST °

00001 BEANS

00002 BREAD LOAVES
00003 T-BONE

00004 PAPER PLATES
00005 PLASTIC FORKS
00006 LETTUCE

00007 BLEU CHEESE
00008 MILK

00009 CHARCOAL

. ETCIE 4 TO RECORDNO

- GOTO RECORDHO

» DIZSP |
00004 PAPER PLATES

75

NN = U - W

0.75
0.97
3.9L
0.86
0.42
0-53
1.96
1.30
0.75

10.86

GOTO

76 IF

IF

IF <exp>
<commands>

LELSE
<commands>]

ENDIF

The IF command allows conditional execution of other commands.
This command is used in command files. When the <exp>resaion
avaluates to TRUE, the commands following the IF are axecuted.
When. the expression evaluates to FALSE, the commands following
the ELSE are executed. If no ELSE is specified, all commands are
skipped until an ENDIF is encountered. iF commands may be nestad

to any level.

Note: <commands) refers to whole command statements. The IF

command begins with IF and ends with ENDIF. Statements amuast nest

properly, an IF with a DO WHILE in the true (or false) path must
not end before the DO WHILE. See section 9.8 Rule: & for more

information.
Examples:

IF STATUS='MARRIED'
DO MCOST

ELSE .

DO’ SCOST

ENDIF)

IF X=1 |
STORE CITY+STATE TO LOCATION
ENDIF

See Appendix A for further examples.

77 INDEX

INDEX

INDEX ON <expression> TO <index file name>

The INDEX command causes the current file in USE to be indexed on
the <expression>. <expression> is knéwn as the "Key". This means
that a file will be constructad by dBASE (the <index file>) that
contains pointers to the records in the USE file. The index file
13 made in such a way that the USE database appears to be sorted
on the key for subsequent operations. The file in use is not
physically changed. Sorting will be in an ascending order.

A descending sort may be done pn an expression that.is a numeric.
See below for an example.

Indexing 3llows very rapid location of database records by
specifing all or part of the key by means of the FIND command.
(See FIND). A database need not be indexed unless the appiication
being worked would be enhanced by it. An indexed database can be
used later with or without the indexing'feature.

Many times, the INDEX command need only be done once for any
given file. For instance, the APPEND command will automatically
adjust the index file when new records are added.

If an indexed database 1s reUSEd (in a later dBASE run or later

in the same run that did.the original INDEX operation), then a
sSpecial form of the USE command must. be used (i.e. USE <database
filename> INDEX <index filename>).

Any number of index.files may be constructed for any database,
however, only the USEd index files will be automatically updated
by the APPEND, EDIT, REPLACE, READ or BROWSE commands.

An indexed file can be packed with the PACK command and the
database, as well as the index file, will be properly ad justad.
However 1f more that one index file is associated with the PACKed
database, then that database must reINDEXed on those keys.

WARNING: The TRIM function must NOT be used as part of an index
Key. Also, if the $ or STR functions are used as part or all of a
Key, they must have literal numbers (not variables or
‘expressions) as their length parameters (e.g. INDEX ON
‘$(NAME,N,5)+STR(AMOUNT,5) TO NDXFILE instead of INDEX ON
$(NAME;N,N+5)+STR(AMOUNT,SIZEVAR) TO NDXFILE).

Examples:

. USE SHOPLIST

« LIST

0000
00002
00003
00004
Q0005 -
00006
00007
00008
00009

Beans

Bread loaves
T-Bone steak
Paper plates
Plastic forks
Lettucs

Bleu cheese
Milk
Charcoal

. DISPLAY STRUCTURE
STRUCTURE FOR FILE:

NUMBER

OF RECORDS:

DATE OF LAST UPDATE:
PRIMARY USE DATABASE

FLD
001
002
003

NAME TYPE WIDTH DEC
020
005
010

ITEM
NO

COST

% TOTAL **

SHOPLIST.DBF

00009

Q07/0Q3/76

QOOBG

78

NN =TNUI = &N

002

. NOTE CREATE INDEX FILE SHOPINDX

. INDEX ON ITEM TO SHOPINDX

. NOTE NOW LIST IN INDEX ORDER

. LIST
00001
00007
000062
00009
00006
00008
00004
00005
00003

. NOTE INDEXING ALLOWS FIND COMMAND

. FIND

Beans

Bleu cheese
Pread loaves
Tharcoal
Lettuce

Milk

Paper plates
Plastic forks
T-Bone steak

Milk

- DISPLAY

00008

. FIND

Milk

Be

. DISPLAXY

00001
. SKIP

Beans

- \J1

0.75
1.06
§.33
0.94
0.42
0.53
1.96
1.30
0.7Tu

0.75
1.906
1.06
0.75
0.53
1.30
0.94
Q.42
4.33

1.30

0.75

INDEX

79 INDEX

RECORD: 00007

. DISPLAY :
00007 Bleu cheese 1 1.96

.m.P-'l
RECORD: 00001

. DISPLAY
00001 Beans 5 0.75

+ NOTE REGULAR USE COMMAND DOES NOT INCLUDE INDEX FILE

- USE SBOPLIST

» LIST

00001 Beans 5 .75
00002 Bread lpaves 2 1.0
00003 T-Bone steak b 4.33
O0CO4 Paper plates 1 0.94
00005 Plastic forks 5 0.42
00006 Lettuce 2 0.53
00007 Bleu cheese 1 1.96
00008 Milk 2 1.30
00009 Charcoal 2 0.75

- NOTE ALTERNATE FORM OF USE COMMAND RECALLS INDEX FILE
- USE SHOPLIST INDEX SHOPINDX
LIST

00001 Beans 5 Q.75
00007 .Bleu cheese 1 1.96
00002 Bread loaves 2 1.06
00009 Charcoal 2 - 0.75
00006 Lettuce 2 0.53
00008 Milk 2 1.30
00004 Paper plates 1 0.94
00005 Plastic forks 5 0.42
00003 T-Bone steak 4 4.33

80
. USE BOOKS
. DISP STRU
STRUCTURE FOR FILE: BOOKS.DBF
NUMBER' OF RECORDS: 00010
DATE OF LAST UPDATE: 10/138/81
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
Q01 TITLE C 025
002 AUTHOR c 015
003 CAT : NUM G 00b
004 ARR:DTE c 008
%% TOTAL %** 00055

. TNDEX OM AUTHOR + CAT:NUM TO BOOKS
00010 RECORDS INDEXED

LIST

00001 Flying High Bird, I. M.
00005 Nesting Procedures Bird, I. M.
00002 Diving - Fish, U. R.
00008 Nursing ' Knight and Gale
00010 . Vacationing in Europe Enight and Gale
00004 107 Ways to Tie a Knot Lynch, I.

00003 How to. Survive a Crash Lynch, M.

00007 Even Primes : Sladek, L

00009 Even Mores Primes Sladek, L

00006 Thinking Big Tim, Tiny

IMBOO1
IMBOO2
URFOO1
KG0O01
KGOO2
ILOO1T
MLOO1
LS001
LS002
TTOO1

INDEX

02/29/04
09/25/06
12/30/23
b/ 04/ 4l
06/24/42
Q4/01/00°
01/01/30
12/701/73 |
04/24/73
05707/ 42

81 INPUT

INPUT

INPUT ("<cstring>®] T0 <memvar)}

This construct permits the entry of expression values into memory
variables, and can be used within command files as a means for
the user to enter data at the command file's b.dding. <memvar> is
created, if necessary, and the expression is stored into
<memvar)>, If <estring> is present, it is displayed ca the screen
43 a prompt message before the input is accepted.

The type of the <memvar> is determined from the type of data that
i3S entered. If a delimited character string is entered, the
<memvar> will be of type character. If a numeric expression is
entered, <memvar)> will be of type numeric. If a T or Y (for True
or Yes) is entered, <memvar)> will be a logical variable with the
value TRUE; if,an F or N (for False or No) is entered, <{memvar>
will be a logical variable With the value FALSE. The function
TIPE may be used to explicitly determine the type of the entry.

Either single or double quote marks may be used to delimit the

prompt string, however, both the beginning and ending marks must
be the same.

. INPUT TO 2
:23/17.000+X
4,352

. INPUT 'PROMPT USER FOR INPOT' TO Q
PROMPT USER FOR INPUT: 12345
12345

- THPUT 'ENTER T IF EVERYTHING IS OKAY' TO LG
ENTER T IF EVERYTHING IS OKAY:T
..

'.m-ﬂa‘.;almsmm-mm .
ENTER A CHAR STRING:'CHAR STRING MUST BE QUOTE DELIMITED*
CHAR STRING MUST BE QUOTE DELIMITED

32
. DISP MEMO
X (N): 3
Z (N) 4.352
Q (N) 12345
e e {UST BE QUOTE/DELIMITED

CHAR STRING MUST :

EE£¥UTAL - 05 VARIABLES USED 00054 BLTES USED

INPUT 'ENTER ANY LOGICAL ' TO LOG2

'ENTER ANY LOGICAL :y

«Ts

INPUT

83 INSERT

INSERT

INSERT [BEFORE] [BLANK]

This command allows records to be IHSERfed into the middle of a

database. Only one record at a time may be inserted inteo the
database with the INSERT command.

The BEFORE phrase 1s used to cause insertion before the record
currently pointed at, otherwise the new record will be placed
Just after the current record. Unless the BLANK phrase is used,
the user will be prompted for input values as with the APPEND and

CREATE commands. If the BLANK phrase is specified, then an empty
record is inserted.

If the CARRY is SET ON then the information in the previocus
record is carried over to the new record..

INSERTs into a large non-indexed database take a long time to
complete and should be aveided unless necessary. INSERTs into an
indexed file, no matter what size, are identical to APPENDSs.

Examples:

. USE SHOPLIST

. LIST
00001 BEANS #303 CAN 5 0.69
00002 BREAD LOAVES 2 0.89
00003 T-BONE STEAKS 4 3.59
00004 LETTUCE - 2 0.49
00005 MILK (1/2 GAL) 2 1.19
00006 CHARCOUAL, 5# BAGS 2 0.69

- GOTO RECORD 4

. INSERT

RECORD 00005

ITEM: BLEU CHEESE
NQ: 1

COST: 1.79

. LIST

Q0001

00002
00003
00004
00005
00006
00007

BEANS #303 CAN
BREAD LOAVES
T-BONE STEAKS
LETTUCE

BLEU CHEESE

MILK (1/2 GAL)
CHARCOAL, 5# BAGS

. GOTO RECORD &

' :

RECORD®

ITEM:
NQ:
COST:

- LIST

00001

00002
G0003
00004
00005
00006
00007

- 00008

L] H

00004

PAPER PLATES
1

-79

BEANS #303 CAN
BREAD LOAVES
T-BONE STEAKS
PAPER PLATES
LETTUCE

BLEU CHEESE

MILK (1/2 GAL)
CHARCOAL,. 5# BAGS

. DISPLAY o
00004 PAPER PLATES

. INMSERT BLANK

- LIST

00001
00002
00003
00004
00005
00006
00007
00008
00009

BEANS #303 CAN
BREAD LOAVES
T-BONE STEAKS
PAPER PLATES

LETTUCE

BLEU CHEESE

MILK (1/2 GAL)
CHARCOAL, 5# BAGS

84

N =N = =N R = =N W

- = M

oS =

Orﬁ'g
D-Bg
3.59
0.49
1.79
1-19
0.69

0.69
0.89
3.59
0.79
0.49
1.79
1.19
0.69

0.79

0.69
0.89
3.59
0.79

0.49
1.79
1.19
0.69

INSERT

« 5

« REPLACE ITEM WITH ‘PLASTIC FORKS' AND NO WITH 5 ANMD COST

WITH .39
00001 REPLACEMENT(S)

L Lm

00001. BEANS #303 CAN
00002 BREAD LOAVES
00003 T-BONE STEAKS
00004 PAPER PLATES
00005 PLASTIC FORKS
00006 LETTUCE

00007 BLEU CHEESE

00008 MILK (1/2 GAL)
V0009 CHARCOAL, 5# BAGS

85

MNMN=NN=2 =N

0.69
0.89
3.259
0.79
0‘39
0.49

1.79.
1.19

0.69

INSERT

86 JOIN

JOIN

JOIN TO <file> FOR <expression> [FIELDS <field list>]

This is one of the most powerful commands in dBASE. It allows two
databases to be JOINed together to form a third database whenever

some criterion is“met. -

The two databases used are the primary and secondary USE files.
First the SELECT PRIMARY command is issued. Then the JOIN
command is issued. JOIN then positions dBASE to the first record
of the primary USE file and evaluates the ON expression for each
record in the secondary USE file. Each time that the expresslion
yields a TRUE result, a record as added 170 the new database. When
the end of the secondary USE file is reached, the primary USE
file is advanced one record, the secondary USE file is ‘rewound'
and the process continues until the primary USE file is

exhausted.

If the FIELDS phrase is omitted then the output database will be
comprised of all the fields in the primary USE file's structure
and as many of the secondary USE file's fields as will fit before
exceeding the 32 field limit of dBASE.

If the FIELDS phrase is supplied, then those fields, and only
those fields, that are in the field list will be placed in the

output database.

This command takes a lot of time to complete if the contributing
databases are large. And if the joining criterion is too loose,
causing many joinings per primary record, then there is the
potential for causing a JOIN that dBASE cannot complete. For
example, suppose that the primary and secondary USE files each
contain a’ 1000 records, and that the expression is always true, a
million records should be output by the JOIN into a database
whose size would exceed the dBASE 'maximum of 65,535 records.

JOIN

87 ~ JOIN 88
Example: ' . .SELECT PRIMARY
.USE INVENTRY . use the inventory
e . JOIN TO ANNOTATE FOR PART:HO=S.PART:NO; file £to add names
.DISPLAY STRUCTURE FIELD CUSTOMER,ITEM,AMOUNT,COST to the orders

STRUCTURE FOR FILE: INVENTRY .DBF

NUMBER OF RECORDS: 00008 . . USE ANNOTATE
DATE OF LAST UPDATE: 00/00/00 | :
PRIMARY USE DATABASE ‘ . DISPLAY STRUCTURE
FLD NAME TYPE WIDTH DEC STRUCTURE FOR FILE: ANNOTATE.DBF
001 ITEM C 020 - NUMBER OF RECORDS: 00008
002 COST N 010 . 002 DATE OF LAST UPDATE: 00/00/00
003 PART:NO C 005 PRIMARY USE DATABASE _
004 ON:HAND N 005 FLD NAME TYPE WIDTH DEC
#¥ TOTAL ## 00041 001 * CUSTOMER C 020
! 002 ITEM C 020
« LIST 003 AMOUNT N 005
00001 TIME STITCH 9.99 24776 1 004 COST N 010 002
00002 WIDGET - 1.67 31415 18 #% TOTAL ## 00056
00003 GADGET, LARGE 10.33 92653 7 - '
00004 TANK, SHERMAN 134999.00 89793 3 -y LIST .
00005 SINK, KITCHEN 34.72 21828 77 00001 SWARTZ, JOE WIDGET 13 1.67
00006 THOMBONES 198.37 76767 76 00002 MACK, JAY ' WIDGET 3 1.67
00007 RINGS, GOLDEN 200.00 70296 5 00003 ADAMS, JEAN TANK, SHERMAN 12 134999.00
00008 #9 COAL 22.00 11528 16 00004 JUAN, DON SINK, KITCHEN 5 . 34.7e
00005 SWARTZ, JOE TROMBONES 13 198.37
. SELECT SECONDARY : 00006 _TERRY, Hnnsi_ TROMBONES 5 . 198.37
_ 00007 SALT, CLARA - RINGS, GOLDEN "9 200.00
. USE ORDERS 00008 HARRIS, ARNOLD #9 COAL 4y 22.00
. DISPLAY STRUCTURE _ . USE INVENTRY
STRUCTURE FOR FILE: ORDERS.DBF - :
NUMBER OF RECORDS: 00008 {join customer names with part numbers Hitl:l insufficent
DATE OF LAST UPDATE: 00/00Ds00 inventory to satisfy orders so that the customers can be
PRIMARY USE DATABASE notified, for instance)
FLD NAME TYPE WIDTH DEC -
001 CUSTOMER c 020 . JOIN TO BAGKORDR FOR PART:NO=S.PART:NO.AND.ON:HAND<AMOUNT;
002 PART:NO c 005 FIELD CUSTOMER, ITEM
003 AMOUNT N 005 . | X
#% TOTAL ## - 00031 . USE BACEORDR
. LIST _ . LIST) .
00001 SWARTZ, JOE 31415 13 00001 ADAMS, JEAN TANK, SHERMAN
00002 SWARTZ, JOE 76767 13 00002 SALT, CLARA RINGS, GOLDEN
00003 HARRIS, ARNOLD 1152€ 4y 00003 HARRIS, ARNOLD #9 COAL
00004 ADAMS, JEAN 89793 12
00005 MACK, JAY 31415 3
00006 TERRY, HANS 76767 5
00007 JUAN, DON 21828 5
9

00008 SALT, CLARA 70296

LIST
89

LIST

LIST is the same as DISPLAY, except the scope defaults to ALL
records and WAIT does not wait for a go-ahead after 15 record
groups. Notice however that LIST STRUCTURE, LIST FILES and LIST
'MEMORY commands work 2xactly as the DISPLAY command.-

90 LOCATE

LOCATE

LOCATE i(<scope>] [FOR <exp>]
{CONTINUE]

This command causes a search of database records in the USE file
for the first record whose data fields allow the expression <exp>
to be TRUE. When the expression is satisfied, the following

/message is displayed:

RECORD n

The CONTINUE command may be used to continue the search. Other
dBASE commands may be issued between the LOCATE and the CONTINUE.
This does, however, limit the number of the characters in the
FOR <exp> to 128 instedd of 254. See CONTINUE.

If the expression ¢annot be found, the message END OF FILE is
displayed, and the database is left positioned at the last record
in the file. If the NEXT clause (see scope, section 9.1) is used
in this command and the expression cannot be found within the
scope of the NEXT, the message END OF LOCATE is displayed, and
the database is left positioned at the last record scanned.

Note: a LOCATE will work faster on a file that is USEd without
an INDEX file.

Examples:

. USE SHOPLIST

. LIST |

00001 BEANS #303 CAN 5 0.69
00002 BREAD LOAVES 2 0.89
00003 T-BONE STEAKS 4 3.59
00004 PAPER PLATES 1 0.79
00005 PLASTIC FORKS 5 0.39
00006 LETTUCE ~ 2 0. 49
00007 BLEU CHEESE 1 1.79
00008 MILK (1/2 GAL) 2 1.19
00009 CHARCOAL, 5# BAGS 2 0.69

. LOCATE FOR COST>.T0
RECORD: 00002

« CONTINUE
RECORD: 00003

-nmm b

T-BONE STEAKS '

. CONTINUE
CORD: 00004

. CONTINUE
RECORD: 00007

. CONTINUE
RECORD: 00008

. CONTINUE
END OF FILE

91

LOCATE

92 LOOP

LOOP

- LOOP

This command is used within the body of a DO WHILE to skip the
commands following the LOOP, and.still allow the reappraisal and
possible reexecution of the body of the DO WHILE. LOOP is used to
shorten DO WHILE loops which, if large, can be time consuming or
may contain commands which are to be skipped at times. LOOP acts
much as an ENDDO command, it will backup to the DO WHILE that
matches it in nesting depth.

Use of loops in a DO WHILE is not a good programming practice and
should be avoided. .The following example was done a second time,
the second folleows the first, without use of the LOOP capability.

Example:
STORE 1 TO INDEX

DO WHILE INDEX<10
' STORE INDEX+1 TO INDEX

IF ITEM=' ’ Anytime that ITEM is equal to.blanks
- SKIP then skip to the next record
LOOP and go back to the DO WHILE
ENDIF
DO PROCESS
ENDDO

Example 2:

" STORE 1 TO INDEX

DO WHILE INDEX < 10
STORE.INDEX + 1 TO INDEX
IF ITEM = ' L

SKIP
ELSE
DO PROCESS
ENDIF
ENDDO

93 MODIFY

MODIFY

a. MODIFY STRUCTURE
b. MODIFY COMMAND [<command file)]

~ Form 2. of this‘command allows the user to modify the structure
of a.dBASE file. Any changes are permitted. Fields can be added,
deleted, or have their parameters (e.g. name, type, length,
number of decimals) changed.

MODIFY acts upon the database currently in USE. The existing
structure is displayed on the screen, changes are made directly
on the screen in the same way as full-screen editing is done with
two exceptions: CTL-N inserts a blank line wherever the cursor
1s, CTL-T deletes the 1line that the cursor is on. The other
control keys behave as described in section 9. -

NOTE: the MODIFY STRUCTURE command deletes ALL data records that
- were in the USE file prior to the MODIFY. In order to modify a
structure and keep its data, first COPY the structure to a work
file, USE the work file, make the modifications, and finally
APPEND the old data to the work file. The original database and
the work file may be RENAME'd if it is necessary to restore their
original names. See the example below.

Form b. of this command allows minor full-screen editing of
command files (or anything else). if the <command file> is
- omitted then the user is prompted for it. If the file doesn't
exist, it is created. After a command. file has been edited,
MODIFY COMMAND will rename type of the old copy to .BAK and save
the new copy with the type .CMD. |

When in MODIFY COMMAND, the CTL-N and CTL-T editing functions
work as described in a previous -paragraph. CTL-Q will abort all

changes to the command file, CP-W will write the changes back to

the disk and to the rename that was described above.

There are some significant restrictions to this form of the
command: 1) lines can only be 77 or fewer characters long
(including the carriage return/line feed pair); 2) TAB characters
are converted to single spaces; 3) the cursor can only be backed
up in a file about 4009 by-es; 4) there is no search or block
move capability as are in some text editors-

94 MODIFY

Full-screen cursor ‘controls are the same for MODIFY COMMAND
EXCEPT for the following commands: |

ctl-N - 1inserts a blank line wherever the cursor is;

ctl-T - deletes the line the cursor is on and moves up the
lower lines; -

ctl-W = writes the changes made to the file back on the disk
and exits MODIFY COMMAND (ctl-o for SuperBrain);

ctl-Q - aborts any changes made to the command file;
ctl-R =~ scrolls one line down; and
ctl-C - scrolls one page up.

Examp;a:

- NOTE -- AN EXAMPLE OF B0W TO MODIFY A STRUCTURE WITHOUT
m LOSING THE INFORMATION IN THE FILE

. USE INVNTRY
. COPY TO WORK
. USE WORK

_+ MODIFY STRUCTURE
. APPEND FROM INVNTRY
. DELETE FILE INVNTRY .
. USE

- RENAME WORK TO INVNTRY

95 NOTE

NOTE

e

a. NOTE any characters
b. ¥ any characters

This cummand allows comments to be placed into a cnmmand file.

Unlike the REMARK command, the content of this cnmmand is not
echoed onto the output device.

Example:
NOTE - last modification : 4 july 1976

.. last madificatinn_apelled doom's day

96 PACK

PACK

PACK

This command purges all records marked for deletion by the DELETE
command. Once the PACK command has been issued, nothing can bring
back deleted records.

If the file being PACKed 1s indexed, and the indexed file is in
use, then- the PACK will adjust €he index file at the same time it

- ad justs the USE file. For large indexed files, doing a PACK on

the file without the index and then reindexing is faster.

If the database is indexed by more that one index file, then the
other index files must be.reINDEXed on those keys since the PACK
will (in all probability) have moved records around. |

An alternate method to the PACK 1s to COPY the old file to a new
file. DELETEd records will not be copied. Then the old file may
be deleted (or saved as a back-up) and the new file renamed.

Examples:

. USE B:SHOPSAVE

. LIST)

00001 BEANS 5 0.75
00002 BREAD LOAVES 2 0.97
00003 T-BONE . k 3.94
00004 PAPER PLATES 1 0.86
00005 PLASTIC FORKS 5 0.42
00006 LETTUCE 2 0.53
00007 BLEU CHEESE 1 1.96
00008 MILK 2 1.30
00009 CHARCOAL 2 0.75
. DELETE RECORD 8

00001 DELETION(S)

. LIST

00001 BEANS 5 0.75
00002 BREAD LOAVES 2 0.97
00003 T-BONE 4 3.94
00004 PAPER PLATES 1 0.86
00005 PRASTIC FORKS 5 0.42
00006 LETTUCE 2 0.53
00007 BLEU CHEESE 1 1.96
00008 *MILK 2 1.30
00009 CHARCOAL 2 0.75

. PACK
PACK COMPLETE, 00008 RECORDS COPIED

97 PACK

. LIST

00001 BEANS 5 0.75
00002 BREAD LOAVES 2 0.97
00003 T-BONE y 3.94
00004 PAPER PLATES 1 0.86
00005 PLASTIC FORKS 5 0.42
00006 LETTUCE 2 0.53
00007 BLEU CHEESE 1 1.96
00008 CHARCOAL 2" 0.75

A PACK need not always be done, for example, suppose some records
must be deleted but it is necessary for them to remain in the
database. These records will not be COPY'd, APPENDed, or SORTed;
they will however be COUNTed. It becomes important to know
wether or not the record being processed is deleted or not. The
following example is a partial command file that would skip over
a record that has been deleted and continue processing with ‘the

. next record. :

DO WHILE .NOT. EOF
LOCATE FOR NATURE = "TLM"
IF .NOT. ®
aonuidh
ENDIF
CONTINUE
ENDDO -

98 QUIT

QUIT

QUIT [TO <com file list>]

This command closes all database files, command fileﬁ, and
alternate files and returns control to the operating system. The
message ¥#% END RUN dBASE %#% js displayed.: :

If the TO phrase is included, then all the.programs in the <{com
file list> will be executed imn sequence by CP/M. This feature
lets you to go out of dBASE and chain to other pieces of

software.

There is . no limit to the number of programs or CP/M commands
which can be executed as long as the 254 character limit for any
command is not broken. dBASE be reentered an the end of the
string of commands. However, it is not required; CP/M will be
given control when the string of commands are all finished

. executing. .

Example:
QUIT TO °'DIR B:',"PIP PRN:=ALTERNAT.TXT', 'DBASE CMDFILE®

In this example, dBASE is exited, a directory of the B-drive is
done, PIP is then called to copy a file to the print device, and

.dBASE is reentered with a command file (CMDFILE.CMD) taking
control immediately. | -

99 READ

READ

READ

This command enters the full-screen mode for editing and/or data
entry of variables identified for and displayed by an "@" command
Wwith a GET phrase. The cursor can be moved to any of the GET
variables. Changes made to those variables on the screen are
entered into the appropiate database fields or memory variables.

If the SET FORMAT TO <format file) command has been issued, then
READ will cause all ‘of the "@" commands in the format fila’tu be
éxecuted, thus formatting the screen, allowing editing of all GET
variables. Notice that this technique is a taillorable substitute
for the EDIT command when in the interactive mode. '

When in the SET FORMAT TO SCREEN mode, an ERASE command is used
En ;1ear the scree.d. A series of' "€" commands may then be 1ssued
© format the screen. Then a READ command would 1

would allow editing. e

1f a second or later series of "g" commands is is

READ command, then READ will place the cursor on t;:egi::tegﬂ;
variable following the last READ. In this way, the screen format
and the specific variables edited can be based on decisions made
by the user in response to prior HEAD commands.

Variables to be used with the "@" commands and

. edited using the
READ command must be either in the USE file as field némfa or
must be character string memory variables. Hhmur}'yariables must
be predefined before the "@" command is. issued. If necessary |
atur;e baf. m:ny blanks as you want the maximum length of the mnnor;'
variable Lo be in order to initialize t.h'a'namu'r va '
STORE ' to MEMVAR). o PR

S_ee section 8 for cursor control and data entry 1nat.buctiuna.
The SET SCREEN ON command must be in effect (this is the default

condition if full-screen operations were -
was installed). ﬂﬂab}Ed when dBASE TI

100 READ

Example:

STORE ' ' TO PTYPE

STORE ' ' TO ACCT

ERASE)

@ 5,0 SAY 'Enter a C for cash payment'

@ 6,0 SAY ! or a D for deferred payment'
@ 8,10 GET PTYPE

READ .

IF PTYPE='D' ; E
@ 10,10 SAY 'Enter acct no.' GET ACCT PICTURE '999-99-9999°'
READ

ENDIF

In this command file fragment, the screen is cleared and the
first two "é" commands are put up. The cursor will be between :two
colons that mark the screen location of the variable PTYPE. Since
the first STORE set the size of PTYPE at 1 character, any entry
by the user will fill PTYPE and exit the first READ command.

If a "D" was entered by the dBASE operator, then the "€" command
that asks for an account number will be done. Notice that ACCT
was defined long enough in the STORE to include the two dashes

that the PICTURE phrase in the "@€" will enter -

USE CHECKS

SET FORMAT TO SCREEN
ACCEPT "Option" TO CHOICE
IF CHOICE$'Aa'

ERASE
DO WHILE NUMBER # O

APPEND BLANK ' 3
€ 5,0 SAY "Enter next Number" ;

GET NUMBER PICTURE '999%9°
€ 6,0 SAY "Enter Recipient";

GET RECIPIENT PICTURE '"XXXXXXXXXXXXXXXXXXXXXXXXX®

@ 7,0 SAY "Enter Amount";
GET AMOUNT PICTURE '9999999999'
@ 8,5 SAY "Is it back yet?" ;
GET HOME
& 8,30 SAY "Are you paying out?";
GET OUTGOING
READ
ENDDO
ENDIF

In the last example, a file was used and altered directly, the
cholce being left up to the operator on whether or not to add new

records to the database in question.

101 READ 102 RECALL

Refer to thq ngn» unmnnhd for more details. - RECALL

N man SRR s omm

RECALL (<scope>] [FOR <exp>]

This command removes the mark-for-deletion from the recurda-tnnt'
were marked by the DELETE command.

- Examples:

. USE DUPE3

« LIST -

00001 NEUMAN, ALFRED E. ~ 1357
00002 RODGERS, ROY 2468
00003 CASSIDY, BUTCH 3344
00004 CHANG, LEE 6TU3
00005 POST, WILEY 1011

00006 LANCASTER, WILLIAM J 6623
-« 3

. DELRTE NEXT 3
00003 DELETION(S)

. LIST

00001 NEUMAN, ALFRED E. 1357
00002 RODGERS, ROY 2468
00003 *CASSIDY, BUTCH 3344
00004 ®CHANG, LEE 6743
00005 *POST, WILEY 1011

00006 LANCASTER, WILLIAM J 6623

. RECALL RECORD 4
00001 RECALL(S)

. LIST
00001 NEUMAN, ALFRED E. 1357
00002 RODGERS, ROY 2468
00003 *CASSIDY, BUTCH 3344
00004 CHANG, LEE 6T43
00005 *POST, WILEY 1011

00006 LANCASTER, WILLIAM J 6623

- RECALL ALL
00002 RECALL(S)

00001
00002
00003
00004
00005
00006

NEUMAN, ALFRED E.
RODGERS, ROY
CASSIDY, BUTCH
CHANG, LEE

POST, WILEY

103

1357
2468
3344
6743
1011

LANCASTER, WILLIAM J 6623

RECALL

104

(This page is left intentionally blank)

105 106 RELEASE

RELEASE

RELEASE [<memvar list>]
[ALL]

This command releases all or selected memory variables and makes
the space that they consumed available for new memory variables.
If ALL 1s 'specified, then all memory variables will be deleted.

(This page is left intentionally -blank)

107 REMARK

'REMARK any characters.

This command allows the display of any characters. The contents
of this command are Gisplayed on the output device when this
command is encountered. | '

Examples:

.- REMARK S®8288 REMARK TEST Se88ssss
BRR888 REMARK TEST “etnnass

108 RENAME

RENAME <original file name> TO <new file name>

This command allows the changeing of the name of a file in the
CP/M directory. If no file type (the up to 3 characters following
a file name) is given then dBASE assumes that a database's name

is being used and assigns the type .DBF to the named files. See
section U4 for more detail concerning dBASE use of fille types.

Example:
. RENAME INVENMAC TO INVENOLD
. RENAME D:REPORT.FRM TO REPORT.BAK

'« RENAME TYPELESS. TO TYPED.TYP

109 REPLACE

REPLACE

P p—.

REPLACE (<scope>] <field> WITH <exp> i - .
: P> [,<field2>
[FOR <exp>; ’ WITH <exp2>] ,etc

gfia command is used to replace the.contents of specified data
elds of the file in USE with some new data. This command is
contrasted with the STORE command in that REPLACE changes only

field variables, wh:
Yaristtas. ’ ile the STDEE command changes only memory

If <scope> 1is not supplied in the co
m
on the ourrent record. mand then REPLACE acts only

If a REPLACE is done on an index key and the ind

then the index file will be ad justed by deleting ::eii:l;ni::f::

::;ry and re-entering the new entry in its proper place. Un-USEd
ex files will net be affected. When a REPLACE is done on an

index key, the altered record will "shift Places” in the il

the new "next record" will not be the same as the old.“na:é

record". The ke h
Wiy ¥ should not be REPLACEd with a NEXT n as the

Examples:
'« USE SHOPLIST

- NOTE INFLATION CAUSES 10§ PRICE INCREASE

. LIST

00001 BEANS #303 CAN
00002 BREAD LOAVES
00003 T-BONE STEAKS
00004 PAPER PLATES
00005 PLASTIC FORKS
00006 LETTUCE

00007 BLEU CHEESE
00008 MILK (1/2 GAL)
00009 CHARCOAL, 5¢# BAG.

OO0 oDwoo

- L] - ™ ™ .

£ W =g W
‘“*ﬂ‘ﬂtﬂin\n\néﬁda

0 =t -
. w»

" = =9

- REPLACE ALL COST WITH COST®1.1
00009 REPLACEMENT(S).

LIST

00001
00002
00003
00004
00005
00006
.00007
00008

- 00009

BEANS #303 CAN
BREAD LOAVES
T-BONE STEAKS
PAPER PLATES

"PLASTIC FORKS

LETTUCE
BLEU - CHEESE

MILK (1/2 GAL)
CHARCOAL, 5# BAGS

. USE BSSBﬁPLIST

. COPY TO B:SHOPWORK
00009 RECORDS COPIED

» LIST

00001
00002
00003
00004
00005
00006
00007

00008 .

00009

BEANS

BREAD LOAVES
T-BONE

PAPER PLATES
PLASTIC FORKS
LETTUCE

BLEU CHEESE
MILK

CHARCOAL

. GOTO TOP

. REPLACE NEXT 5 COST WITH COST®*1.1 FOR

00003 RE?LACEHEHT(S)

LIST -

00001

00002
00003
00004
00005
00006
00007
00008

00009

BEANS .
BREAD LOAVES
T-BONE

PAPER PLATES
PLASTIC FORKS
LETTUCE

BLEU CHEESE
MILK

CHARCOAL

. USE CHECKS

"« DISP STRU

110

RNNN=NVT =MW, K N=2MNWN ==

NN =N = &N

O = 000WOOo

L] - - - L] L] -

C = =2 0D00WO0ODD0D
. 8 &8 8 ® ® ®B @

~NWOWn&KFoww—
UVMoohwMNoO\ E~a W

COST>.75

0.75
1.06

uI33

0.94

0.42
0.53
1.96
1.30
0.75

=] W U &£ oW W=l
VMOoOOhwhhoy 2=~ N

REPLACE

STRUCTURE FOR FILE: CHECKS.DBF
NUMBER OF RECORDS: 00016

DATE OF LAST UPDATE: 10/18/81
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH

001 NUMEER N 005

002 RECIPIENT C 020

003 AMOUNT N 010

004 HOME L 001

005 OUTGCING L 001

#% TOTAL %@ 00038
* « LIST

00001 1 Phone Company

00002 . 2 Gas Company

00003 3 Electricity

00004 4 Grocery Store

00005 134 Me, salary

00006 6 Bank (sc)

00007 7 Doctor Doolittle

00008 8 Pirates |

00009 9 Car Repair Man-

00010 10 Me

00011 11 Tuperware

00012 12 Me

00013 13 Me

00014 234 Peter Rabbit

00015 237 Goélden Goose

00016 30 Me

« 11

. REPLACE HOME WITH, F
00001 REPLACEMENT(S)

« DISPLAY
00011 11 Tuperware

) &

DEC

002

104. 89
4.15
250,30
1034.45
561.77
4.00
100.00
100.00
500.01
561.77
50.02
561.77
750.03
14.00
650.00
561,77

oFe
.F.
.F.
.F.
«Te
.T.
«T.
S
F.
B
o
«T.
«Te
.F.
Fo
.T.

-Fl

IT.
.T.
QT-
.T.
'.Fl
-Ts
'Tl
.T.
.T.
.F.
.T.
.F.
.F.
.T.
oT.
.F.

'-T'I

REPLACE

112 REPORT

REPORT

REPORT LFORM <form file>] [<scope>] [TO PRINT] (PLAIN]

REPORT is used to prepare reports (either on the screen or on
paper) by displaying data from the file in USE in a defined
manner. . Reports may have titled columns, totaled numeric fields,
and displayed expressions involving data flelds, memory

variables, and constants.

The FOR phrase allows only that information which meats the
conditions of the <exp> to be reported; thie TO PRINT phrase sends
the report to the printer as well as the screen; and the <{scope>
of the report defaults to ALL unless otherwise specified.

.The first time the REPORT command is used (for a new report) a

FORM file is built. dBASE prompts the user for specifications of
the report format and automatically generates the FORM file.
Subsequent reports can use the FORM file to avoid respecification
of the report format. If the FORM phrase of the command is

omitted the user will be prompted for the name of the form file.

' The following example of a form file has almost all the options

specified. The user may control the number of spaces to indent
the lines in the body of the report with the 'M' option (default
is 8 spaces); the number of lines per page is changed with the
'L' option (default is 57 linea], and the location of the page
heading 1s controlled with the 'W' option (the page width,
default is 80 characters) since it is only used for centering the

page heading.

. REPORT FORM SEDPFQEH
ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH H:S,H:ES

PAGE HEADING? (Y/N) Y
ENTER PAGE HEADING: Shopping List for Plcnic

DOUBLE SPACE REPORT? (Y/N) N
ARE TOTALS REQUIRED? (I/N) X
SUBTOTALS IN REPORT? (Y/N) N
COL WIDTH,CONTENTS

001 23, ITEM»'..."
ENTER HEADING: Itemj;====
002 10, HU

ARE TQTALS REQUIRED? tTKH}

003 10,C0OST

ENTER HEADING: >Cost/lItem;=========
ARE TOTALS REQUIRED? (Y/N) N

004 10, NO®COST :

ENTER HEADING: >COST;====

ARE TOTALS REQUIRED? (YI/N) Y

005 (er)

113 REPORT

REPORT asks for the width of the field to be Printed and the
contents of the field. The width asked for here nas no
relationship to the actual width of the field to be printed out,
for instance, in the first column above, ITEM is in a column that
13 23 characters wide, in the data base ITEM is actually only 20
Ccharacters vide. One should also note that the string '..." is
being concatenated to tﬁu contents of the f{ield ITEM. This
accounts for the extra 3 characters in the report. This also
means that if the report column 1s less in length than the field
that should go into it, dBASE will wrap the field to fit. An 30

character field would ‘Tenerate 2 lines if it were Put into a 50
character column. :

The contents of the columns may be fields from a database, a
memory variable, literals, or expressions. Note that in column 1
in the form on the previous page, there is a concatenated string.
Each record in the database in use #1ll nave only as far as the
report is concerned (the database will remain.unchangadJ three
periods concatenated to the end of the string. Column 4 contains
the product of NO and COST. Column 4 nas no field equivalent to

1t in the database. (The fields are, left to right, named ITEM,
NO, and COST)

« LIST

00001 BEANS

00002 BREAD LOAVES
00003 T-BONE 4.33
00004 PAPER PLATES - 0.94

5 0.75
2
i
1
00005 PLASTIC FORKS 5 0.42
5
1
2
2

1.00

00006 LETTUCE 0.53
00007 BLEU CHEESE 1.96
00008 MILX ' 1.30
00009 CHARCOAL 0.75

Returning to the FORM file (the questions on what snould zo into
the report), note that there are some special characters used :in
the headings. for page headings, column headings, and character
strings, a semicolon (;) will break the heading or string at the
semicolon and resume the display on the next line. If a heading
o~ string is too long to fit within the number of 3paces allowed
for it, it will be broken at the last blank (if possibdle) and
resumed on the next line. The other signifigzant characters are
fi¢", and ">", In column headings, if the Citle is preceeded with
a "<" then the title will 0e lefte-justified in the ecolumn.
Likewise a ™" will right-justify the titla.

Other optiocns in REPORT include totalling, ;ubtntdlling, and
summary reports. In summary reports, detail records are not
displayed, just totals and subtotals. Totalling and sSubtotalling

1s done only on fields that are numeric in nature. See the report
examples.

Finally a carriage return will end the report form and begin
displaying the report. A copy will be printed on the priater if
ciie TO PRINT shrase was included in the initial command .

114 REPORT

I I he

dBASE commands that effect the operation of r;;p:.n:;tn :;:n:'l -
g ST QFF", "SET HEADING TO" and "SET DATE e
. EJ:EPORT pr:int.a out its information, it .dau‘rlcg‘snuunmd.
e gt bility may be suppressed with the SET EJEC i
i i ADING TO command allows an additional hea fract ke
by HEh report at run time. This command has an &chutimu 3
. tof :of'inu session. (The heading must be set ;EaT ﬁATE o
e dura;Eurunbia initiated.) The same is for the Pidiaghin
gimlnn The date of the report may be changed or umitt.iu:n _
c?m::f: .cdm:and See the SET command for more informa .
o " .

' longer adequate,

this capability is no .

e more flexabilifly is desired :itz?i::;

t format, retrieving the data from the dltiiaﬂ;h: "qE" rht:

::r;;rcﬂﬂﬂl’x methods than REPGAT :.ﬁl ?izdt}:; :u:: more power

RINT commands W P .

the SEFHEOI:-!;:: T:fpthée report. See the "8" command for more

over .

information and examples.

There comes a time,
special forms must De used,

cxamples:
4 nSE SHOPLIST

. REPORT FORM SHBOPFORM

PAGE NO. 00001
Shopping List for Picnic

' Number Cost/ltem COST
It!m EEEE=S EESSEISEE= ===
EE==
' 5 0.75 3.75
<o | ':: 2 1.06 z.li
BREAD LOAVES . : e 15‘;u
T-BONE s s :
PAPER PLATES ces ;_ i agie
PLASEéE FORKS s . o :.g:
Lm ks -1 1‘96 i L]
BLEU CHEESE cee . g4 ?.;g
MILK - asa : D-Ts ;
CHARCOAL s 2 | | -
o D 24 33.35

115

- SET HEADING TO 4 July 1976

. REPORT FORM SHOPFORM

Exampl

This example shows use of the subtotalling capabilities of dBASE.
When the report form is created the subtotalling is done on the
field PART:NO. This could be done if it was necessary to know
not only who the part was ordered by but also aow mah

PAGE NO. 00001

Item
====

BEANS

BREAD LOAVES
T-BONE

PAPER PLATES
PLASTIC FORKS
LETTUCE

BLEU CHEESE
MILK

CHARCOAL

% TOTAL **

e 2:

4 July 1976

Shopping List for

" e

part must be made (or bought).

. USE ORDERS INDEX URDERS

LIST

00003
00013
00007
00001
00005
00009
00008
00002
00006
QC010
00004
00011
00012

HARRIS, ARNOLD
ANDERSON, JAMES REGI

JUAN, DON
SWARTZ, JOE
MACK, JAY
BARNETT, WALT
SALT, CLARA
SWARTZ, JOE
TERRY, HANS
NICHOLS, BILL
ADAMS, JEAN
MURRAY, CAROL

WARD, CHARLES A.

11528
11528
21828

31415

31415

31415

70296
To767
76767
76707
89793
89793
92653

Number
H—+ 4

R L L i (S

%]
=

ol __.,:-
w o

—

— et
Wi &0 =3 WUw O o

P

Pienic

Cost/Item

0.75
1.06
4.33
0.94
0.42
0.53
1.96
1.30
0.75

REPORT

2.2

17.32

0.94
2.10
1.06
1.36
2.00
1.50

33.35

y of 2acgh

116 REPORT

. REPORT
ENTER REFORT FORM NAME: ORDERS

_ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, WsPAGE WIDTH W=65

PAGE HEADING? (Y/N) Y |
ENTER PAGE HEADING: ORDERS LISTED BY PART NUMBER

DOUBLE SPACE REPORT? (YI/N) N
ARE TOTALS REQUIRED? (Y/N) X

SUBTOTALS IN REPORT? (Y/N) I

ENTER SUBTOTALS FIELD: PART:NO

SUMMARY REPORT ONLY? (Y/N) N

EJECT PAGE AFTER SUBTOTALS? (Y/N) N

ENTER SUBTOTAL HEADING: Orders for part number
COL WIDTH,CONTENTS

001 . 20,CUSTOMER

ENTER HEADING: <CUSTOMER NAME

002 10, AMOUNT
ENTER HEADING: >QUANTITY ORDERED

ARE TOTALS REQUIRED? (YI/N) X
003

PAGE NO. 00001
ORDERS LISTED BY PART NUMBER

CUSTOMER NAME QUANTITY
ORDERED
Qrders Tor part numoer 1152§
HARRIS, ARNOLD 4l
ANDERSON, JAMES REGI 16

#% SUBTOTAL **
60

% Orders for part number 21828

JUAN, DON 5
SUBTOTAL **]
2

Orders for part number 31415

SWARTZ, JOE 13
MACK, JAY 3
BARNETT, WALT 8

#* SUBTOTAL *®
22

117
- REPORT

¥ Orders for part nuubﬁr-

0
SALT, CLARA . : 2959
%% SUBTOTAL ##

F)

% Orders for part nuamb TR
SWARTZ, JOE - 757513
NICHOLS, BILL 17
%% SUBTOTAL #=

35
* Orders for part numbe

: r 897

ADAMS, JEAN 9? s
MURRAY, CAROL - ; y
*# SUBTOTAL *#-

16

* Orders for part numbe :
. r 926
WARD, CHARLES A. sfs
% SUBTOTAL ##

15
% TOTAL ##)

for points to see who w
ould buy 1
- : Y lunch for ave - .
ru:;ﬁ;?tui:lthu interest or Fair Play, you ;iiiﬁ;HLSHE o s
o n‘r Lo datf:a the score. All sorts of information could b?pd "
ase (like who could logse his shirt if Hu. didnﬁ

De careful). The follow ¢
- ing database could be an example of sucn a

. DISP STRU

STRUCTURE FOR FILE: CARDS.DR
NUMBER OF RECORDS: 00015
DATE OF LAST UPDATE: 09/17/81
PRIMARY USE DATABASE

FLD NAHE TYPE WIDTH DEC
001 DATE c o008
002 LISA N 003
004 WAYNE N 003

"% TOTAL we 00015

ENTER REPORT FORM NAME: CARDS
ENTER OPTIONS, M=LEFT MARGIN, L=L

118 REPORT

. REPORT
INES/PAGE, W=PAGE WIDTH W=H40

PAGE HEADING? (I/N) T
ENTER PAGE HEADING: Hearts Scores

DOUBLE SPACE REPORT? (Y/N) N
ARE TOTALS REQUIRED? (Y/N) X
SUBTOTALS IN REPORT? (YI/N) N
COL WIDTH,CONTENTS
Q01 10,DATE
ENTER HEADING: Date of ;Game
002 6,LISA
ENTER HEADING: Score;Lisa
ARE TOTALS REQUIRED? (Y/N) Y
003 6,ANNA
ENTER HEADING: ScorejAnna
ARE TOTALS REQUIRED? (Y/N) I
004 = 6,WAYNE :
ENTER HEADING: Score;Wayne
ARE TOTALS REQUIRED? (Y¥/N) X
005 5,LISA+ANNA+WAINE
ENTER HEADING: Game;Total
ARE TOTALS REQUIRED? (I/N) I
006 (er)

(Note==the last column in the report form is a totalling of the
scores in each of the records, that is, the sum of Lisa's,
Wayne's and Anna's ‘scores. It is not necessary for the column in-
the report to exist in the database before it may be used, the
field "LISA+ANNA+WAYNE" does not exist in the database "CARDS".
This wouid be an example of how an expression aay be niaced in

a report.)

120 REPORT
L3 - REPORT

- ; n
PAGE NO. 00001 . A report may also ask for. information which would meef certal
- eriteria. Like:

Hearts Scores
REPORT FORM CARDS FOR WAYNE < 50

‘Date of Score Score Score Game

Game Lisa Anna Wayne Total | o GGG
| PAGE NO.

05/26/81 29 75 53 157
05f27fg1 45 48 63 156 Hearts Scores
05/28/81 - 1
05/29/81 22 33 ;: }gg : Date of Score Score Score Game
06/05/81 43 12 75 130 Game Lisa Anna Wayne Total
06/12/81 U2 9 27 78 | _ | i
06/26/81 84 35 b3 1842 06/12/81 42 9 27
07/06/81 33 T1 26 130 07/06/81 33 TE 26 133
03/19/81 37 55 38 130 07/07/81 40 63 27 13
C9/ 19/ 9 57T sk 130 07/23/81 38 69 23 130
*#% TOTAL #= : 130 267 . 1M1 598

715 598 875 2288

| REPORT FORM NEXT WHILE CUSTOMER >="M"
A report may also cover Just a few orf the recérda in a file.

Like:
PAGE NO. Q0001
12/13/81
. GOTO RECORD 7
- REPORT NEXT 4 FORM CARDS
CUSTOMER PART AMOUNT
PAGE NO. 00001 | - 11s ﬁ
MURRAY, CAROL 89793
rearts Scores NICHOLS, BILL T&Tnz 12
| | ' SALT, CLARA 70295 :
Date of Score Score Score Game ST, JOK 31415 3
Game Lisa Anna Wayne Total ; Sang, o | r7§757 1§
: TERRY, HANS 76767 5
07/08/8: s i a s - WARD, CHARLES A. 92653 15
07/09/81 55 41 60 156 | |
07/13/81 0 53 3 - 157
07/23/81 38 69 23 130
¥ TOTAL ## : -

173 236 164 573

120-1 REPORT

PLAIN is an extension of the command REPORT. This allows for a

dBASE report to be created in such a mann R
_ er that it may b
inserted into a report generated by a wordprocessor. - * v o

:hehélauaperAIN Causes page numbers and the date atl
ach page in the report to be suppressed Page headin

_ _ . g3 are
inserted into the dBASE report only at the beginning ir the

report. If it is desired to suppress the page -
ge ejects bet: '
reports then the SET EJECT OFF must still be uaad:j “een

the top of

Examples:
- USE TRACE INDEX DOC

. :g:ﬂ POSITION THE DATABASE AT THE FIRST 'RECORD FOR THE REPORT

- REPORT FOEM TABLES PLAIN HHILE DOC -'i3-280-r'

~ PAGE HEADING? (Y/N) Y ' y W=PAGE WIDTH

ENTER PAGE HEADING: TABLES
DOUBLE SPACE RZPORT? (Y/N) W
ARE TOTALS REQUIRED? (Y/N) N
COL WIDTH,CONTENTS

001 20,$(DOC, 7, 17)
ENTER HEADING: TABLE

002 40,DESCR

ENTER HEANING: REQUIREMENT
003 (er)

Table
Table

Table
Table
Table
Table
Table

Table .

Table
Table

Table

Table
Table

TABLE

ErdJounFwin N =
-
L
.
)V]

N —

[\ 8]
N

A2.2.3

A2.2.H4
A2.2.8

120-2 REPORT

" TABLES
REQUIREMENT

GLL Telemetry Modes
Allowable combinations of R/T and Record
Formats ' '
Bus User Codes

GLL Bit rate allocation

Header Format

Format Identification

Commutation Map Identifier Asslgnment

' 8/C Clock Progression

Eng data layout
Fixed-Area Structure/Positicn

Identifiers

Variable Area Pocket Structure/Position
[dentifier

CDS Fixed area Measur=ment Sampling Time
cngr Measurements

121 RECET

RESET

L L1

RESET

The RESET command is used to reset the CP/M bit map after a
diskette has been swapped. Normally, if a diskette is swapped,
CP/M will not allow writes to take place until after a warm or
‘soft boot has taken place. RESET attempts to re-open all files
which were open prior to the swap. If a file that was open is no
longer mounted on an active disk drive, RESET closes the file
internally.

WARNING: If a disk is swapped that contains a file with the same
name as a file that was previously open, the RESET operation will
erroneously not close that file. This condition can be avoided by
closing all non-essential files pryor to the swap and subsequent
-RESET command. A USE command with no filename will close the file
in USE, a CANCEL command will close any command files that may be
open. :

Issuing a RESET command when no r._li:k swap has taken ﬁlana has no
effect.

1122 RESTORE

RESTORE

RESTORE FROM <file>

This command reads a file of memory variables. The file must be
built using the SAVE MEMORY TO <file> command. All memory
variables which ‘were defined previous to the RESTORE command are
deleted by this command.

Examples:

» DISPLAY MEMORY

ONE (N) 1.0000 .

ALFABET (C) ABCDEFGHIJKL

CHARS (C) ABCDEFGHIJKL NEW STUFF

E% TOTAL %% 03 VARIABLES USED 00042 BYTES USED

. SAVE TO MEMFILE
. RELEASE ALL

- DISPLAY MEMORY
%% TOTAL #% 00 VARIABLES USED 00000 BYTES USED

- RESTORE FROM MEMFILE

. DISPLAY MEMORY

ONE (N) 1.0000
ALFABET (C) ABCDEFGHIJKL
CHARS (C} ABCDEFGHIJKL NEW STUFF

#% TOTAL #¢ 03 VARIABLES USED 00042 BYTES USED

123 RETURN

RETURN

RETURN

This command 1is used inside a command file to return control to
the command file which called it (or to the keyboard if the user
called the command file directly). Encountering an end of file on
a command file 1s equivalent to a RETURN zommand.

Command files usually have a RETURN commana as their last
executable line. "

-See Appendix A for examples.

124 SAVE

SAVE TO <file>

This command stores all currently defined memory variables to a
file. These memory variables may be restored by the RESTORE
command .

Examples:

. DISPLAY MEMORY

ONE (N) 1.0000

ALFABET (C) ABCDEFGHIJKL

CHARS () ABCDEFGHIJKL NEW STUFF

#% TQTAL ## 03 VARIABLES USED 00042 BYTES USED

- SAVE TO MEMFILE
- RELEASE ALL

. DISPLAY MEMORY o
%% TOTAL ## - 00 VARIABLES USED 00000 BYTE USED

. RESTORE FROM MEMFILE

« DISPLAY MEMORY

ONE (N) 1.0000
‘ALFABET (C) ABCDEFGHIJKL
CHARS ' (C) ABCDEFGHIJKL NEW STUFF -

#% TOTAL %» 03 VﬁRIABLES USED 00042 BYTES USED

125 . SELECT

SELECT [PRIMARY]
[SECONDARY]

This command causes dBASE to select one of the two possible
database areas for future operations. This permits the dBASE user
to do nperations on two databases at a time, such as using the
data from one database to update the data in another database ,or
comparing the data 'in two databases, or any of a number of other

multi-database operations.

When dBASE is initiated, the PRIMARY area is active. PRIMARY
will stay active until a SELECT SECONDARY instruction 1is given.
The secondary area will then be active until a SELECT PRIMARY
command is encountered. A different database may be USE'ed in
each of the areas. This permits the (nearly) concurrent usage of
two databases at once. There is no effect if a SELECT SECONDARY
is entered when the secondary area is already selected or vice

versa with the primary area.

When both database areas have databases in USE, field variables
can be extracted from either area. That is to say, any expression
can use variables from either database region. If the field names
in both regions are the same for a desired variable, then the
variable can be prefixed with a "P." or "S." to denote which
- database 1t is to come from. '

dBASE commands that cause movement of the database (i.e. GOTO,
SKIP, REPORT, SORT, COPY, LIST, DISPLAY (for a scope of more than

one record), and others) affect only the currently selected

database. The SET LINKAGE ON command will allow all sequential
commands (those that have a <scope> parameter) perform
positioning on both the secondary and the primary databases. (See
the SET command). The REPLACE gommand will only affect variables
in the currently selected database. The DISPLAY STRUCTURE command
will display the structure of the currently seleéted database

only.

Examples:

. USE SHOPLIST

- LIST :
00001 Beans

00002 Bread loaves
00003 T-Bone steak
00004 Paper plates
00005 Plastic forks

00006 Lettuce
00007 Bleu cheese
00008 Milk

00009 Charcoal

- NOTE NOW OPEN ANOTHER DATABASE IN THE SECOMDARY AREA

« SELECT SECOMDARY

-« USE SHOPCOST

« LIST
00001 800104

. 00002 800111

00003 800118
00004 800124
00005 800201

- 00006 800209

00007 800229
. SELECT PRIMARY

. SUM COST
12.04

'« SELECT SECONDARY
- APPEND
RECORD 00008

DATE : 800303
AMOUNT : 12.04

RECORD 00009

DATE {er)

. SUM’ AMOUNT
268.38

- NOTE EITHER DATABASE'S VARIABLES CAN BE ACCESSED

USE SHOPLIST

31.38

45.69'

51.18
48.19
55.82
12.04
12.04

DISP OFF COST,AMOUNT,ITEM,DATE
0.75 12.04 Charcoal

126

NN —=OU = =W

0.75
1.06
4.33
0. gll'
0.42
0.53
1-96
1.30
0.75

800303

L}

NOTE THE SAME DATABASE CAN BE USED IN BOTH AREAS

SELECT

ONME MUST BE CAREFUL SINCE THE VARIABLE NAMES ARE IDENTICAL
BOTH D

ATABASES

127

SELECT

128 SET

SET

a. SET <parm1> [(ON]
[OFF]
b. SET <parm2> TO <opt>

This command changes the configuration of dBASE. SET has two
forms.” Form a allows those parameters that "are "toggles" to be

set on or off; form b allows those parameters that need one of

the different strings described below to have its default reset.

Fgrm a parameters and defaulta:

<parm1> action meaning
1. ECHO CN all commands which come from a command
file are echoed on the screen.
QEEI There is no echo.
2. STEP ON dBASE halts after the completion of

each command and waits for the user to
decide either to go to the next
command, quit (escape) from the command
file, or enter a command from the
keyboard. (STEP is used for debuggin
command files). -

OFF Normal operations are resumed.
3. TALK ON The results from commands are displayed
on the screen.
OFF There is no display shown.
4, PRINT ON OQutput is echoed to printer.
OFF The ecno is turned off.
5. CONSOLE ON Output is echoed to the screen.
OFF Output to the screen is turned off.

‘Note: the default values are underlined.

6. ALTERNATE ON OQutput is echoed to a disk file.

OFF The echo to the file is turned off.

T. SCREEN

8. LINKAGE

9. COLON"

10. BELL'

11. ESCAPE

12. EXACT

OFF

ON

OFF

OFF

129 , SET

Full-screen operations are turned on
for APPEND, INSERT, EDIT, and CREATE

Full-screen operations are turned off.
Makes all sequential commands (LIST,

REPORT, SUM, i. e. commands that have a
<scope> parameter) perform positioning

-on both the PRIMARY and SECONDARY
- databases.

Makes PRIMARY and SECONDARY databases
independant.

Bounds GET data itama with colons in

é commands.

Removes colons.

Bell rings whenever illegal data is
entered or data boundaries are crossed.
Bell 1s turned off.

An escape character (1B Hex) aborts
execution of command files.

" There is no escape.

Requires that character strings match
completely (except for trailing blanks)
in expressions and the FIND command.

Matches will be made on the basis of
the length of the second string, e.g.
"ABCDEF" = "ABC" is true.

13. INTENSITY

14. DEBUG

15. CARRY

16. CONFIRM

 17. EJECT

18. RAW
19. SCREEN

OFF

ON

OFF

ON

OFF

ON

OFF

OFF

ON

OFF

ON

OFF

130 SET

Full-screen operations will use dual
intensity screen characters (normal and
inverse video on some terminals)

Dual intensity will not be used.

Output from the ECHO and STEP commands
will be sent to the printer so that
full-screen commands may be checked out
without the screen becoming cluttered.

No extra output on the printer.

Data from the previous record will be
carried-over when APPENDing records in
the full-screen mode.

No carrying will be done.

dBASE will not skip to next field in
full-screen editing until a control key
(like return) is typed.

dBASE will skip to next field anytime

too many characters are entered.

REPORT command will eject a-page'befdra
beginning a new report.

The page eject will be suppressed.

Places spaces between fields when the
DISPL#I and LIST commands are used
without the fields list. :

Spaces are left off.

Usés full-screen for EDIT, APPEND,
INSERT and CREATE commands.

Turns full-screen capabilities off.

131 SET

Form b parameters and their formats:

1. SET HEADING TO <string>

This form of the SET command saves the <string> internally and
prints the string as part of the report header line. The <string>
can be up to 60 characters long. (See REPORT for an example.)

2. SET FORMAT TO [SCREEN]
LPRINT] "
((fnrmat file>]

The first two forms of this SET parameter determine where the
output of "€" commands will-go. The last form determines where g
commands are READ from. (See the "@" and READ _commands.}

3. SET DEFAULT TO <drive>

This SET commands makes the specified disk drive into the default

drive. dBASE will assume that inexplicit file names are on this
disk drive. This allows command files to be written in such a way

(conveniently) that referenced files may be on any drive in the
system. . This can also be done with &-macros for further

generality in disk drive assignment. In the interactive mode of
dBASE, this SET command permits implicit file names. '

wnen a default drive has been set, ALL inexplicit filenames are
set to the dBASE default. This includes form files, command
files, memory files, format files, index files, text files as
well as database files.

The parameter <drive> may or may not have the colon (:) attached,
that is, both "B" and "B:" are acceptable forms of specifing
which drive is wanted,

NOTE: This SET command does not affect the CP/M default drive in
any way. The dBASE initial default drive is the same as the CP/M
default drive, the SET DEFAULT redefines dBASE's internal default

only while within dBASE.

Example:
. SET DEFAULT TO B:

. USE DATEVSYR (dBASE will access the 'B' drive for
this database)

B 7. | SET

4, SET ALTERNATE TO (<file>]

This form of the SET ALTERNATE command is part of a twn_atup
process to write everything that is normally written onto the
screen, onto a disk file as well. This includes output that dBASE
generates as well as all inputs typed onto the console. This form
identiflies and opens the receiving disk file. If the <file>
existed on the disk prior to this command, it will be
overwritten. A subsequent SET ALTERNATE ON begins the echo
process.

Example:

SET ALTERNATE TO B:PRINTFLE
SET ALTERNATE ON

SET ALTERNATE TO anyfile
Everything which appears on the screen or printer will be copied

onto (in this example) B:PRINTFLE.TXT, which can be word
processed, printed, or saved.

5. SET DATE TO mm/dd/yy
The system date can be set or reset at any time with this
command. It however does not perform date/calendar validation

like the date request when dBASE is first started.

SET DATE TO 12,10,76

133 SET 134 SKIP

SKIP

6. SET INDEX TO <index file> {; ¢index file>, .;. <index filé)j
. ' SKIP ;+J[<exp>]

SET INDEX TO identifies and 'sets up as many as seven index files {=]

to be used for future operations. If an index file is currently

ifu:ff :nl:i!ihih::wng::a;iiti i;;::fd then the old index file is This command causes the current record pointer to be advanced of

. backed up relative to its current location.

Note: when the new index is set up, the database is left .Exam 4&1

positioned whers it Wwas, but, the index does not point anywhere. PLO3

A FIND command or GOTO must be issued to set the index pointer, i

before any commands that have a next clause are issued. - USE INVNTRY]

: : _ . LIST :

The first index file named is considered as the Master Index. All ' ;

FINDs use only this index and the database will be in the Master 00001 136928 13 1673 ADJ. WRENCH 7.13 189 9 0 9,98

Index order {(when skipping). 00002 221679 9 1673 SM. HAND SAW 5.17 173 - 4 1 7.98
00003 2_31}_561 0 9_5 PLASTIC ROD ' 2038 27 112 33 4.75 -

A "SET INDEX TO" command (with no index files) will release all gggg" 52“‘72 2 873 ADJ. PULLEY 22.19 117 3 0 28.50

indexes and the database will be a sequential -file. 5. 723756 73 27 ELECT.BOX 19156 354 6 1 29.66
00006 745336 1.;, 27 FUSE BLOCK 12.65 63 7 2 15.95
00007 812763 1673 GLOBE 5.88 112 5 2 T.49

7. SET MARGIN TO n 00008 3?65]2 2 873 WIRE MESH 3.18 45 7 3 4.25
00009 915332 2 1673 FILE 1.32 97 7 3 1.98
00010 973328 0 27 CAN COVER 0.73 21 17 5 0.99

This form of the SET command allows the user to ‘control the left
margin when a report is printed. All lines to be printed will be
‘of fset by n spaces. The n parameter must dbe a literal number in

the r e 1 to 254,
ang . SKIP =2
RECORD: 00003

.« 5

. SKIP
RECORD: 00004

. SKIP 3
RECORD: 00007

135 SORT

SORT

SORT ON <f1§1d> TO <file> .[ASCENDING]
[DESCENDING]

This command allows the user to sort data files to another file
which is different from the original file. The file in USE is
sorted on one of the data fields and may be sorted into ascending
or descending order. Notice that the USE file remains in USE and

is unaltered. e

‘While the SORT command allows only one key, a database may be
sorted on several keys by cascading sorts: sort on the most minor
key first and progress toward the major key. dBASE will only

disturb the order of records when necessary. The collating

sequence for character fields is the ASCII code. ASCENDING is
assumed 1f neither ASCENDING or DESCENDING is specified.’ -

The sort uses the ASCII collating sequence. This means that the
string 'SMITH' is "smaller" than 'Smith' (the expression "'SMITH
< 'Smith'" would be TRUE).

The INDEX command is contrasted with the SORT command in this
way: INDEX, when done, performs nearly all of SORTs dutys. Also,
INDEX generally allows greater freedom and greater speed than
SORT. e ;

. USE SHOPLIST

- LIST

00001 BEANS #303 CAN 5 0.75
00002 BREAD LOAVES 2 0.97
00003 T-BONE STEAKS 4 3.94
00004 PAPER PLATES 1 0.86
00005 PLASTIC FORKS 5 0.42
00006 LETTUCE 2 0.53
00007 BLEU CHEESE 1 1.96
00008 MILK (1/2 GAL) 2 1.30 -
00009 CHARCOAL, 5# BAGS 2 .75

. SORT ON ITEM TO SORTFILE
SORT COMPLETE

. USE SORTFILE

« LIST
00001
00002
00003
00004
00005
00006
00007
00008

00009

BEANS #303 CAN
BLEU CHEESE
BREAD LOAVES

CHARCOAL, 5# BAGS

LETTUCE

MILK (1/2 GAL)
PAPER PLATES
PLASTIC FORKS
T-BONE STEAKS

136

EUVI =M NNN =W,

0.75
1.96
0.97
0.75
0.53
1.30
0.86

3.9

SORT

137 STORE

STORE

STORE <exp»> TO <memvar>

This command computes the value of an expression and stores the

value into a memory variable. If the memory variable did not .

exist before this command was issued then dBASE will create the
memory variable automatically. :

Note that STORE will alter only memory variables. Use the .REPLACE
command to change database field variables. , 5

. RELEASE ALL

- STORE 1 TO ONE
1

» 'STORE 'ABCDEFGHIJKL' TO ALFABET
ABCDEFGHIJKL

« STORE ALFABET+' MEW STUFF' TO CHARS
ABCDEFGHIJKL NEW STUFF

» STORE OME®1.0000 TO ONE

1.0000
"+ DISPLAY MEMORY
EOF (L) .T.
ONE {N) 1.6000
ALFABET - (C) ABCDEFGHIJKL
CHARS (C)° ABCDEFGHIJKL NEW STUFF
B% TOTAL ®*# O4 VARIABLES USED 00042 BYTES USED

"138 SUM

SUM

SUM <field> [,<field>] [TO <memvar list>]

[<scope>] [FOR <exp>]

The SUM command adds numeric expressions involving the USE file
according to the <scope> and FOR clauses. Up to 5 expressions may
be simultaneously summed. If the TO clause is present, the sums
are also stored into memory variables (memory variables will be

created if they didn't exist prior to the issuance of the sum

command). The default scope of SUM is all non-deleted records.
. USE SHOPLIST

. LIST
00001 BEANS #303 CAN
00002 BREAD LOAVES
00003 T-BONE STEAKS
00004 PAPER PLATES
00C05 PLASTIC FORKS
00006 LETTUCE

00007 BLEU CHEESE

00008 MILK (1/2 GAL)
00009 CHARCOAL, 5# BAGS

0.75
0.97
3-94
0.86
0.42
0.53
1.96
1.30
0.75

NN - oW,

- SUM COST
11.48

. SUM COST FOR NO=1
2.82

. SUM COST,NO
11.48 24

. SUM COST TO MSUM
11.43

. 7 MSUM
11,46

« DISPLAY MEMORY -

MSUM (N) 11.48 -
8% TOTAL ## 01 VARIABLES USED 00006 BYTES USED

« 7 MSUM®1.10
12.6280

. SUM NWO®COST,NO,COST,COST/HO
31.53 24 11.48 5.81

139 TOTAL

TOTAL ON <key> TO <database> [FIELDS <1ist>] [FOR <expression>]

The TOTAL command is similar to the subtotal capability in the
REPORT command except that the subtotals are placed into a
database instead of printed. This allows condensation eof data by
eliminating detail and summarizing. :

~ Note: the USE database must be either presorted by the key or
indexed on the key.

If the TO database was defined (if it existed and had a
structure), then it's structure will be left intact and used to
decide which fields will be totalled arithmetically.

If the TO database did not exist prior to this TOTAL command,
then the. structure will be constructed using the field names
given by the FIELDS phrase. If there is no FIELD phrase then the
structure from the USE database will be copied to the TO file.

This command is most selective when the TO database exists and
the FIELD phrase is included in the command. In this case, only
the numeric fields in the FIELDS are totalled. In any other
configuration of this command, all numeric fields are totalled.

TOTAL can also be used to remove duplicate records from a
database since a non-numeric field in the FIELDS list is not
totalled (naturally) and is not flagged as an error.

Example:

. USE ORDERS INDEX ORDERS

. DISPLAY STRU |
STRUCTURE FOR FILE: ORDERS.DBF
NUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 CUSTOMER cr 020
002 PART:NOQ C 005
003 AMOUNT N 005

&% TOTAL %e 00031

140 TOTAL

. LIST

00003 HARRIS, ARNOLD 11528 . U4
00007 JUAN, DON 21828 5
00001 SWARTZ, JOE 31415 13
00005 MACK, JAY 31415 3
00008 SALT, CLARA 70296 . 9
00002 SWARTZ, JOE 76767 13
00006 TERRY, HANS 76767 5

00004 ADAMS, JEAN 89793 12

(Imagine that the warehouse needs to know how many of each item

to bring out. By totaling on thé quantity as long as the part
numbers are the same, a database is generated that contains

part numbers and the number needed)
(The database CALLS has already been defined)

. TOTAL ON PART:NO TO CALLS
00006 RECORDS COPIED

- USE CALLS

.. DISP STRU

STRUCTURE FOR FILE: CALLS.DBF
NUMBER OF RECORDS: 00006
DATE OF LAST UPDATE:. 00/00/00 °
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 PART:NO C 005

002 AMOUNT N 005

8% TOTAL %# 00011

« LIST

00001 11528 By

00002 21828 5

00003 31415 16 (Note: two orders totaled)

00004 - 70296 9 |

00005 T6767 18 ~ (Note: two other orders “otaled)

00006 89793 12

141 ~ UPDATE

UPDATE

O - A T

. UPDATE FROM <database> ON <key> [ADD <field 1ist>]
LREPLACE <field list>]

The UPDATE command revises the USE file by using data from a
second database to modify the USE database. Updated .items can be

-summed or replaced in entirety. A record is updated when the"

criterion is met by the comparison of a field in the USE database
with one from the FROM database. These fields are known as the
key and are supplied with the ON phrase.

Note: the USE database must be either pre-gorted by the key or

indexed on the key. The FROM database must be pre-sorted by the
key.]

Both databaaeei are 'rewound' and a record is read. If the keys
match, the add or replace action takes place as directed. If the
‘key in the USE file is smaller (in sort sequence) than the key in
the FROM database, then no action takes place, and the record is
skipped and left unchanged. -Similarly, 'if the FROM key is
smaller, no update. happen and that record is skipped.

Example:
. USE INVUPDAT

- DISPLAY STRUCTURE

STRUCTURE FOR FILE: INVUPDAT.DBF
NUMBER OF RECORDS: - 00003

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 PART:NO C 005

002 ON:HAND © N 005

003 COST N 010 002
% TOTAL ®#@ 00021

. LIST

00001 21828 77 - 35.88

00002 7Cra6 0 250.00
00003 89793 2. 134999.00

(Notice that the database is sorted on the "key" PART:NO.).

142 UPDATE

. USE INVENTRY INDEX INVENTRY

. DISPLAY STRUCTURE

STRUCTURE FOR FILE: INVENTRY.DBF
NUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 ITEM C 020

002 ¢OST N 010 002

003 PART:NO c 005

00k ON : HAND N 005

‘#% TOTAL ** 0004 1

. DISP ALL :

00008 #9 COAL 22.00 11528 16
00005 SINK, KITCHEN 34,72 21828 77
00001 TIME STITCH - 9.99 24776 1
00002 WIDGET 1.67 31415 18
00007 ~RINGS, GOLDEN 200.00 70296 5
00006 TROMBONES 198.37 76767 76
00004 TANK, SHERMAN 134999.00 89793 =
00003 GADGET, LARGE 1o 33 92653 7

(Again notice that the database is indexed on the "key" PART:NO.)

. UPDATE OM PART:NO FROM INVUPDAT ADD ON:HAND REPLACE COST

LIST

: b amar bg ekl 4
00008 #9 COAL 22.00 11528 1
00005 SINK, KITCHEN 35.88 21828 154
00001 TIME STITCH 9.99 24776 1
00002 WIDGET 1.67 31415 18
00007 RINGS, GOLDEN 250.00 70296 5
00006 TROMBONES 198.37 76767 76
00004 TANK, SHERMAN 134999.00 89793 T
00003 GADGET, LARGE 16.33 92653

(Nota-=the two new 'S‘hurman tanks were added to the database and"
the cost of the golden rings and the kitchen sinks were replaced

with the new prices.) '

143 USE

USE

sl X

USE (<database file>]

USE <{databasefile> INDEX <index file> [, <index file>, ... <index file>]

Exanﬁlu:

. USE DATABASE INDEX NAME,CITY,PART:NO,SALESMAN

The USE command specifies which (pre-existing) database file is
to be the file in USE. If there was a USE file prior to this
command, the old file is closed. If a filename is not specifled
in the command, then the previous USE file is closed.

The second form ofi USE is to sSpecily a database for opera:ion and
an associated index file (which was previously created by 'the
INDEX command or the SET INDEX TO <index file> command) and

Permits subsequent index operations such as fIND and indexed
sequential file access.

Up to seven index files may be USEd with any one database at the
Same time. The {irst index file named is considered as thne Master
Index. All FINDs use only this index and the database will be :in
the Master Index order (when skipping). All of the named index
files will ?e automatically updated anytime their keys are
modified (by APPEND, EDIT, REPLACE, READ, or BROWSE commands).

Exaﬁplaa:
. USE EXAMPLE
- USE TRACE INDEX TRACE

144 WAIT

WAIT

WAIT [TO <memvar>]

tions until any character
This command causes dBASE to cease opera

is entered from the keyboard, the message WAITING is displayed on
the screen. If “the TO clause is specified, then the single
keystroke that releases dBASE from the wait-state will be entered

into the memory variable.

The TO option is most useful when only a single character ;z
required, to direct the action of a command file process e.g. metu
selections. Notice that a carriage return is not necessary
nsend" the character as in the ACCEPT and INPUT commands.

If any non-printable character (i.e. RETURN, LINE FEED, or a:;g
other control character) is typed as the response to a 1:lr
command, the value of the memory variable is set to a blank.

Example:
. RELEASE ALL

. WAIT TO ACTION

WAITING 1

. DISP MEMO

ACTION (N) 1

&% TOTAL ®# 01 VARIABLES USED 00006 BYTES USED

145

APPENDIX A COMMAND FILE EXAMPLE

The following is one example of how command files may be used in
a practical environment. In this example, the command files are
used like a program written in a more classical language. Command
files can contain.groups of commands which perform some smaller
function e.g. a series of SORT's.

This example is a simple checkbook balancing and check register
maintenance system. It consists of 4 command files: the
controlling file, MENU, and three subordinate files, NEWENTR,
CANCELS, and BALANCE. This problem solution could be structured
in many different ways; here, this example has been structured to
show the dBASE commands that deal especially with command) flles.

The command files were created by a text editor using the type

" . CMD" in order to facilitate their usage. The sample run 1s an
actual output of dBASE using the SET ALTERNATE technique. Refer

to the SET command for this technique.

In solving any database problem, one shduld first consider what
data fields will be required. For this example, the following
fields were selected:

NO - the check number _
TO - the recipient of the check
AM1 - the dollar amount of the check

CAN - the cancelled/not-cancelled status of a check
DATE - the date on which the checx was written

dEBASE is then entered to CREATE the database structure.

'« CREATE

FILENAME : CHECKREG

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME,TYPE,WIDTH,DECIMAL PLACES

001 NO,N, U

002 T0,C,30
003 AMT,N, 10,2
004 CAN, L

005 DATE,C, 10
006 - (er)

INPUT NOW?N

A text editor is then executed and the following command file

146

saurces are entered:

First the MENU command file;

' NOTE - Example dBASE Command file program

SET TALK off
USE CHECKREG
DO WHILE T

7

J) =) e) =]) s =))

?

- e W

. _ Checkbook Balancer Menu'

- EXIT'

- Enter New Checks'

Enter Cancelled Checks'
- Balance'

wn = o
I

" enter desired action'

WAIT TO ACTION
IF ACTION='0"

SET TALK on
CANCEL

ENDIF
IF ACTION='1'

ENDIF

DO NEWENTR

IF ACTION='2'

DO CANCELS

ENDIF
IF ACTION='3'

“D0 BALANCE

ENDIF

" ENDDO

RETURN

147

Second the NEWENTR command file

NOTE - NEWENTR Command File to Enter New Checks
& :
HEMARK Enter Check Number of 0 to Exit
DO WHILE T
;
7
INPUT "Enter Check Number " to C:NO
IF C:NO=0
RETURN
ENDIF
? i
ACCEPT "Paid to Order of " to C:TO
INPUT "Amount of Check " to C:AMT
. ACCEPT "Date of Check " to C:DAT
?
INPUT "Are all fields correct 7 " to GO:NOGO
IF .NOT.GO:NOGO
LOOP
ENDIF
APPEND BLANK :
REPLACE NO with C:NO, TG with C:TO, AMT with C:AMT, DATE ;
with C:DAT, CAN with F
ENDDO

148

Third the CANCELS command file

EDTE - CANCELS Command file to enter cancelled checks
REMARK Enter Check Number of 0 to Exit
DO WHILE T
?
INPUT "Enter Cancelled Check no " to C:CAN
IF Ci:CAN=O
RETURN
ENDIF
GO TOP
LOCATE for C:CAN=NO
REPLACE CAN with T
ENDDO

149

Last the BALANCE command file

NOTE - BALANCE Command File to Balance Checkbook
e
SUM AMT to OUTSTAND for .NOT.CAN
?
1 :
DISPLAY off '1otal Outstanding Checks = $',OUTSTAND
7
REMARK- Enter Outstanding Deposits, Enter 0 to Proceed
STORE T to ACTIVE
STORE 1 to COUNT
STORE QO to T:0UT
DO WHILE ACTIVE
STORE STR(COUNT,3) to I
INPUT 'Enter Amount of Qutstanding Deposit &I ' to D:0UT
IF D:0UT=0
STORE F to ACTIVE
ELSE _
STORE D:OUT+T:0UT to T:OUT
STORE COUNT+1 to COUNT
ENDIF
ENDDO
DISPLAY OFF COUNT-1,' Total Qutstanding Deposits Total = $',T:0UT
7 e
INPUT "Enter Ending Balance" to BEGIN
DISPLAY OFF 'Current Balance = $',BEG1N+T:0UT-QUTSTAND
WAIT
RETURN

150

A sample run of these command files follows:

Checkbook Balancer Menu

- EXIT

- Enter New Checks

Enter Cancelled Checks
- Balance

Wwn =0
I

enter desired action
WAITING 1 _
Enter Check Number of 0 to Exit

Enter Check Number : 1000

Paid to Order of :ACME Rentals
Amount of Check : 123.45

Date of Check :10 Jun 79

Are all fields correct 7 :y

Enter Check Number : 1001

Paid to Order of :Mag Publishing Co.
Amount of Check :79.88

Date of Check H

Are all fields correct ? :y

Enter Check Number : 1002

Radon Inert Gases

86.86
13 Jun 79

Paid to Order of

anunt of Check
Date of Check

" R a0

Are all fields correct 7 :y

151

Enter Check Number : 1003

Paid to Order of :Neuron Comm. Inc.
Amount of Check 1 723.31

Date of Check :14 Jun 79

Are all fields correct ? :y

Enter Check Number : 1004

Paid to Order of :Crankshaft Auto
Amount of Check :2753.47

Date of Check :19 Jun 79

Are all fields correct 7?7 :y

Enter Check Number .‘0

Checkbook Balancer Menu

- EXIT

- Enter New Checks

Enter Cancelled Checks
- Balance

L= O
I

anter desired action

WAITING 2
Enter Check Number of 0 to Exit

Enter Cancelled Check no :1001
Enter Cancélled Check no :1003

Enter Cancelled Check no 10

Checkbook Balancer Menu

- EXIT

- Enter New Checks

Enter Cancelled Checks
- Balance

W = O
|

enter desired action
WAITING 3 |
Total Outstanding Checks = $ 2963.78

Enter Outsta.iing Deposits, Enter 0 to Proceed

152

Enter Amount of Qutstanding Deposit
Enter Amount of Outstanding Deposit
Enter Amount of Outstanding Deposit
Enter Amount of OQutstanding Deposit

3 Total Outstanding Deposits Total

Enter Ending Balance:1445.89
Current Balance = § 50.14

WAITING

Checktook Balancer Menu

WwN=O
i

EXIT
Enter New Checks

Enter Cancelled Checks

Balance

enter desired action

WAITING O
DO CANCELLED

At this point,

the commands:

the user could easily do direct dBASE commands to
interrogate, modify, or report on the database file. For instance

DISPLAY DATE,AMOUNT. for NO=1003

or

SUM AMT for

or any other dBASE commands could be issued to provide
information as needed to aczcommodate unforeseen cirtumstances in

DATE>'01 Jun'

~the course of managing a checkbook.

= $ 1568.03

153

APPENDIX B LIST OF COMMANDS

7 <expr [,<exp>]

@ <{coordinates> [SAY <exp> (USING '<p:l.¢t.uru>'“ LGET
<{variable> _PICTURE '<picture>']]

ACCEPT (["<cstring>"] TO <memvar)

APPEND (FROM <file> (SDF] (DELIMITED] {FOR <exp>]]
or [BLANK]

BROWSE

CANCEL

CHANGE FIFLD (11=t> [<scope>] [FOR <exp>]

CLEAR (GETS]

‘CONTINUE

COPY TO <file> [<scope>] [(FIELD <list>] (FOR <exp>]
LSDF] [DELIMITED (WITH <delimiter>]] or {STRUCTURE]-
COUNT i<scope>; [FOR <exp>] (TO <memvar)]
CREATE ([<filename>]
DELETE (<scope>] LFOR <exp>]
DELETE FILE <file>
DISPLAY [<scope>] (FOR <exp>] (<exp list>] [OFF] -
DISPLAY STRUCTURE

-DISPLAY MEMORY

DISPLAY FILES [ON <disk drive>] [LIXE <skeleton>]
DO <file>
DO WHILE <exp>

EDIT

eJECT

ELSE -

ENDDQ

ENDIF

ERASE

FIND <key>

GO or GOTO (RECORD], or [TOP], or [BOTTOM], <n>

IF <exp>

INDEX ON <char string expression> TO <index file name)>
INPUT ("<estring>"] TO <memvar>

INSERT LBEFORE], or [BLANK])

iggg TO <file> FOR <expraaaian> LFIELDS <field ll:t)]
LOCATE L<scope>] (FOR <exp>]

LOQP

MODIFY STRUCTURE

MODIFY COMMAND <command file>

. NOTE or #

PACK
QUIT (TO <list uf CP/M level commands or .COM filies>]

READ
RECALL (<scope>] rFOR <exp>]

RELZASE (<memvar 1list>], or [ALL]
AEMARK

- RENAME <current file name)> TO <new f{ile name>

REPLACE L<scope>) <field> WITH <exp> (AND <field> WITH <exp>]
AEPCRT (<scope>| (FORM <form fiie>] (TO PRINT, LFOR <exp>]
RESET

154

RESTORE

RETURN

SAVE TO <file>

SELECT (PRIMARY or SECONDARY;
SET <parm> (ON], or LOFF]

SET ALTERNATE TO <file>

SET DEFAULT TO <drive>

SET DATE TO <string>

SET FORMAT TO <format file name>
SET HEADING TO <string>

+ SET INDEX TO <index file>
SET MARGIN TC <n>

SKIP <«/=> (<n>}

SORT ON <field> TO <file> [ASCENDING], or (DESCENDING]

STORE <exp> TO <memvar>

SUM <field> {(<scope>] LTO <memvar 1ist>] (FOR <exp>]
TOTAL TO <file> ON <key variable)> [FIELDS <field list>,
UPDATE FROM <file> ON <key variable> [ADD <field list>]

LREPLACE <field list>]

USE <file> {INDEX <index file name>]

WAIT (TO <memvar>]

155

FUNCTIONS:

€(<string1>,<string2>)
%

i

I{<echar string>)

$(<char string>,<{start>,{length>)
{stringl1>$<string2>

CHR(<numeric expression>)

DATE()

EOF

'FILE(<file>)

INT(<numeric expression>)
LEN(<char string>)

VAL(<char string>)
TRIM{<char string>)
TYPE(<exp>)

AT function

deleted record func
‘record number func
upper case function
substring function
substring search
numeric to ASCII
System date func
end-of-file func
existance func
integer function
length function

- STR(<numeric expression>,<width>[,<decimals>j) string func

value function
frims strings
supplies data type

156

APPENDIX C

number of fields per record . « + « o + '
number of characters per record . « « « =«
number of records per database . . « .« o
‘number of characters per character string
. accuracy of numeric fields « « « & ¢+ + =

LIMITATIONS AND CONSTRAINTS

L]

. 32
1000

05535,

254
« W

largést pumber . . « « « ¢ o o o+ o = 1.8 x 10%#63
m11'=t nl-lllb&l" s = s & = @& ® ® ® @ 1-0 X 10..-63

number of memory variables . « « « » &

number of characters per command line . .

number of expressions in SUM command . .
number of characters in REPORT header . .

number of characters in index key . . . -

number of pénding GEIS . « ¢ = o o o o »
number of files open at one time_ 5 » &

. 64
254
L] 5
254
100
. 64
. 16

max
max
max
max
digits
approx
approx
max

157

APPENDIX D EXAROR MESSAGES

BAD DECIMAL WIDTH FIELD

BAD FILE NAME -
Syntax error in rilename.:

BAD NAME FIELD

BAD TYPE FIELD
. Must be C, N, or L.

BAD WIDTH FIELD

CANNOT INSERT - THERE ARE NO RECORDS IN DATABASE FILE
Use the APPEND command instead.

CANNOT OPEN FILE
Internal error, contact dealer for support.

COMMAND FILE CANNOT BE FOUND
Check spelling.

DATA ITEM NOT .FOUND

DATABASE~IN USE IS NOT INDEXED _
FIND is only permitted on indexed databases.

DIRECTORY IS FULL .
The CP/M disk directory cannot hold ;anymore files.

DISK IS FULL

END OF FILE FOUND UNEXPECTEDLY

The database in USE is not in the correct format. If all

recorcs are correct and present, then PACK and re- ~INDEX the
databar :

"FIELD" PnRASE NOT FCUND
FILE ALREADY EXISTS
FILE DOES NOT EXIST

FILE IS CURRENTLY OPEN
Type a USE or CLEAR command to close the file.

FORMAT FILE CANNOT BE OPENED
FORMAT FILE HAS NOT BEEN SET
ILLEGAL "ATA TYPE

ILLEGAL GOTC VALUE

ILLEGAL VARIABLE NAME
Only alphanumerics and ~olons are allowed in variable and

field ‘names.

INDEX DOES NOT MATCH DATABASE
dBASE cannot match the key with the database. Try another
index file. -

INDEX FILE CANNOT BE OPENED
Check spelling or INDEX the database.

JOIN ATTEMPTED TO GENERATE MORE THAN 65,534 RECORDS
The FOR clause allows too many joined ocutput records, make it
more stringent.

KEYS ARE NOT THE SAME LENGTH

MACRO IS NOT A CHARACTER STRING
¯os must be character strings.

. MORE THAN 5 FIELDS TO SUM

NESTING LIMIT VIOLATION EXCEEDED

NO EXPRESSION TO SuUM

NO "FOR" PHRASE

NO. "FROM"™ PHRASE

NO FIND
More a diagnostic type message than an error message.'dBASE
couldn't find the key.

NON-NUMERIC EXPRESSION

NONEXISTENT FILE

"ON" PHRASE NOT FOUND

OUT OF MEMORY FOR MEMORY.VARIABLES
Reduce the number or size of memory variables.

RECORD LENGTH EXCEEDS MAXIMUM SIZE (OF 1000)

RECORD NOT IN INDEX
Index file was not updated after a record was added. Reindex.

159

RECORD OUT OF RANGE

Record number greater than number of records in database. The
Record doesn't exist.

SORTER INTERNAL ERROR, NOTIFY SCDP
Internal error, contact dealer for support.

S0URCE AND DESTINATION DATA TYPES ARE DIFFERENT

| #4% SYNTAX ERROR ###

SYNTAX ERROR IN FORMAT SPECIFICATION
SYNTAX ERROR, RE-ENTER

“TO" PHRASE NOT FOUND

TOO MANY CHARACTERS

TOO MANY FILES ARE OPEN
There is a maximum of 16 files allowed to be open at one time.

TOO MANY MEMORY VARIABLES
There is a maximum of 64 memory variables.

TOO MANY RETURNS ENCOQUNTERED
Probably an error in the structure of a command file.

"WITA"™ PHRASE NOT FOUND

JNASSIGNED FILE NUMBER :
internal error, contact dealer for suppoert.

¥#% UNKNOWN COMMAND

VARIABLE CANNOT BE FOUND
Need to create the variable, or cneck the spelling.

160

INDEX

Kiyyurd

@, command

function
]
¢
1

4, function

operator
ACCEPT
AFPEND
BROWSE
CANCEL
CHANGE
<HR
cLEAR
CONTINUE
COPY
COUNT
CREATE
DATE
DELETE
DISPLAY
DO
EDIT
EJECT
ELSE
ENDDO
ENDIF
EQF
ERASE
FILE
FIND
GO (GOTO)
IF
INDEX
INPUT

INSERT

INT
JOIN
LEN
LIST
LOCATE
LOQP
MODIFY
NOTE
PACK
QUIT
READ

161

Page

30

13
13
10
14
11
17
38
39
46
47
48

14

49
51

57
14
o0
b2
L
65

.68

76
69
76
13
70
15
71
T4
76
17
31

10
86
12
89
90
92
Y3
95
96
98
99

Keyword
RECALL

RELEASE
REMARK
RENAME
REPLACE
REPORT
RESET

" RESTORE

RETURN

SAVE

SELECT

SET
ALTERNATE
DATE
DEFAULT
FORMAT
HEADING
INDEX
MARGIN

SKIP F

SORY

STORE

STR

SUM

TOTAL

TRIM

TYPE

UPDATE

USE

VAL

WAIT

Page
102

106
107
108
109
112
121
122
123
124
125
128
132
132
131
131
131
132
133
154
135
137

11
138
139

15

15
141
145

12
144

DiD=X

162

163

NOQTES

Additional user data about dBASE II operation not yet

anrudpd in the Manual.

1. The Oth line on the sc¢reen is now reserved for special purposes.

Therefore, do not issue a format cbmmand like '@ 0,<y> SAY <exp>'.
The REPORT command nas a limit of 24 data fields.
Under MP/M the QUIT TO <filename> will not operate.

PACK will not reduce amount of disk space reserved for that
file by CP/M. To recover the space, use a COPY TO <filename>

and then delete the source [ile. This is a ilimitation of the CP/M
operating system not of dBASE II.

PO NOT RENAME a file in USE. Generally it is not even a good
practice to RENAME a file while under command program control.

The proper syntax for the COPY STRUCTURE command is:
USE <file>
COPY STRUCTURE TO <newfile>

the 'STRUCTURE' option should immediately follow the verb 'COPY'.

When calling a dBASE data file into USE, do not use the '.DBF'
extension. dBASE adds this extension automatically.

&

-

